Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2012, Vol. 7 Issue (3) : 353-359    https://doi.org/10.1007/s11467-011-0209-9
RESEARCH ARTICLE
First principles study on magnetic and electronic properties with rare-earth atoms doped SWCNTs
Shun-li Yue, Hong Zhang()
College of Physical Science and Technology, Sichuan University, Chengdu 610065, China
 Download: PDF(652 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The adsorptions of rare-earth (RE) atoms on (6, 0) and (8, 0) single-walled carbon nanotubes (SWCNTs) have been investigated by using the first-principles pseudopotential plane wave method within density functional theory (DFT). The binding energy, Mulliken charge, magnetic properties, band structure and DOS were calculated and analyzed. Most of RE atoms including Nd, Sm and Eu have a magnetic ground state with a significant magnetic moment. Some electrons transfer between RE-5d, 6s and C-2p orbitals. Owing to the curvature effect, the values of binding energy for RE atoms doped (6, 0) SWCNT are lower than those of the same atoms on (8, 0) SWCNT. The pictures of DOS show that hybridizations between RE-5d, 6s states and C-2p orbitals and between RE-4f and C-2p orbitals appear near the Fermi level. Results indicate that the properties of SWCNTs can be modified by the adsorptions of RE atoms.

Keywords DFT      RE atoms      single-walled carbon nanotubes (SWCNTs)      doping     
Corresponding Author(s): Zhang Hong,Email:hongzhang@scu.edu.cn   
Issue Date: 01 June 2012
 Cite this article:   
Shun-li Yue,Hong Zhang. First principles study on magnetic and electronic properties with rare-earth atoms doped SWCNTs[J]. Front. Phys. , 2012, 7(3): 353-359.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-011-0209-9
https://academic.hep.com.cn/fop/EN/Y2012/V7/I3/353
1 S. Iijima, Nature , 1991, 354(7): 56
doi: 10.1038/354056a0
2 M. S. Dresselhaus, G. Presselhaus, and P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Heidelberg: Springer, 2001
doi: 10.1007/3-540-39947-X
3 Z. X. Guo and X. G. Gong, Front. Phys. China , 2009, 4(3): 389
doi: 10.1007/s11467-009-0039-1
4 P. L. McEuen, M. S. Fuhrer, and H. Park, IEEE Trans. Nanotech. , 2002, 1 (1): 78
doi: 10.1109/TNANO.2002.1005429
5 Y. C. Sui, R. Skomski, K. D. Sorge, and D. J. Sellmyer, Appl. Phys. Lett. , 2004, 84(9): 1525
doi: 10.1063/1.1655692
6 T. Yildirim and S. Ciraci, Phys. Rev. Lett. , 2005, 94(17): 175501
doi: 10.1103/PhysRevLett.94.175501
7 W. Z. Lia, C. H. Liang, J. S. Qiu, W. J. Zhou, H. M. Han, Z. B. Wei, G. Q. Sun, and Q. Xin, Carbon , 2002, 40(5): 791
doi: 10.1016/S0008-6223(02)00039-8
8 Y. Yagi, T. M. Briere, M. H. F. Sluiter, V. Kumar, A. A. Farajian, and Y. Kawazoe, Phys. Rev. B , 2004, 69(7): 075414
doi: 10.1103/PhysRevB.69.075414
9 F. Li, J. J. Zhao, and L. X. Sun, Front. Phys. , 2011, 6(2): 214
10 M. Li, Y. F. Li, Z. Zhou, and P. W. Shen, Front. Phys. , 2011, 6(2): 224
11 H. Zhang and X. D. Li, Front. Phys. , 2011, 6(2): 231
12 X. Zhou, J. Zhou, K. Lü, and Q. Sun, Front. Phys. , 2011, 6(2): 220
13 J. H. Lan, D. P. Cao, and W. C. Wang, J. Phys. Chem. C , 2010, 114(7): 3108
doi: 10.1021/jp9106525
14 Z. J. Shi, Y. F. Lian, X. H. Zhou, Z. N. Gu, Y. G. Zhang, S. Iijima, L. X. Zhou, K. T. Yue, and S. L. Zhang, Carbon , 1999, 37(9): 1449
doi: 10.1016/S0008-6223(99)00007-X
15 A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Science , 1996, 273(5274): 483
