Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2016, Vol. 11 Issue (2) : 115204    https://doi.org/10.1007/s11467-016-0567-4
REVIEW ARTICLE
Survey of plasmonic gaps tuned at sub-nanometer scale in self-assembled arrays
Li-Hua Qian1,2,*(),Li-Zhi Yi1,Gui-Sheng Wang1,Chao Zhang1,2,Song-Liu Yuan*()
1. School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
2. Flexible Electronics Center, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(696 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Creating nanoscale and sub-nanometer gaps between noble metal nanoparticles is critical for the applications of plasmonics and nanophotonics. To realize simultaneous attainments of both the optical spectrum and the gap size, the ability to tune these nanoscale gaps at the sub-nanometer scale is particularly desirable. Many nanofabrication methodologies, including electron beam lithography, self-assembly, and focused ion beams, have been tested for creating nanoscale gaps that can deliver significant field enhancement. Here, we survey recent progress in both the reliable creation of nanoscale gaps in nanoparticle arrays using self-assemblies and in the in-situ tuning techniques at the sub-nanometer scale. Precisely tunable gaps, as we expect, will be good candidates for future investigations of surface-enhanced Raman scattering, non-linear optics, and quantum plasmonics.

Keywords surface plasmon      tunable      plasmonic gap      quantum plasmon      surface-enhanced Raman scattering      self-assembly      nanoparticle array     
Corresponding Author(s): Li-Hua Qian,Song-Liu Yuan   
Online First Date: 31 March 2016    Issue Date: 29 April 2016
 Cite this article:   
Li-Hua Qian,Li-Zhi Yi,Gui-Sheng Wang, et al. Survey of plasmonic gaps tuned at sub-nanometer scale in self-assembled arrays[J]. Front. Phys. , 2016, 11(2): 115204.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-016-0567-4
https://academic.hep.com.cn/fop/EN/Y2016/V11/I2/115204
1 C. B. Azzoni, D. D. I. Martino, V. Marchesi, B. Messiga, and M. P. Riccardi, Colour attributes of medieval window panes: Electron paramagnetic resonance and probe microanalyses on stained glass windows from Pavia-Carthusian monastery, Archaeometry 47(2), 381 (2005)
https://doi.org/10.1111/j.1475-4754.2005.00208.x
2 S. A. Maier and H. A. Atwater, Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures, J. Appl. Phys. 98(1), 011101 (2005)
https://doi.org/10.1063/1.1951057
3 G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Ann. Phys. 330(3), 377 (1908)
https://doi.org/10.1002/andp.19083300302
4 N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, Plasmons in strongly coupled metallic nanostructures, Chem. Rev. 111(6), 3913 (2011)
https://doi.org/10.1021/cr200061k
5 H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Berlin: Springer, 1988
6 L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films, Langmuir 14(19), 5636 (1998)
https://doi.org/10.1021/la971228b
7 B. Auguié and W. L. Barnes, Collective resonances in gold nanoparticle arrays, Phys. Rev. Lett. 101(14), 143902 (2008)
https://doi.org/10.1103/PhysRevLett.101.143902
8 T. J. Yim, Y. Wang, and X. Zhang, Synthesis of a gold nanoparticle dimer plasmonic resonator through two-phase-mediated functionalization, Nanotechnology 19(43), 435605 (2008)
https://doi.org/10.1088/0957-4484/19/43/435605
9 D. S. Kim, J. Heo, S. H. Ahn, S. W. Han, W. S. Yun, and Z. H. Kim, Real-space mapping of the strongly coupled plasmons of nanoparticle dimers, Nano Lett. 9(10), 3619 (2009)
https://doi.org/10.1021/nl901839f
10 S. Shen, L. Meng, Y. Zhang, J. Han, Z. Ma, S. Hu, Y. He, J. Li, B. Ren, T.M. Shih, Z. Wang, Z. Yang, and Z. Tian, Plasmon-enhanced second-harmonic generation nanorulers with ultrahigh sensitivities, Nano Lett. 15(10), 6716 (2015)
https://doi.org/10.1021/acs.nanolett.5b02569
11 Z. Q. Tian and B. Ren, Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy, Annu. Rev. Phys. Chem. 55(1), 197 (2004)
https://doi.org/10.1146/annurev.physchem.54.011002.103833
12 E. C. Le Ru and P. G. Etchegoin, Single-molecule surface-enhanced Raman spectroscopy, Annu. Rev. Phys. Chem. 63(1), 65 (2012)
https://doi.org/10.1146/annurev-physchem-032511-143757
13 L. Li, T. Li, S. M. Wang, and S. N. Zhu, Collimated plasmon beam: Nondiffracting versus linearly focused, Phys. Rev. Lett. 110(4), 046807 (2013)
https://doi.org/10.1103/PhysRevLett.110.046807
14 Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, Plasmonic nanolaser using epitaxially grown silver film, Science 337(6093), 450 (2012)
https://doi.org/10.1126/science.1223504
15 A. V. Krasavin and A. V. Zayats, Photonic signal processing on electronic scales: Electro-optical field-effect nanoplasmonic modulator, Phys. Rev. Lett. 109(5), 053901 (2012)
https://doi.org/10.1103/PhysRevLett.109.053901
16 M. L. Brongersma and V. M. Shalaev, The case for plasmonics, Science 328(5977), 440 (2010)
https://doi.org/10.1126/science.1186905
17 S. A. Maier, Plasmonics: Fundamentals and Applications, New York: Springer, 2007
18 W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, A plasmonic Fano switch, Nano Lett. 12(9), 4977 (2012)
https://doi.org/10.1021/nl302610v
19 A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, Plasmonic nanorod metamaterials for biosensing, Nat. Mater. 8(11), 867 (2009)
https://doi.org/10.1038/nmat2546
20 H. Wang, C. S. Levin, and N. J. Halas, Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced Raman spectroscopy substrates, J. Am. Chem. Soc. 127(43), 14992 (2005)
https://doi.org/10.1021/ja055633y
21 Z. Dong, M. Asbahi, J. Lin, D. Zhu, Y. M. Wang, K. Hippalgaonkar, H. S. Chu, W. P. Goh, F. Wang, Z. Huang, and J. K. W. Yang, Second-harmonic generation from sub-5 nm gaps by directed self-assembly of nanoparticles onto template-stripped gold substrates, Nano Lett. 15(9), 5976 (2015)
https://doi.org/10.1021/acs.nanolett.5b02109
22 J. Y. Park, L. R. Baker, and G. A. Somorjai, Role of hot electrons and metal-oxide interfaces in surface chemistry and catalytic reactions, Chem. Rev. 115(8), 2781 (2015)
https://doi.org/10.1021/cr400311p
23 R. Esteban, A. Zugarramurdi, P. Zhang, P. Nordlander, F. J. García-Vidal, A. G. Borisov, and J. Aizpurua, A classical treatment of optical tunneling in plasmonic gaps: Extending the quantum corrected model to practical situations, Faraday Discuss. 178, 151 (2015)
https://doi.org/10.1039/C4FD00196F
24 C.Y. Li, J.C. Dong, X. Jin, S. Chen, R. Panneerselvam, A. V. Rudnev, Z.L. Yang, J.F. Li, T. Wandlowski, and Z.Q. Tian, In situ monitoring of electrooxidation processes at gold single crystal surfaces using shell-isolated nanoparticle-enhanced Raman spectroscopy, J. Am. Chem. Soc. 137(24), 7648 (2015)
https://doi.org/10.1021/jacs.5b04670
25 L. M. Tong, H. X. Xu, and M. Käll, Nanogaps for SERS applications, MRS Bull. 39(2), 193 (2014)
https://doi.org/10.1557/mrs.2014.2
26 K. D. Alexander, S. P. Zhang, A. R. Hight Walker, H. X. Xu, and R. Lopez, Relationship between length and surface-enhanced raman spectroscopy signal strength in metal nanoparticle chains: Ideal models versus nanofabrication, J. Nanotechnol. 2012, 840245 (2012)
https://doi.org/10.1155/2012/840245
27 K. D. Alexander, K. Skinner, S. Zhang, H. Wei, and R. Lopez, Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate, Nano Lett. 10(11), 4488 (2010)
https://doi.org/10.1021/nl1023172
28 F. Huang and J. J. Baumberg, Actively tuned plasmons on elastomerically driven Au nanoparticle dimers, Nano Lett. 10(5), 1787 (2010)
https://doi.org/10.1021/nl1004114
29 P. Dombi, A. Hörl, P. Rácz, I. Márton, A. Trügler,J. R. Krenn, and U. Hohenester, Ultrafast strong-field photoemission from plasmonic nanoparticles, Nano Lett. 13(2), 674 (2013)
https://doi.org/10.1021/nl304365e
30 R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, Bridging quantum and classical plasmonics with a quantum-corrected model, Nat. Commun. 3, 825 (2012)
https://doi.org/10.1038/ncomms1806
31 J. H. Yoon, Y. Zhou, M. G. Blaber, G. C. Schatz, and S. Yoon, Surface plasmon coupling of compositionally heterogeneous core-satellite nanoassemblies, J. Phys. Chem. Lett. 4(9), 1371 (2013)
https://doi.org/10.1021/jz400602f
32 J. H. Yoon, J. Lim, and S. Yoon, Controlled assembly and plasmonic properties of asymmetric core-satellite nanoassemblies, ACS Nano 6(8), 7199 (2012)
https://doi.org/10.1021/nn302264f
33 S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, Flexible plasmonics on unconventional and nonplanar substrates, Adv. Mater. 23(38), 4422 (2011)
https://doi.org/10.1002/adma.201102430
34 L. Lermusiaux, V. Maillard, and S. Bidault, Widefield spectral monitoring of nanometer distance changes in DNA-templated plasmon rulers, ACS Nano 9(1), 978 (2015)
https://doi.org/10.1021/nn506947g
35 B. A. Grzybowski, C. E. Wilmer, J. Kim, K. P. Browne, and K. J. M. Bishop, Self-assembly: From crystals to cells, Soft Matter 5(6), 1110 (2009)
https://doi.org/10.1039/b819321p
36 Z. M. Zhu, H. F. Meng, W. J. Liu, X. F. Liu, J. X. Gong, X. H. Qiu, L. Jiang, D. Wang, and Z. Y. Tang, Superstructures and SERS properties of gold nanocrystals with different shapes, Angew. Chem. Int. Ed. 50(7), 1593 (2011)
https://doi.org/10.1002/anie.201005493
37 W. Cheng, M. J. Campolongo, J. J. Cha, S. J. Tan, C. C. Umbach, D. A. Muller, and D. Luo, Free-standing nanoparticle superlattice sheets controlled by DNA, Nat. Mater. 8(6), 519 (2009)
https://doi.org/10.1038/nmat2440
38 M. P. Cecchini, V. A. Turek, J. Paget, A. A. Kornyshev, and J. B. Edel, Self-assembled nanoparticle arrays for multiphase trace analyte detection, Nat. Mater. 12(2), 165 (2013)
https://doi.org/10.1038/nmat3488
39 L. Shao, C. Fang, H. Chen, Y. C. Man, J. Wang, and H. Q. Lin, Distinct plasmonic manifestation on gold nanorods induced by the spatial perturbation of small gold nanospheres, Nano Lett. 12(3), 1424 (2012)
https://doi.org/10.1021/nl2041063
40 Z. Yang, S. Chen, P. Fang, B. Ren, H. H. Girault, and Z. Tian, LSPR properties of metal nanoparticles adsorbed at a liquid-liquid interface, Phys. Chem. Chem. Phys. 15(15), 5374 (2013)
https://doi.org/10.1039/c3cp44101f
41 H. Liu, Z. Yang, L. Meng, Y. Sun, J. Wang, L. Yang, J. Liu, and Z. Tian, Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix, J. Am. Chem. Soc. 136(14), 5332 (2014)
https://doi.org/10.1021/ja501951v
42 J. Chen, B. Shen, G. Qin, X. Hu, L. Qian, Z. Wang, S. Li, Y. Ren, and L. Zuo, Fabrication of large-area, high-enhancement SERS substrates with tunable interparticle spacing and application in identifying microorganisms at the single cell level, J. Phys. Chem. C 116(5), 3320 (2012)
https://doi.org/10.1021/jp210147c
43 Z. Dai, Y. Li, G. Duan, L. Jia, and W. Cai, Phase diagram, design of monolayer binary colloidal crystals, and their fabrication based on ethanol-assisted self-assembly at the air/water interface, ACS Nano 6(8), 6706 (2012)
https://doi.org/10.1021/nn3013178
44 R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Capillary flow as the cause of ring stains from dried liquid drops, Nature 389(6653), 827 (1997)
https://doi.org/10.1038/39827
45 A. S. Dimitrov and K. Nagayama, Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces, Langmuir 12(5), 1303 (1996)
https://doi.org/10.1021/la9502251
46 M. H. Kim, S. H. Im, and O. O. Park, Rapid fabrication of two- and three-dimensional colloidal crystal films via confined convective assembly, Adv. Funct. Mater. 15(8), 1329 (2005)
https://doi.org/10.1002/adfm.200400602
47 S. W. Hong, M. Byun, and Z. Q. Lin, Robust self-assembly of highly ordered complex structures by controlled evaporation of confined microfluids, Angew. Chem. Int. Ed. 48(3), 512 (2009)
https://doi.org/10.1002/anie.200804633
48 L. H. Qian and R. Mookherjee, Convective assembly of linear gold nanoparticle arrays at the micron scale for surface enhanced Raman scattering, Nano Res. 4(11), 1117 (2011)
https://doi.org/10.1007/s12274-011-0159-0
49 L. H. Qian, S. J. Zhai, Y. T. Jiang, and B. Das, Nanoscale convection assisted self-assembly of nanoparticle monolayer, J. Mater. Chem. 22(11), 4932 (2012)
https://doi.org/10.1039/c2jm16220b
50 C. Zhang, J. Li, S. Yang, W. Jiao, S. Xiao, M. Zou, S. Yuan, F. Xiao, S. Wang, and L. Qian, Closely packed nanoparticle monolayer as a strain gauge fabricated by convective assembly at a confined angle, Nano Res. 7(6), 824 (2014)
https://doi.org/10.1007/s12274-014-0443-x
51 L. Z. Yi, W. H. Jiao, K. Wu, L. H. Qian, X. X. Yu, Q. Xia, K. M. Mao, S. L. Yuan, S. Wang, and Y. T. Jiang, Nanoparticle monolayer-based flexible strain gauge with ultrafast dynamic response for acoustic vibration detection, Nano Res. 8(9), 2978 (2015)
https://doi.org/10.1007/s12274-015-0803-1
52 J. Zhang, Y. Li, X. Zhang, and B. Yang, Colloidal self-assembly meets nanofabrication: from two-dimensional colloidal crystals to nanostructure arrays, Adv. Mater. 22(38), 4249 (2010)
https://doi.org/10.1002/adma.201000755
53 M. Asbahi, S. Mehraeen, K. T. P. Lim, F. Wang, J. Cao, M. C. Tan, and J. K. W. Yang, Template-induced structure transition in sub-10 nm self-assembling nanoparticles, Nano Lett. 14(5), 2642 (2014)
https://doi.org/10.1021/nl5004976
54 C. Jin, M. A. McLachlan, D. W. McComb, R. M. De La Rue, and N. P. Johnson, Template-assisted growth of nominally cubic (100)-oriented three-dimensional crack-free photonic crystals, Nano Lett. 5(12), 2646 (2005)
https://doi.org/10.1021/nl051905j
55 C. J. Jin, Z. Y. Li, M. A. McLachlan, D. W. McComb, R. M. De La Rue, and N. P. Johnson, Optical properties of tetragonal photonic crystal synthesized via template-assisted self-assembly, J. Appl. Phys. 99(11), 116109 (2006)
https://doi.org/10.1063/1.2191627
56 Y. Cui, M. T. Björk, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, Integration of colloidal nanocrystals into lithographically patterned devices, Nano Lett. 4(6), 1093 (2004)
https://doi.org/10.1021/nl049488i
57 M. Asbahi, S. Mehraeen, F. Wang, N. Yakovlev, K. S. L. Chong, J. Cao, M. C. Tan, and J. K. W. Yang, Large area directed self-assembly of sub-10 nm particles with single particle positioning resolution, Nano Lett. 15(9), 6066 (2015)
https://doi.org/10.1021/acs.nanolett.5b02291
58 A. Pescaglini, A. O'Riordan, A. J. Quinn, and D. Iacopino, Controlled assembly of Au nanorods into 1D architectures by electric field assisted deposition, J. Mater. Chem. C 2(33), 6810 (2014)
https://doi.org/10.1039/C4TC00948G
59 H. Cha, J. H. Yoon, and S. Yoon, Probing quantum plasmon coupling using gold nanoparticle dimers with tunable interparticle distances down to the subnanometer range, ACS Nano 8(8), 8554 (2014)
https://doi.org/10.1021/nn5032438
60 S. Malynych and G. Chumanov, Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays, J. Am. Chem. Soc. 125(10), 2896 (2003)
https://doi.org/10.1021/ja029453p
61 R. M. Cole, S. Mahajan, and J. J. Baumberg, Stretchable metal-elastomer nanovoids for tunable plasmons, Appl. Phys. Lett. 95(15), 154103 (2009)
https://doi.org/10.1063/1.3247966
62 Y. Cui, J. Zhou, V. A. Tamma, and W. Park, Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure, ACS Nano 6(3), 2385 (2012)
https://doi.org/10.1021/nn204647b
63 S. Olcum, A. Kocabas, G. Ertas, A. Atalar, and A. Aydinli, Tunable surface plasmon resonance on an elastomeric substrate, Opt. Express 17(10), 8542 (2009)
https://doi.org/10.1364/OE.17.008542
64 X. Han, Y. Liu, and Y. Yin, Colorimetric stress memory sensor based on disassembly of gold nanoparticle chains, Nano Lett. 14(5), 2466 (2014)
https://doi.org/10.1021/nl500144k
65 K. D. Alexander, K. Skinner, S. Zhang, H. Wei, and R. Lopez, Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate, Nano Lett. 10(11), 4488 (2010)
https://doi.org/10.1021/nl1023172
66 W. Jiao, L. Yi, C. Zhang, K. Wu, J. Li, L. Qian, S. Wang, Y. Jiang, B. Das, and S. Yuan, Electrical conduction of nanoparticle monolayer for accurate tracking of mechanical stimulus in finger touch sensing, Nanoscale 6(22), 13809 (2014)
https://doi.org/10.1039/C4NR04385E
67 J. H. Tian, B. Liu, X. Li, Z. L. Yang, B. Ren, S. T. Wu, N. Tao, and Z. Q. Tian, Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method, J. Am. Chem. Soc. 128(46), 14748 (2006)
https://doi.org/10.1021/ja0648615
68 L. Z. Yi, W. H. Jiao, C. M. Zhu, K. Wu, C. Zhang, L. H. Qian, S. Wang, Y. T. Jiang, and S. L. Yuan, Nano Res. (2016) (in press)
69 K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, Revealing the quantum regime in tunnelling plasmonics, Nature 491(7425), 574 (2012)
https://doi.org/10.1038/nature11653
70 H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, Nanoplasmonics: Classical down to the nanometer scale, Nano Lett. 12(3), 1683 (2012)
https://doi.org/10.1021/nl3001309
71 S. F. Tan, L. Wu, J. K. W. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, Quantum plasmon resonances controlled by molecular tunnel junctions, Science 343(6178), 1496 (2014)
https://doi.org/10.1126/science.1248797
72 S. K. Earl, T. D. James, T. J. Davis, J. C. McCallum, R. E. Marvel,Haglund, and A. Roberts, Tunable optical antennas enabled by the phase transition in vanadium dioxide, Opt. Express 21(22), 27503 (2013)
https://doi.org/10.1364/OE.21.027503
73 L. P. Xia, Z. Yang, S. Y. Yin, W. R. Guo, J. L. Du, and C. L. Du, Hole arrayed metal-insulator-metal structure for surface enhanced Raman scattering by self-assembling polystyrene spheres, Front. Phys. 9(1), 68 (2014)
https://doi.org/10.1007/s11467-013-0345-5
74 Z. L. Zhang, L. Chen, S. X. Sheng, M. T. Sun, H. R. Zheng, K. Q. Chen, and H. X. Xu, High-vacuum tip enhanced Raman spectroscopy, Front. Phys. 9(1), 24 (2014)
https://doi.org/10.1007/s11467-013-0364-2
[1] Ze-Zhou He, Yin-Bo Zhu, Heng-An Wu. Self-folding mechanics of graphene tearing and peeling from a substrate[J]. Front. Phys. , 2018, 13(3): 138111-.
[2] Zheng Wang, Yuhua Yin, Run Jiang, Baohui Li. Morphological transformations of diblock copolymers in binary solvents: A simulation study[J]. Front. Phys. , 2017, 12(6): 128201-.
[3] Tong Liu (刘彤), Hong Zhang (张红), Xin-Lu Cheng (程新路), Yang Xu (徐阳). Coherent resonance of quantum plasmons in Stone–Wales defected graphene–silver nanowire hybrid system[J]. Front. Phys. , 2017, 12(5): 125201-.
[4] Hong-Yan Liang,Hong Wei,Hong-Xing Xu. Deviating from the nanorod shape: Shape-dependent plasmonic properties of silver nanorice and nanocarrot structures[J]. Front. Phys. , 2016, 11(2): 117301-.
[5] Mai Takase,Satoshi Yasuda,Kei Murakoshi. Single-site surface-enhanced Raman scattering beyond spectroscopy[J]. Front. Phys. , 2016, 11(2): 117803-.
[6] Kai Wang,Haifeng Hu,Shan Lu,Lingju Guo,Tao He. Design of a sector bowtie nano-rectenna for optical power and infrared detection[J]. Front. Phys. , 2015, 10(5): 104101-.
[7] Arash Ahmadivand, Saeed Golmohammadi. Fano resonances in complex plasmonic super-nanoclusters: The effect of environmental modifications on the LSPR sensitivity[J]. Front. Phys. , 2015, 10(2): 104203-.
[8] Katherine A. Willets. Plasmon point spread functions: How do we model plasmon-mediated emission processes?[J]. Front. Phys. , 2014, 9(1): 3-16.
[9] Atsushi Ono, Masakazu Kikawada, Wataru Inami, Yoshimasa Kawata. Surface plasmon coupled fluorescence in deep-ultraviolet excitation by Kretschmann configuration[J]. Front. Phys. , 2014, 9(1): 60-63.
[10] Yizhuo He, Junxue Fu, Yiping Zhao. Oblique angle deposition and its applications in plasmonics[J]. Front. Phys. , 2014, 9(1): 47-59.
[11] Yuko S. Yamamoto, Mitsuru Ishikawa, Yukihiro Ozaki, Tamitake Itoh. Fundamental studies on enhancement and blinking mechanism of surface-enhanced Raman scattering (SERS) and basic applications of SERS biological sensing[J]. Front. Phys. , 2014, 9(1): 31-46.
[12] Feng-Zi Cong, Hong Wei, Xiao-Rui Tian, Hong-Xing Xu. A facile synthesis of branched silver nanowire structures and its applications in surface-enhanced Raman scattering[J]. Front. Phys. , 2012, 7(5): 521-526.
[13] Guang-cun SHAN (单光存), Shu-ying BAO (包术颖), Kang ZHANG (张康), Wei HUANG (黄维). Theoretical study of photon emission from single quantum dot emitter coupled to surface plasmons[J]. Front. Phys. , 2011, 6(3): 313-319.
[14] Hong-wang ZHANG (张洪旺), Yi LIU (刘毅), Shou-heng SUN (孙守恒). Synthesis and assembly of magnetic nanoparticles for information and energy storage applications[J]. Front Phys Chin, 2010, 5(4): 347-356.
[15] Aitzol GARCIA-ETXARRI, Javier AIZPURUA, Jon MOLINA-ALDAREGUIA, Rebeca MARCILLA, David MECERREYES, Jose Adolfo POMPOSO, . Chemical sensing based on the plasmonic response of nanoparticle aggregation: Anion sensing in nanoparticles stabilized by amino-functional ionic liquid[J]. Front. Phys. , 2010, 5(3): 330-336.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed