Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (4) : 134207    https://doi.org/10.1007/s11467-018-0803-1
RESEARCH ARTICLE
All-dielectric bowtie waveguide with deep subwavelength mode confinement
Wen-Cheng Yue, Pei-Jun Yao(), Li-Xin Xu, Hai Ming
Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026, China
 Download: PDF(2065 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Plasmonic waveguides and conventional dielectric waveguides have favorable characteristics in photonic integrated circuits. Typically, plasmonic waveguides can provide subwavelength mode confinement, as shown by their small mode area, whereas conventional dielectric waveguides guide light with low loss, as shown by their long propagation length. However, the simultaneous achievement of subwavelength mode confinement and low-loss propagation remains limited. In this paper, we propose a novel design of an alldielectric bowtie waveguide, which simultaneously exhibits both subwavelength mode confinement and theoretically lossless propagation. Contrary to traditional dielectric waveguides, where the guidance of light is based on total internal reflection, the principle of the all-dielectric bowtie waveguide is based on the combined use of the conservation of the normal component of the electric displacement and the tangential component of the electric field, such that it can achieve a mode area comparable to its plasmonic counterparts. The mode distribution in the all-dielectric bowtie waveguide can be precisely controlled by manipulating the geometric design. Our work shows that it is possible to achieve extreme light confinement by using dielectric instead of lossy metals.

Keywords dielectric waveguide      nanophotonics      plasmonics      photonic integrated circuits      silicon     
Corresponding Author(s): Pei-Jun Yao   
Issue Date: 13 June 2018
 Cite this article:   
Wen-Cheng Yue,Pei-Jun Yao,Li-Xin Xu, et al. All-dielectric bowtie waveguide with deep subwavelength mode confinement[J]. Front. Phys. , 2018, 13(4): 134207.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-018-0803-1
https://academic.hep.com.cn/fop/EN/Y2018/V13/I4/134207
1 R. Kirchain and L. Kimerling, A roadmap for nanophotonics, Nat. Photonics 1(6), 303 (2007)
https://doi.org/10.1038/nphoton.2007.84
2 F. Dell’Olio and V. M. Passaro, Optical sensing by optimized silicon slot waveguides, Opt. Express 15(8), 4977 (2007)
https://doi.org/10.1364/OE.15.004977
3 K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, Sub-femtojoule alloptical switching using a photonic-crystal nanocavity, Nat. Photonics 4(7), 477 (2010)
https://doi.org/10.1038/nphoton.2010.89
4 T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, Surface-plasmon circuitry, Phys. Today 61(5), 44 (2008)
https://doi.org/10.1063/1.2930735
5 D. F. Pile and D. K. Gramotnev, Channel plasmon– polariton in a triangular groove on a metal surface, Opt. Lett. 29(10), 1069 (2004)
https://doi.org/10.1364/OL.29.001069
6 V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, Ultra-compact silicon nanophotonic modulator with broadband response, Nanophotonics 1(1), 17 (2012)
https://doi.org/10.1515/nanoph-2012-0009
7 R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Plasmon lasers at deep subwavelength scale, Nature 461(7264), 629 (2009)
https://doi.org/10.1038/nature08364
8 J. N. Caspers, J. S. Aitchison, and M. Mojahedi, Experimental demonstration of an integrated hybrid plasmonic polarization rotator, Opt. Lett. 38(20), 4054 (2013)
https://doi.org/10.1364/OL.38.004054
9 A. D. Boardman, Electromagnetic Surface Modes, John Wiley & Sons, 1982
10 W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature 424(6950), 824 (2003)
https://doi.org/10.1038/nature01937
11 J. Wang, A review of recent progress in plasmon-assisted nanophotonic devices, Front. Optoelectron. 7(3), 320 (2014)
https://doi.org/10.1007/s12200-014-0469-4
12 D. K. Gramotnev and S. I. Bozhevolnyi, Plasmonics beyond the diffraction limit, Nat. Photonics 4(2), 83 (2010)
https://doi.org/10.1038/nphoton.2009.282
13 J. Takahara and T. Kobayashi, Nano-optical waveguides breaking through diffraction limit of light, in: Optics East. International Society for Optics and Photonics, 2004, pp 158–172
https://doi.org/10.1117/12.582740
14 S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides, Nat. Mater. 2(4), 229 (2003)
https://doi.org/10.1038/nmat852
15 R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, Geometries and materials for subwavelength surface plasmon modes, J. Opt. Soc. Am. A 21(12), 2442 (2004)
https://doi.org/10.1364/JOSAA.21.002442
16 J. B. Khurgin, How to deal with the loss in plasmonics and metamaterials, Nat. Nanotechnol. 10(1), 2 (2015)
https://doi.org/10.1038/nnano.2014.310
17 R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation, Nat. Photonics 2(8), 496 (2008)
https://doi.org/10.1038/nphoton.2008.131
18 D. Dai and S. He, A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement, Opt. Express 17(19), 16646 (2009)
https://doi.org/10.1364/OE.17.016646
19 I. Avrutsky, R. Soref, and W. Buchwald, Subwavelength plasmonic modes in a conductor-gapdielectric system with a nanoscale gap, Opt. Express 18(1), 348 (2010)
https://doi.org/10.1364/OE.18.000348
20 Y. Bian, Z. Zheng, Y. Liu, J. Zhu, and T. Zhou, Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement, Opt. Express 18(23), 23756 (2010)
https://doi.org/10.1364/OE.18.023756
21 Y. Zhao, and L. Zhu, Coaxial hybrid plasmonic nanowire waveguides, J. Opt. Soc. Am. B 27(6), 1260 (2010)
https://doi.org/10.1364/JOSAB.27.001260
22 Y. Bian, Z. Zheng, X. Zhao, J. Zhu, and T. Zhou, Symmetric hybrid surface plasmon polariton waveguides for 3d photonic integration, Opt. Express 17(23), 21320 (2009)
https://doi.org/10.1364/OE.17.021320
23 L. Chen, T. Zhang, X. Li, and W. Huang, Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film, Opt. Express 20(18), 20535 (2012)
https://doi.org/10.1364/OE.20.020535
24 C. Xiang and J. Wang, Long-range hybrid plasmonic slot waveguide, IEEE Photon. J. 5(2), 4800311 (2013)
https://doi.org/10.1109/JPHOT.2013.2256887
25 Y. Bian, Z. Zheng, Y. Liu, J. Liu, J. Zhu, and T. Zhou, Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deepsubwavelength mode confinement, Opt. Express 19(23), 22417 (2011)
https://doi.org/10.1364/OE.19.022417
26 Y. Bian and Q. Gong, Bow-tie hybrid plasmonic waveguides, J. Lightwave Technol. 32(23), 3902 (2014)
27 Z. L. Zhang and J. Wang, Long-range hybrid wedge plasmonic waveguide, Sci. Rep. 4, 6870 (2014)
https://doi.org/10.1038/srep06870
28 Y. Ma, G. Farrell, Y. Semenova, and Q. Wu, Hybrid nanowedge plasmonic waveguide for low loss propagation with ultra-deep-subwavelength mode confinement, Opt. Lett. 39(4), 973 (2014)
https://doi.org/10.1364/OL.39.000973
29 Y. Ma, G. Farrell, Y. Semenova, and Q. Wu, A hybrid wedge-to-wedge plasmonic waveguide with low loss propagation and ultra-deep-nanoscale mode confinement, J. Lightwave Technol. 33(18), 3827 (2015)
https://doi.org/10.1109/JLT.2015.2445571
30 A. Boltasseva and H. A. Atwater, Low-loss plasmonic metamaterials, Science 331(6015), 290 (2011)
https://doi.org/10.1126/science.1198258
31 P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, Realization of an all-dielectric zero-index optical metamaterial, Nat. Photonics 7(10), 791 (2013)
https://doi.org/10.1038/nphoton.2013.214
32 D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, Dielectric gradient metasurface optical elements, Science 345(6194), 298 (2014)
https://doi.org/10.1126/science.1253213
33 R. Cregan, B. Mangan, J. Knight, T. Birks, P. S. J. Russell, P. Roberts, and D. Allan, Single-mode photonic band gap guidance of light in air, Science 285(5433), 1537 (1999)
https://doi.org/10.1126/science.285.5433.1537
34 G. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. Maier, J. Knight, C. Cruz, and H. Fragnito, Field enhancement within an optical fibre with a subwavelength air core, Nat. Photonics 1(2), 115 (2007)
https://doi.org/10.1038/nphoton.2006.81
35 H. Altug, D. Englund, and J. Vučković, Ultrafast photonic crystal nanocavity laser, Nat. Phys. 2(7), 484 (2006)
36 V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, Guiding and confining light in void nanostructure, Opt. Lett. 29(11), 1209 (2004)
https://doi.org/10.1364/OL.29.001209
37 Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material, Opt. Lett. 29(14), 1626 (2004)
https://doi.org/10.1364/OL.29.001626
38 V. R. Almeida, Q. Xu, R. R. Panepucci, C. A. Barrios, and M. Lipson, Light guiding in low index materials using high-index-contrast waveguides, in: Materials Research Society Symposium Proceedings, Vol. 797, Cambridge University Press, 2003, pp W6–10
https://doi.org/10.1557/PROC-797-W6.10
39 P. Müllner and R. Hainberger, Structural optimization of silicon-on-insulator slot waveguides, IEEE Photonics Technol. Lett. 18(24), 2557 (2006)
https://doi.org/10.1109/LPT.2006.886974
40 A. Turner, I. Karube, and G. S. Wilson, Biosensors: Fun-Damentals and Applications, Oxford University Press, 1987
41 S. P. Singh and N. Singh, Nonlinear effects in optical fibers: Origin, management and applications, Prog. Electromagnetics Res. 73, 249 (2007)
https://doi.org/10.2528/PIER07040201
42 H. Choi, M. Heuck, and D. Englund, Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities, Phys. Rev. Lett. 118(22), 223605 (2017)
https://doi.org/10.1103/PhysRevLett.118.223605
43 S. Hu and S. M. Weiss, Design of photonic crystal cavities for extreme light concentration, ACS Photonics 3(9), 1647 (2016)
https://doi.org/10.1021/acsphotonics.6b00219
44 J. N. Reddy, An Introduction to the Finite Element Method, New York: McGraw-Hill, 1993, Vol. 2, No. 2.2
45 B. Vohnsen and S. I. Bozhevolnyi, Characterization of near-field optical probes, Appl. Opt. 38(9), 1792 (1999)
https://doi.org/10.1364/AO.38.001792
46 Z. Guo, S. Park, J. Yoon, and I. Shin, Recent progress in the development of near-infrared fluorescent probes for bioimaging applications, Chem. Soc. Rev. 43(1), 16 (2014)
https://doi.org/10.1039/C3CS60271K
[1] O. de los Santos-Sánchez. Probing intensity-field correlations of single-molecule surface-enhanced Raman-scattered light[J]. Front. Phys. , 2019, 14(6): 61601-.
[2] Qian Zhao, Zhong-Jian Yang, Jun He. Fano resonances in heterogeneous dimers of silicon and gold nanospheres[J]. Front. Phys. , 2018, 13(3): 137801-.
[3] Arthur Losquin,Tom T. A. Lummen. Electron microscopy methods for space-, energy-, and time-resolved plasmonics[J]. Front. Phys. , 2017, 12(1): 127301-.
[4] P. James Schuck,Wei Bao,Nicholas J. Borys. A polarizing situation: Taking an in-plane perspective for next-generation near-field studies[J]. Front. Phys. , 2016, 11(2): 117804-.
[5] Sanshui Xiao,Xiaolong Zhu,Bo-Hong Li,N. Asger Mortensen. Graphene-plasmon polaritons: From fundamental properties to potential applications[J]. Front. Phys. , 2016, 11(2): 117801-.
[6] Cao Li-Ping(曹丽萍), Chen Zhan-Dong(陈战东), Zhang Chun-Ling(张春玲), Yao Jiang-Hong(姚江宏). Effect of thermal annealing on sub-band-gap absorptance of microstructured silicon in air[J]. Front. Phys. , 2015, 10(4): 107801-.
[7] Ondrej Stranik, Jacqueline Jatschka, Andrea Csáki, Wolfgang Fritzsche. Development of new classes of plasmon active nano-structures and their application in bio-sensing and energy guiding[J]. Front. Phys. , 2014, 9(5): 652-664.
[8] Nian Liu, Weiyang Li, Mauro Pasta, Yi Cui. Nanomaterials for electrochemical energy storage[J]. Front. Phys. , 2014, 9(3): 323-350.
[9] Yu-Liang Zhao, Yan-Lin Song, Wei-Guo Song, Wei Liang, Xing-Yu Jiang, Zhi-Yong Tang, Hong-Xing Xu, Zhi-Xiang Wei, Yun-Qi Liu, Ming-Hua Liu, Lei Jiang, Xin-He Bao, Li-Jun Wan, Chun-Li Bai. Progress of nanoscience in China[J]. Front. Phys. , 2014, 9(3): 257-288.
[10] Zee Hwan Kim. Single-molecule surface-enhanced Raman scattering: Current status and future perspective[J]. Front. Phys. , 2014, 9(1): 25-30.
[11] Yizhuo He, Junxue Fu, Yiping Zhao. Oblique angle deposition and its applications in plasmonics[J]. Front. Phys. , 2014, 9(1): 47-59.
[12] Yuko S. Yamamoto, Mitsuru Ishikawa, Yukihiro Ozaki, Tamitake Itoh. Fundamental studies on enhancement and blinking mechanism of surface-enhanced Raman scattering (SERS) and basic applications of SERS biological sensing[J]. Front. Phys. , 2014, 9(1): 31-46.
[13] Zhi-Yuan Li. Nanophotonics in China: Overviews and highlights[J]. Front. Phys. , 2012, 7(6): 601-631.
[14] Guang-cun SHAN (单光存), Shu-ying BAO (包术颖), Kang ZHANG (张康), Wei HUANG (黄维). Theoretical study of photon emission from single quantum dot emitter coupled to surface plasmons[J]. Front. Phys. , 2011, 6(3): 313-319.
[15] Ru HUANG (黄如), Run-sheng WANG (王润声). Investigation of gate-all-around silicon nanowire transistors for ultimately scaled CMOS technology from top–down approach[J]. Front Phys Chin, 2010, 5(4): 414-421.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed