Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2016, Vol. 11 Issue (2) : 117803    https://doi.org/10.1007/s11467-015-0490-0
REVIEW ARTICLE
Single-site surface-enhanced Raman scattering beyond spectroscopy
Mai Takase,Satoshi Yasuda,Kei Murakoshi()
Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
 Download: PDF(799 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Recent progress in the observation of surface-enhanced Raman scattering (SERS) is reviewed to examine the possibility of finding a novel route for the effective photoexcitation of materials. The importance of well-controlled SERS experiments on a single molecule at a single site is discussed based on the difference in the information obtained from ensemble SERS measurements using multiple active sites with an uncontrolled number of molecules. A single-molecule SERS observation performed at a mechanically controllable breaking junction with a simultaneous conductivity measurement provides clear evidence of the drastic changes both in the intensity and in the Raman mode selectivity of the electromagnetic field generated by localized surface plasmon resonance. Careful control of the field at a few-nanometer-wide gap of a metal nanodimer results in the modification of the selection rule of electronic excitation of an isolated single-walled carbon nanotube. The examples shown in this review suggest that a single-site SERS observation could be used as a novel tool to find, develop, and implement applications of plasmon-induced photoexcitation of materials.

Keywords surface-enhanced Raman scattering      localized surface plasmon resonance      metal nanostructure      single-molecule observation      single-walled carbon nanotube      selection rule of electronic excitation     
Corresponding Author(s): Kei Murakoshi   
Online First Date: 01 February 2016    Issue Date: 29 April 2016
 Cite this article:   
Mai Takase,Satoshi Yasuda,Kei Murakoshi. Single-site surface-enhanced Raman scattering beyond spectroscopy[J]. Front. Phys. , 2016, 11(2): 117803.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-015-0490-0
https://academic.hep.com.cn/fop/EN/Y2016/V11/I2/117803
1 N. J. Turro, V. Ramamurthy, and J. C. Scaiano, Transitions between states: Photophysical processes, Modern molecular photochemistry of organic molecules, University Science Books, 2010, pp 109–167
2 A. F. Koenderink, A. Alù, and A. Polman, Nanophotonics: Shrinking light-based technology, Science 348(6234), 516 (2015)
https://doi.org/10.1126/science.1261243
3 A. M. Kern, D. Zhang, M. Brecht, A. I. Chizhik, A. V. Failla, F. Wackenhut, and A. J. Meixner, Enhanced single-molecule spectroscopy in highly confined optical fields: From /2-Fabry˗Pérot resonators to plasmonic nano-antennas, Chem. Soc. Rev. 43(4), 1263 (2014)
https://doi.org/10.1039/C3CS60357A
4 H. Nabika, M. Takase, F. Nagasawa, and K. Murakoshi, Toward plasmon-induced photoexcitation of molecules, J. Phys. Chem. Lett. 1(16), 2470 (2010)
https://doi.org/10.1021/jz100914r
5 G. S. Kedziora and G. C. Schatz, Calculating dipole and quadrupole polarizabilities relevant to surface enhanced Raman spectroscopy, Spectrochim. Acta Part A 55, 625 (1999)
https://doi.org/10.1016/S1386-1425(98)00266-2
6 L. E. C. Ru and P. G. Etchegoin, Transitions Between States: Photophysical Processes, Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects, Elsevier Science, 2008
7 Y. S. Yamamoto, Y. Ozaki, and T. Itoh, Recent progress and frontiers in the electromagnetic mechanism of surface-enhanced Raman scattering, J. Photochem. Photobiol. Photochem. Rev. 21, 81 (2014)
https://doi.org/10.1016/j.jphotochemrev.2014.10.001