doi: 10.1126/science.273.5274.483
16 H. J. Jeong, K. H. An, S. C. Lim, M. S. Park, J. S. Chang, and Y. H. Lee, Chem. Phys. Lett. , 2003, 380(3): 263
doi: 10.1016/j.cplett.2003.09.028
17 C. Jo, C. Kim, and Y. H. Lee, Phys. Rev. B , 2002, 65(3): 035420
doi: 10.1103/PhysRevB.65.035420
18 J. J. Zhao, A. Buldum, J. Han, and J. P. Lu, Phys. Rev. Lett. , 2000, 85(8): 1706
doi: 10.1103/PhysRevLett.85.1706
19 J. W. Zheng, S. M. L. Nai, M. F. Ng, P. Wu, J. Wei, and M. Gupta, J. Phys. Chem. C , 2009, 113(3): 14015
doi: 10.1021/jp809266n
20 E. Durgun, S. Dag, V. M. K. Bagci, O. Gülseren, T. Yildirim, and S. Ciraci, Phys. Rev. B , 2003, 67(20): 201401
doi: 10.1103/PhysRevB.67.201401
21 E. Durgun, S. Dag, S. Ciraci, and O. Gülseren, J. Phys. Chem. B , 2004, 108(2): 575
doi: 10.1021/jp0358578
22 Y. L. Mao, X. H. Yan, and Y. Xiao, Nanotechnology , 2005, 16(12): 3092
doi: 10.1088/0957-4484/16/12/061
23 A. Vdomveoh, T. Kerecharoen, and T. Osotchan, Chem. Phys. Lett. , 2005, 406(2): 161
24 Y. J. Kang, J. Choi, C. Y. Moon, and K. J. Chang, Phys. Rev. B , 2005, 71(11): 115411
doi: 10.1103/PhysRevB.71.115441
25 V. V. Ivanovskaya, C. K?hler, and G. Seifert, Phys. Rev. B , 2007, 75(7): 075410
doi: 10.1103/PhysRevB.75.075410
27 J. C. Xie, Y. J. Tang, and H. Zhang, Cent. Eur. J. Phys. , 2010, 9(3): 716
doi: 10.2478/s11534-010-0052-6
28 Z. W. Zhang, J. C. Li, and Q. Jiang, J. Phys. Chem. C , 2010, 114(8): 7733
doi: 10.1021/jp100017y
29 J. P. Perdew and Y. Wang, Phys. Rev. B , 1992, 45(23): 13244
doi: 10.1103/PhysRevB.45.13244
30 B. Delley, J. Chem. Phys., 2000, 113(18): 7756
doi: 10.1063/1.1316015
31 Y. Luo, J. Baldamus, O. Tardif, and Z. Hou, Organometallics , 2005, 24(18): 4362
doi: 10.1021/om0502382
32 C. M. Fang, J. Bauer, J. Y. Saillard, and J. F. Halet, J. Solid State Chem. , 2007, 180(9): 2465
doi: 10.1016/j.jssc.2007.06.028
33 A. Delin, P. M. Oppeneer, M. S. S. Brooks, T. Kraft, J. M. Wills, B. Johansson, and O. Eriksson, Phys. Rev. B , 1997, 55(16): R10173
doi: 10.1103/PhysRevB.55.R10173
34 S. J. S. Jalali Asadabadi and H. Akbarzadeh, Physica B , 2004, 76(4): 349
35 A. Rubio-Ponce, A. Conde-Gallardo, and D. Olguín, Phys. Rev. B , 2008, 78(13): 035107
doi: 10.1103/PhysRevB.78.035107
36 A. Delin, L. Fast, B. Johansson, O. Eriksson, and J. M. Wills, Phys. Rev. B , 1998, 58(8): 4345
doi: 10.1103/PhysRevB.58.4345
37 B. Delley, Phys. Rev. B , 2002, 66(15): 155125
doi: 10.1103/PhysRevB.66.155125
38 H. J. Monkhorst and J. D. Pack, Phys. Rev. B , 1976, 13(12): 5188
doi: 10.1103/PhysRevB.13.5188
39 O. Gülseren, T. Yildirim, and S. Ciraci, Phys. Rev. Lett. , 2001, 87(11): 116802
doi: 10.1103/PhysRevLett.87.116802
40 H. Kuramochi, T. Vzumaki, M. Yamka, H. Akinaga, and H. Yokoyama, Nanotechnology , 2005, 16(1): 24
doi: 10.1088/0957-4484/16/1/006
41 L. Zhu, K. L. Yao, and Z. L. Liu, Solid State Commun. , 2007, 141(11): 628
doi: 10.1016/j.ssc.2006.12.032
42 G. L. Lu, K. M. Deng, H. P. Wu, J. L. Yang, and X. Wang, J. Chem. Phys. , 2006, 124(5): 054305
doi: 10.1063/1.2162895
43 X. Blasé, L. X. Benedict, E. L. Shirley, and S. G. Louie, Phys. Rev. Lett. , 1994, 72(12): 1878
doi: 10.1103/PhysRevLett.72.1878
[1] Hui Zeng, Meng Wu, Hui-Qiong Wang, Jin-Cheng Zheng, Junyong Kang. Tuning the magnetic and electronic properties of strontium titanate by carbon doping[J]. Front. Phys. , 2021, 16(4): 43501-.
[2] Qinye Li, Siyao Qiu, Baohua Jia. Theoretical investigation of CoTa2O6/graphene heterojunctions for oxygen evolution reaction[J]. Front. Phys. , 2021, 16(1): 13503-.
[3] Zhitao Cui, Wei Du, Chengwei Xiao, Qiaohong Li, Rongjian Sa, Chenghua Sun, Zuju Ma. Enhancing hydrogen evolution of MoS2 basal planes by combining single-boron catalyst and compressive strain[J]. Front. Phys. , 2020, 15(6): 63502-.
[4] Jia Liu, Xian Liao, Jiayu Liang, Mingchao Wang, Qinghong Yuan. Tuning the electronic properties of hydrogen passivated C3N nanoribbons through van der Waals stacking[J]. Front. Phys. , 2020, 15(6): 63503-.
[5] Zhi-Min Liu, Ye Yang, Yue-Shao Zheng, Qin-Jun Chen, Ye-Xin Feng. Isotropic or anisotropic screening in black phosphorous: Can doping tip the balance?[J]. Front. Phys. , 2020, 15(5): 53501-.
[6] Thomas Pope, Werner Hofer. Exact orbital-free kinetic energy functional for general many-electron systems[J]. Front. Phys. , 2020, 15(2): 23603-.
[7] Ling-Ling Wang, Jia-Nan Chu, Xuan Zhang, Yong-Hui Ma, Qiu-Cheng Ji, Wei Li, Hui Zhang, Gang Mu, Xiao-Ming Xie. Hydrothermal synthesis, structure and magnetic properties of Ru doped La0.5Sr0.5MnO3[J]. Front. Phys. , 2019, 14(1): 13604-.
[8] Yu Guo, Nan Gao, Yizhen Bai, Jijun Zhao, Xiao Cheng Zeng. Monolayered semiconducting GeAsSe and SnSbTe with ultrahigh hole mobility[J]. Front. Phys. , 2018, 13(4): 138117-.
[9] Qiang Wang, Jian-Wei Li, Bin Wang, Yi-Hang Nie. First-principles investigation of quantum transport in GeP3 nanoribbon-based tunneling junctions[J]. Front. Phys. , 2018, 13(3): 138501-.
[10] Xue-Rong Hu, Ji-Ming Zheng, Zhao-Yu Ren. Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation[J]. Front. Phys. , 2018, 13(2): 137302-.
[11] Qian Chen,Xiaohui Yang,Xiaojun Yang,Jian Chen,Chenyi Shen,Pan Zhang,Yupeng Li,Qian Tao,Zhu-An Xu. Enhanced superconductivity in hole-doped Nb2PdS5[J]. Front. Phys. , 2017, 12(5): 127402-.
[12] Jianing Zhuang,Yin Wang,Yan Zhou,Jian Wang,Hong Guo. Impurity-limited quantum transport variability in magnetic tunnel junctions[J]. Front. Phys. , 2017, 12(4): 127304-.
[13] Jian-Wei Li,Bin Wang,Yun-Jin Yu,Ya-Dong Wei,Zhi-Zhou Yu,Yin Wang. Spin-resolved quantum transport in graphene-based nanojunctions[J]. Front. Phys. , 2017, 12(4): 126501-.
[14] Jingzhao Zhang,Kinfai Tse,Manhoi Wong,Yiou Zhang,Junyi Zhu. A brief review of co-doping[J]. Front. Phys. , 2016, 11(6): 117405-.
[15] Yi-Han Cheng,Chuan-Yu Zhang,Juan Ren,Kai-Yu Tong. Hydrogen storage in Li-doped fullerene-intercalated hexagonal boron nitrogen layers[J]. Front. Phys. , 2016, 11(5): 113101-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed