|
|
All-dielectric bowtie waveguide with deep subwavelength mode confinement |
Wen-Cheng Yue, Pei-Jun Yao( ), Li-Xin Xu, Hai Ming |
Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract Plasmonic waveguides and conventional dielectric waveguides have favorable characteristics in photonic integrated circuits. Typically, plasmonic waveguides can provide subwavelength mode confinement, as shown by their small mode area, whereas conventional dielectric waveguides guide light with low loss, as shown by their long propagation length. However, the simultaneous achievement of subwavelength mode confinement and low-loss propagation remains limited. In this paper, we propose a novel design of an alldielectric bowtie waveguide, which simultaneously exhibits both subwavelength mode confinement and theoretically lossless propagation. Contrary to traditional dielectric waveguides, where the guidance of light is based on total internal reflection, the principle of the all-dielectric bowtie waveguide is based on the combined use of the conservation of the normal component of the electric displacement and the tangential component of the electric field, such that it can achieve a mode area comparable to its plasmonic counterparts. The mode distribution in the all-dielectric bowtie waveguide can be precisely controlled by manipulating the geometric design. Our work shows that it is possible to achieve extreme light confinement by using dielectric instead of lossy metals.
|
Keywords
dielectric waveguide
nanophotonics
plasmonics
photonic integrated circuits
silicon
|
Corresponding Author(s):
Pei-Jun Yao
|
Issue Date: 13 June 2018
|
|
1 |
R. Kirchain and L. Kimerling, A roadmap for nanophotonics, Nat. Photonics 1(6), 303 (2007)
https://doi.org/10.1038/nphoton.2007.84
|
2 |
F. Dell’Olio and V. M. Passaro, Optical sensing by optimized silicon slot waveguides, Opt. Express 15(8), 4977 (2007)
https://doi.org/10.1364/OE.15.004977
|
3 |
K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, Sub-femtojoule alloptical switching using a photonic-crystal nanocavity, Nat. Photonics 4(7), 477 (2010)
https://doi.org/10.1038/nphoton.2010.89
|
4 |
T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, Surface-plasmon circuitry, Phys. Today 61(5), 44 (2008)
https://doi.org/10.1063/1.2930735
|
5 |
D. F. Pile and D. K. Gramotnev, Channel plasmon– polariton in a triangular groove on a metal surface, Opt. Lett. 29(10), 1069 (2004)
https://doi.org/10.1364/OL.29.001069
|
6 |
V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, Ultra-compact silicon nanophotonic modulator with broadband response, Nanophotonics 1(1), 17 (2012)
https://doi.org/10.1515/nanoph-2012-0009
|
7 |
R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Plasmon lasers at deep subwavelength scale, Nature 461(7264), 629 (2009)
https://doi.org/10.1038/nature08364
|
8 |
J. N. Caspers, J. S. Aitchison, and M. Mojahedi, Experimental demonstration of an integrated hybrid plasmonic polarization rotator, Opt. Lett. 38(20), 4054 (2013)
https://doi.org/10.1364/OL.38.004054
|
9 |
A. D. Boardman, Electromagnetic Surface Modes, John Wiley & Sons, 1982
|
10 |
W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature 424(6950), 824 (2003)
https://doi.org/10.1038/nature01937
|
11 |
J. Wang, A review of recent progress in plasmon-assisted nanophotonic devices, Front. Optoelectron. 7(3), 320 (2014)
https://doi.org/10.1007/s12200-014-0469-4
|
12 |
D. K. Gramotnev and S. I. Bozhevolnyi, Plasmonics beyond the diffraction limit, Nat. Photonics 4(2), 83 (2010)
https://doi.org/10.1038/nphoton.2009.282
|
13 |
J. Takahara and T. Kobayashi, Nano-optical waveguides breaking through diffraction limit of light, in: Optics East. International Society for Optics and Photonics, 2004, pp 158–172
https://doi.org/10.1117/12.582740
|
14 |
S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides, Nat. Mater. 2(4), 229 (2003)
https://doi.org/10.1038/nmat852
|
15 |
R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, Geometries and materials for subwavelength surface plasmon modes, J. Opt. Soc. Am. A 21(12), 2442 (2004)
https://doi.org/10.1364/JOSAA.21.002442
|
16 |
J. B. Khurgin, How to deal with the loss in plasmonics and metamaterials, Nat. Nanotechnol. 10(1), 2 (2015)
https://doi.org/10.1038/nnano.2014.310
|
17 |
R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation, Nat. Photonics 2(8), 496 (2008)
https://doi.org/10.1038/nphoton.2008.131
|
18 |
D. Dai and S. He, A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement, Opt. Express 17(19), 16646 (2009)
https://doi.org/10.1364/OE.17.016646
|
19 |
I. Avrutsky, R. Soref, and W. Buchwald, Subwavelength plasmonic modes in a conductor-gapdielectric system with a nanoscale gap, Opt. Express 18(1), 348 (2010)
https://doi.org/10.1364/OE.18.000348
|
20 |
Y. Bian, Z. Zheng, Y. Liu, J. Zhu, and T. Zhou, Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement, Opt. Express 18(23), 23756 (2010)
https://doi.org/10.1364/OE.18.023756
|
21 |
Y. Zhao, and L. Zhu, Coaxial hybrid plasmonic nanowire waveguides, J. Opt. Soc. Am. B 27(6), 1260 (2010)
https://doi.org/10.1364/JOSAB.27.001260
|
22 |
Y. Bian, Z. Zheng, X. Zhao, J. Zhu, and T. Zhou, Symmetric hybrid surface plasmon polariton waveguides for 3d photonic integration, Opt. Express 17(23), 21320 (2009)
https://doi.org/10.1364/OE.17.021320
|
23 |
L. Chen, T. Zhang, X. Li, and W. Huang, Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film, Opt. Express 20(18), 20535 (2012)
https://doi.org/10.1364/OE.20.020535
|
24 |
C. Xiang and J. Wang, Long-range hybrid plasmonic slot waveguide, IEEE Photon. J. 5(2), 4800311 (2013)
https://doi.org/10.1109/JPHOT.2013.2256887
|
25 |
Y. Bian, Z. Zheng, Y. Liu, J. Liu, J. Zhu, and T. Zhou, Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deepsubwavelength mode confinement, Opt. Express 19(23), 22417 (2011)
https://doi.org/10.1364/OE.19.022417
|
26 |
Y. Bian and Q. Gong, Bow-tie hybrid plasmonic waveguides, J. Lightwave Technol. 32(23), 3902 (2014)
|
27 |
Z. L. Zhang and J. Wang, Long-range hybrid wedge plasmonic waveguide, Sci. Rep. 4, 6870 (2014)
https://doi.org/10.1038/srep06870
|
28 |
Y. Ma, G. Farrell, Y. Semenova, and Q. Wu, Hybrid nanowedge plasmonic waveguide for low loss propagation with ultra-deep-subwavelength mode confinement, Opt. Lett. 39(4), 973 (2014)
https://doi.org/10.1364/OL.39.000973
|
29 |
Y. Ma, G. Farrell, Y. Semenova, and Q. Wu, A hybrid wedge-to-wedge plasmonic waveguide with low loss propagation and ultra-deep-nanoscale mode confinement, J. Lightwave Technol. 33(18), 3827 (2015)
https://doi.org/10.1109/JLT.2015.2445571
|
30 |
A. Boltasseva and H. A. Atwater, Low-loss plasmonic metamaterials, Science 331(6015), 290 (2011)
https://doi.org/10.1126/science.1198258
|
31 |
P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, Realization of an all-dielectric zero-index optical metamaterial, Nat. Photonics 7(10), 791 (2013)
https://doi.org/10.1038/nphoton.2013.214
|
32 |
D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, Dielectric gradient metasurface optical elements, Science 345(6194), 298 (2014)
https://doi.org/10.1126/science.1253213
|
33 |
R. Cregan, B. Mangan, J. Knight, T. Birks, P. S. J. Russell, P. Roberts, and D. Allan, Single-mode photonic band gap guidance of light in air, Science 285(5433), 1537 (1999)
https://doi.org/10.1126/science.285.5433.1537
|
34 |
G. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. Maier, J. Knight, C. Cruz, and H. Fragnito, Field enhancement within an optical fibre with a subwavelength air core, Nat. Photonics 1(2), 115 (2007)
https://doi.org/10.1038/nphoton.2006.81
|
35 |
H. Altug, D. Englund, and J. Vučković, Ultrafast photonic crystal nanocavity laser, Nat. Phys. 2(7), 484 (2006)
|
36 |
V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, Guiding and confining light in void nanostructure, Opt. Lett. 29(11), 1209 (2004)
https://doi.org/10.1364/OL.29.001209
|
37 |
Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material, Opt. Lett. 29(14), 1626 (2004)
https://doi.org/10.1364/OL.29.001626
|
38 |
V. R. Almeida, Q. Xu, R. R. Panepucci, C. A. Barrios, and M. Lipson, Light guiding in low index materials using high-index-contrast waveguides, in: Materials Research Society Symposium Proceedings, Vol. 797, Cambridge University Press, 2003, pp W6–10
https://doi.org/10.1557/PROC-797-W6.10
|
39 |
P. Müllner and R. Hainberger, Structural optimization of silicon-on-insulator slot waveguides, IEEE Photonics Technol. Lett. 18(24), 2557 (2006)
https://doi.org/10.1109/LPT.2006.886974
|
40 |
A. Turner, I. Karube, and G. S. Wilson, Biosensors: Fun-Damentals and Applications, Oxford University Press, 1987
|
41 |
S. P. Singh and N. Singh, Nonlinear effects in optical fibers: Origin, management and applications, Prog. Electromagnetics Res. 73, 249 (2007)
https://doi.org/10.2528/PIER07040201
|
42 |
H. Choi, M. Heuck, and D. Englund, Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities, Phys. Rev. Lett. 118(22), 223605 (2017)
https://doi.org/10.1103/PhysRevLett.118.223605
|
43 |
S. Hu and S. M. Weiss, Design of photonic crystal cavities for extreme light concentration, ACS Photonics 3(9), 1647 (2016)
https://doi.org/10.1021/acsphotonics.6b00219
|
44 |
J. N. Reddy, An Introduction to the Finite Element Method, New York: McGraw-Hill, 1993, Vol. 2, No. 2.2
|
45 |
B. Vohnsen and S. I. Bozhevolnyi, Characterization of near-field optical probes, Appl. Opt. 38(9), 1792 (1999)
https://doi.org/10.1364/AO.38.001792
|
46 |
Z. Guo, S. Park, J. Yoon, and I. Shin, Recent progress in the development of near-infrared fluorescent probes for bioimaging applications, Chem. Soc. Rev. 43(1), 16 (2014)
https://doi.org/10.1039/C3CS60271K
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|