8 Y. S. Yamamoto, M. Ishikawa, Y. Ozaki, and T. Itoh, Fundamental studies on enhancement and blinking mechanism of surface-enhanced Raman scattering (SERS) and basic applications of SERS biological sensing, Front. Phys. 9(1), 31 (2014)
https://doi.org/10.1007/s11467-013-0347-3
9 J. R. Lombardi, R. L. Birke, T. H. Lu, and J. Xu, Charge-transfer theory of surface enhanced Raman-spectroscopy- Herzberg˗Teller contributions, J. Chem. Phys. 84(8), 4174 (1986)
https://doi.org/10.1063/1.450037
10 R. L. Birke, V. Znamenskiy, and J. R. Lombardi, A charge-transfer surface enhanced Raman scattering model from time-dependent density functional theory calculations on a Ag10-pyridine complex, J. Chem. Phys. 132(21), 214707 (2010)
https://doi.org/10.1063/1.3431210
11 K. Kneipp, G. Harrison, S. Emory, and S. Nie, Single-molecule Raman spectroscopy: Fact or fiction? Chimia(Aarau) 53, 35 (1999)
12 P. G. Etchegoin and E. C. Le Ru, A perspective on single molecule SERS: Current status and future challenges, Phys. Chem. Chem. Phys. 10(40), 6079 (2008)
https://doi.org/10.1039/b809196j
13 E. C. Le Ru, M. Meyer, and P. G. Etchegoin, Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique, J. Phys. Chem. B 110(4), 1944 (2006)
https://doi.org/10.1021/jp054732v
14 E. Blackie, E. C. Le Ru, M. Meyer, M. Timmer, B. Burkett, P. Northcote, and P. G. Etchegoin, Bi-analyte SERS with isotopically edited dyes, Phys. Chem. Chem. Phys. 2008, 10: 4147-53
https://doi.org/10.1039/b803738h
15 E. J. Blackie, E. C. Le Ru, and P. G. Etchegoin, Single-molecule surface-enhanced Raman spectroscopy of nonresonant molecules, J. Am. Chem. Soc. 131(40), 14466 (2009)
https://doi.org/10.1021/ja905319w
16 Y. Sawai, B. Takimoto, H. Nabika, K. Ajito, and K. Murakoshi, Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering, J. Am. Chem. Soc. 129(6), 1658 (2007)
https://doi.org/10.1021/ja067034c
17 S. L. Kleinman, E. Ringe, N. Valley, K. L. Wustholz, E. Phillips, K. A. Scheidt, G. C. Schatz, and R. P. Van Duyne, Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: Theory and experiment, J. Am. Chem. Soc. 133(11), 4115 (2011)
https://doi.org/10.1021/ja110964d
18 K. Uosaki, H. Allen, and O. Hill, Absorption behaviour of 4,4′-bipyridyl at a gold/water interface and its role in the electron transfer reaction between cytochrome c and a gold electrode, J. Electroanal. Chem. Interfacial Electrochem. 122, 321 (1981)
https://doi.org/10.1016/S0022-0728(81)80162-3
19 D. Yang, D. Bizzotto, J. Lipkowski, B. Pettinger, and S. Mirwald, Electrochemical and second harmonic generation studies of 2,2'-bipyridine adsorption at the Au(111) electrode surface, J. Phys. Chem. 98(28), 7083 (1994)
https://doi.org/10.1021/j100079a031
20 H. Xu, J. Aizpurua, M. Käll, and P. Apell, Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering, Phys. Rev. E 62(3), 4318 (2000)
https://doi.org/10.1103/PhysRevE.62.4318
21 A. J. Meixner, D. Zeisel, M. A. Bopp, and G. Tarrach, Superresolution imaging and detection of fluorescence from single molecules by scanning near-field optical microscopy, Opt. Eng. 34(8), 2324 (1995)
https://doi.org/10.1117/12.200620
22 B. Pettinger, P. Schambach, C. J. Villagomez and N. Scott, Tip-enhanced Raman spectroscopy: Near-fields acting on a few molecules, Ann. Rev. Phys. Chem., 63, 379 (2012)
https://doi.org/10.1146/annurev-physchem-032511-143807
23 J. Steidtner and B. Pettinger, Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution, Phys. Rev. Lett. 100(23), 236101 (2008)
https://doi.org/10.1103/PhysRevLett.100.236101
24 B. Pettinger, K. F. Domke, D. Zhang, G. Picardi, and R. Schuster, Tip-enhanced Raman scattering: Influence of the tip-surface geometry on optical resonance and enhancement, Surf. Sci. 603(10-12), 1335 (2009)
https://doi.org/10.1016/j.susc.2008.08.033
25 R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, Chemical mapping of a single molecule by plasmon-enhanced Raman scattering, Nature 498(7452), 82 (2013)
https://doi.org/10.1038/nature12151
26 S. Berweger, C. C. Neacsu, Y. Mao, H. Zhou, S. S. Wong, and M. B. Raschke, Optical nanocrystallography with tip-enhanced phonon Raman spectroscopy, Nat. Nanotechnol. 4(8), 496 (2009)
https://doi.org/10.1038/nnano.2009.190
27 Z. Liu, S. Y. Ding, Z. B. Chen, X. Wang, J. H. Tian, J. R. Anema, X. S. Zhou, D. Y. Wu, B. W. Mao, X. Xu, B. Ren, and Z. Q. Tian, Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy, Nat. Commun. 2, 305 (2011)
https://doi.org/10.1038/ncomms1310
28 T. Ichimura, S. Fujii, P. Verma, T. Yano, Y. Inouye, and S. Kawata, Subnanometric near-field Raman investigation in the vicinity of a metallic nanostructure, Phys. Rev. Lett. 102(18), 186101 (2009)
https://doi.org/10.1103/PhysRevLett.102.186101
29 J. M. Klingsporn, M. D. Sonntag, T. Seideman, and R. P. Van Duyne, Tip-enhanced Raman spectroscopy with picosecond pulses, J Phys Chem Lett 5(1), 106 (2014)
https://doi.org/10.1021/jz4024404
30 J. M. Atkin and M. B. Raschke, Techniques: Optical spectroscopy goes intramolecular, Nature 498(7452), 44 (2013)
https://doi.org/10.1038/498044a
31 Y. Fang, Z. Zhang, L. Chen, and M. Sun, Near field plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy, Phys. Chem. Chem. Phys. 17(2), 783 (2015)
https://doi.org/10.1039/C4CP03871A
32 L. Meng, Z. Yang, J. Chen, and M. Sun, Effect of electric field gradient on sub-nanometer spatial resolution of tip-enhanced Raman spectroscopy, Sci. Rep. 5, 9240 (2015)
https://doi.org/10.1038/srep09240
33 P. Z. El-Khoury, Y. Gong, P. Abellan, B. W. Arey, A. G. Joly, D. Hu, J. E. Evans, N. D. Browning, and W. P. Hess, Tip-enhanced Raman nanographs: Mapping topography and local electric fields, Nano Lett. 15(4), 2385 (2015)
https://doi.org/10.1021/acs.nanolett.5b00609
34 S. Kano, T. Tada, and Y. Majima, Nanoparticle characterization based on STM and STS, Chem. Soc. Rev. 44(4), 970 (2015)
https://doi.org/10.1039/C4CS00204K
35 S. V. Aradhya and L. Venkataraman, Single-molecule junctions beyond electronic transport, Nat Nanotechnol 8(6), 399 (2013)
https://doi.org/10.1038/nnano.2013.91
36 I. Bâldea, Electrochemical setup — a unique chance to simultaneously control orbital energies and vibrational properties of single-molecule junctions with unprecedented efficiency, Phys. Chem. Chem. Phys. 16(47), 25942 (2014)
https://doi.org/10.1039/C4CP04316B
37 I. Baldea, Single-molecule junctions based on bipyridine: Impact of an unusual reorganization on charge transport, J. Phys. Chem. C 118(16), 8676 (2014)
https://doi.org/10.1021/jp412675k
38 F. Lissel, F. Schwarz, O. Blacque, H. Riel, E. Lörtscher, K. Venkatesan, and H. Berke, Organometallic single-molecule electronics: Tuning electron transport through X(diphosphine)2FeC4Fe(diphosphine)2X building blocks by varying the Fe-X-Au anchoring scheme from coordinative to covalent, J. Am. Chem. Soc. 136(41), 14560 (2014)
https://doi.org/10.1021/ja507672g
39 C. Huang, A. V. Rudnev, W. Hong, and T. Wandlowski, Break junction under electrochemical gating: Testbed for single-molecule electronics, Chem. Soc. Rev. 44(4), 889 (2015)
https://doi.org/10.1039/C4CS00242C
40 R. Matsuhita, M. Horikawa, Y. Naitoh, H. Nakamura, and M. Kiguchi, Conductance and SERS measurement of benzenedithiol molecules bridging between Au electrodes, J. Phys. Chem. C 117(4), 1791 (2013)
https://doi.org/10.1021/jp3112638
41 J. H. Tian, B. Liu, X. Li, Z. L. Yang, B. Ren, S. T. Wu, N. Tao, and Z. Q. Tian, Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method, J. Am. Chem. Soc. 128(46), 14748 (2006)
https://doi.org/10.1021/ja0648615
42 D. R. Ward, N. J. Halas, J. W. Ciszek, J. M. Tour, Y. Wu, P. Nordlander, and D. Natelson, Simultaneous measurements of electronic conduction and Raman response in molecular junctions, Nano Lett. 8(3), 919 (2008)
https://doi.org/10.1021/nl073346h
43 J. B. Herzog, M. W. Knight, Y. Li, K. M. Evans, N. J. Halas, and D. Natelson, Dark plasmons in hot spot generation and polarization in interelectrode nanoscale junctions, Nano Lett. 13(3), 1359 (2013)
https://doi.org/10.1021/nl400363d
44 T. Konishi, M. Kiguchi, M. Takase, F. Nagasawa, H. Nabika, K. Ikeda, K. Uosaki, K. Ueno, H. Misawa, and K. Murakoshi, Single molecule dynamics at a mechanically controllable break junction in solution at room temperature, J. Am. Chem. Soc. 135(3), 1009 (2013)
https://doi.org/10.1021/ja307821u
45 Y. Li, P. Doak, L. Kronik, J. B. Neaton, and D. Natelson, Voltage tuning of vibrational mode energies in single-molecule junctions, Proc. Natl. Acad. Sci. USA 111(4), 1282 (2014)
https://doi.org/10.1073/pnas.1320210111
46 M. Kiguchi, T. Takahashi, M. Kanehara, T. Teranishi, and K. Murakoshi, Effect of end group position on the formation of single porphyrin molecular junction, J. Phys. Chem. C 113(21), 9014 (2009)
https://doi.org/10.1021/jp9023662
47 M. Kiguchi, S. Miura, T. Takahashi, K. Hara, M. Sawamura, and K. Murakoshi, Conductance of single 1,4-benzenediamine molecule bridging between Au and Pt electrodes, J. Phys. Chem. C 112(35), 13349 (2008)
https://doi.org/10.1021/jp806129u
48 M. Kiguchi, S. Miura, K. Hara, M. Sawamura, and K. Murakoshi, Conductance of single 1,4 di-substitued benzene molecules anchored to Pt electrodes, Appl. Phys. Lett. 91(5), 053110 (2007)
https://doi.org/10.1063/1.2757592
49 J. R. Lombardi, R. L. Birke, and G. Haran, Single molecule SERS spectral blinking and vibronic coupling, J. Phys. Chem. C 115(11), 4540 (2011)
https://doi.org/10.1021/jp111345u
50 P. K. Jain, D. Ghosh, R. Baer, E. Rabani, and A. P. Alivisatos, Near-field manipulation of spectroscopic selection rules on the nanoscale, Proc. Natl. Acad. Sci. USA 109(21), 8016 (2012)
https://doi.org/10.1073/pnas.1121319109
51 A. M. Polubotko, Some anomalies of the SER spectra of symmetrical molecules adsorbed on transition metal substrates: Consideration by the dipole-quadrupole SERS theory, J. Raman Spectrosc. 36(6-7), 522 (2005)
https://doi.org/10.1002/jrs.1344
52 D. V. Chulhai, and L. Jensen, Determining molecular orientation with surface-enhanced Raman scattering using inhomogenous electric fields, J. Phys. Chem. C 117, 19622 (2013)
https://doi.org/10.1021/jp4062626
53 E. J. Ayars, H. D. Hallen, and C. L. Jahncke, Electric field gradient effects in Raman spectroscopy, Phys. Rev. Lett. 85(19), 4180 (2000)
https://doi.org/10.1103/PhysRevLett.85.4180
54 G. S. Duesberg, I. Loa, M. Burghard, K. Syassen, and S. Roth, Polarized raman spectroscopy on isolated single-wall carbon nanotubes, Phys. Rev. Lett. 85(25), 5436 (2000)
https://doi.org/10.1103/PhysRevLett.85.5436
55 K. Kneipp, A. Jorio, H. Kneipp, S. D. M. Brown, K. Shafer, J. Motz, R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Polarization effects in surface-enhanced resonant Raman scattering of single-wall carbon nanotubes on colloidal silver clusters, Phys. Rev. B •••, 63 (2001)
56 A. Jorio, M. A. Pimenta, A. G. Souza Filho, G. G. Samsonidze, A. K. Swan, M. S. Unlü, B. B. Goldberg, R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Resonance Raman spectra of carbon nanotubes by cross-polarized light, Phys. Rev. Lett. 90(10), 107403 (2003)
https://doi.org/10.1103/PhysRevLett.90.107403
57 N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, and S. Kawata, Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy, Chem. Phys. Lett. 376(1-2), 174 (2003)
https://doi.org/10.1016/S0009-2614(03)00883-2
58 A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, High-resolution near-field Raman microscopy of single-walled carbon nanotubes, Phys. Rev. Lett. 90(9), 095503 (2003)
https://doi.org/10.1103/PhysRevLett.90.095503
59 M. Takase, H. Nabika, S. Hoshina, M. Nara, K. Komeda, R. Shito, S. Yasuda, K. Murakoshi, and K. Murakoshi, Local thermal elevation probing of metal nanostructures during laser illumination utilizing surface-enhanced Raman scattering from a single-walled carbon nanotube, Phys. Chem. Chem. Phys. 15(12), 4270 (2013)
https://doi.org/10.1039/c3cp43728k
60 C. M. Aikens, L. R. Madison, and G. C. Schatz, The effect of field gradient on SERS, Nat. Photonics 7(7), 508 (2013)
https://doi.org/10.1038/nphoton.2013.153
61 S. Heeg, A. Oikonomou, R. Fernandez-Garcia, C. Lehmann, S. A. Maier, A. Vijayaraghavan, and S. Reich, Plasmon-enhanced Raman scattering by carbon nanotubes optically coupled with near-field cavities, Nano Lett. 14(4), 1762 (2014)
https://doi.org/10.1021/nl404229w
62 M. T. Trinh, M. Y. Sfeir, J. J. Choi, J. S. Owen, and X. Zhu, A hot electron-hole pair breaks the symmetry of a semiconductor quantum dot, Nano Lett. 13(12), 6091 (2013)
https://doi.org/10.1021/nl403368y
63 M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, Quantum plasmonics, Nat. Phys. 9(6), 329 (2013)
https://doi.org/10.1038/nphys2615
64 M. Barbry, P. Koval, F. Marchesin, R. Esteban, A. G. Borisov, J. Aizpurua, and D. Sánchez-Portal, Atomistic near-field nanoplasmonics: Reaching atomic-scale resolution in nanooptics, Nano Lett. 15(5), 3410 (2015)
https://doi.org/10.1021/acs.nanolett.5b00759
65 K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, Revealing the quantum regime in tunnelling plasmonics, Nature 491(7425), 574 (2012)
https://doi.org/10.1038/nature11653
66 A. Manjavacas, F. J. García de Abajo, and P. Nordlander, Quantum plexcitonics: Strongly interacting plasmons and excitons, Nano Lett. 11(6), 2318 (2011)
https://doi.org/10.1021/nl200579f
67 P. Törmä and W. L. Barnes, Strong coupling between surface plasmon polaritons and emitters: A review, Rep. Prog. Phys. 78(1), 013901 (2015)
https://doi.org/10.1088/0034-4885/78/1/013901
[1] Li-Hua Qian,Li-Zhi Yi,Gui-Sheng Wang,Chao Zhang,Song-Liu Yuan. Survey of plasmonic gaps tuned at sub-nanometer scale in self-assembled arrays[J]. Front. Phys. , 2016, 11(2): 115204-.
[2] Hong-Yan Liang,Hong Wei,Hong-Xing Xu. Deviating from the nanorod shape: Shape-dependent plasmonic properties of silver nanorice and nanocarrot structures[J]. Front. Phys. , 2016, 11(2): 117301-.
[3] Arash Ahmadivand, Saeed Golmohammadi. Fano resonances in complex plasmonic super-nanoclusters: The effect of environmental modifications on the LSPR sensitivity[J]. Front. Phys. , 2015, 10(2): 104203-.
[4] Katherine A. Willets. Plasmon point spread functions: How do we model plasmon-mediated emission processes?[J]. Front. Phys. , 2014, 9(1): 3-16.
[5] Yizhuo He, Junxue Fu, Yiping Zhao. Oblique angle deposition and its applications in plasmonics[J]. Front. Phys. , 2014, 9(1): 47-59.
[6] Yuko S. Yamamoto, Mitsuru Ishikawa, Yukihiro Ozaki, Tamitake Itoh. Fundamental studies on enhancement and blinking mechanism of surface-enhanced Raman scattering (SERS) and basic applications of SERS biological sensing[J]. Front. Phys. , 2014, 9(1): 31-46.
[7] Feng-Zi Cong, Hong Wei, Xiao-Rui Tian, Hong-Xing Xu. A facile synthesis of branched silver nanowire structures and its applications in surface-enhanced Raman scattering[J]. Front. Phys. , 2012, 7(5): 521-526.
[8] Shun-li Yue, Hong Zhang. First principles study on magnetic and electronic properties with rare-earth atoms doped SWCNTs[J]. Front. Phys. , 2012, 7(3): 353-359.
[9] HAN Yong, LIU Feng. Coulomb sink effect on coarsening of metal nanostructures on surfaces[J]. Front. Phys. , 2008, 3(1): 41-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed