Special Issue: Nanoscience and Emerging Nanotechnologies (Edited by C. M. Lieber) |
|
|
|
Nanomaterials for electrochemical energy storage |
Nian Liu1,Weiyang Li2,Mauro Pasta2,Yi Cui2,3,*( ) |
1. Department of Chemistry, Stanford University, Stanford, CA 94305, USA
2. Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
3. Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA |
|
|
Abstract The development of nanotechnology in the past two decades has generated great capability of controlling materials at the nanometer scale and has enabled exciting opportunities to design materials with desirable electronic, ionic, photonic, and mechanical properties. This development has also contributed to the advance in energy storage, which is a critical technology in this century. In this article, we will review how the rational design of nanostructured materials has addressed the challenges of batteries and electrochemical capacitors and led to high-performance electrochemical energy storage devices. Four specific material systems will be discussed: i) nanostructured alloy anodes for Li-batteries, ii) nanostructured sulfur cathodes for Li-batteries, iii) nanoporous openframework battery electrodes, and iv) nanostructured electrodes for electrochemical capacitors.
|
Keywords
nanomaterial
energy storage
silicon anode
sulfur cathode
stationary battery
electrochemical capacitors
|
Corresponding Author(s):
Yi Cui
|
Issue Date: 26 June 2014
|
|
1 |
S. Chu and A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature, 2012, 488(7411): 294 doi: 10.1038/nature11475
|
2 |
J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 2001, 414(6861): 359 doi: 10.1038/35104644
|
3 |
M. Armand and J. M. Tarascon, Building better batteries, Nature, 2008, 451(7179): 652 doi: 10.1038/451652a
|
4 |
Z. Yang, J. Zhang, M. C. W.Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, and J. Liu, Electrochemical energy storage for green grid, Chem. Rev., 2011, 111(5): 3577 doi: 10.1021/cr100290v
|
5 |
B. Dunn, H. Kamath, and J. M. Tarascon, Electrical energy storage for the grid: A battery of choices, Science, 2011, 334(6058): 928 doi: 10.1126/science.1212741
|
6 |
A. S. Aricò, P. Bruce, B. Scrosati, J. M. Tarascon, and W. van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater., 2005, 4(5): 366 doi: 10.1038/nmat1368
|
7 |
Y. G. Guo, J. S. Hu, and L. J. Wan, Nanostructured materials for electrochemical energy conversion and storage devices, Adv. Mater., 2008, 20(15): 2878 doi: 10.1002/adma.200800627
|
8 |
W. J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries, J. Power Sources, 2011, 196(1): 13 doi: 10.1016/j.jpowsour.2010.07.020
|
9 |
P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J. M. Tarascon, Li-O2 and Li-S batteries with high energy storage, Nat. Mater., 2012, 11(1): 19 doi: 10.1038/nmat3191
|
10 |
A. N. Dey, Electrochemical alloying of lithium in organic electrolytes, J. Electrochem. Soc., 1971, 118(10): 1547 doi: 10.1149/1.2407783
|
11 |
B. A. Boukamp, All-solid lithium electrodes with mixedconductor matrix, J. Electrochem. Soc., 1981, 128(4): 725 doi: 10.1149/1.2127495
|
12 |
T. D. Hatchard and J. R. Dahn, In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon, J. Electrochem. Soc., 2004, 151(6): A838 doi: 10.1149/1.1739217
|
13 |
M. N. Obrovac and L. Christensen, Structural changes in silicon anodes during lithium insertion/extraction, Electrochem. SolidState Lett., 2004, 7(5): A93 doi: 10.1149/1.1652421
|
14 |
M. T. McDowell, S. W. Lee, W. D. Nix, and Y. Cui, 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries, Adv. Mater., 2013, 25(36): 4966 doi: 10.1002/adma.201301795
|
15 |
L. Y. Beaulieu, K. W. Eberman, R. L. Turner, L. J. Krause, and J. R. Dahn, Colossal reversible volume changes in lithium alloys, Electrochem. Solid-State Lett., 2001, 4(9): A137 doi: 10.1149/1.1388178
|
16 |
S. W. Lee, M. T. McDowell, L. A. Berla, W. D. Nix, and Y. Cui, Fracture of crystalline silicon nanopillars during electrochemical lithium insertion, Proc. Natl. Acad. Sci. USA, 2012, 109(11): 4080 doi: 10.1073/pnas.1201088109
|
17 |
J. H. Ryu, J. W. Kim, Y. E. Sung, and S. M. Oh, Failure modes of silicon powder negative electrode in lithium secondary batteries, Electrochem. Solid-State Lett., 2004, 7(10): A306 doi: 10.1149/1.1792242
|
18 |
J. O. Besenhard, J. Yang, and M. Winter, Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J. Power Sources, 1997, 68(1): 87 doi: 10.1016/S0378-7753(96)02547-5
|
19 |
H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. Mc-Dowell, S. W. Lee, A. Jackson, Y. Yang, L. Hu, and Y. Cui, Stable cycling of double-walled silicon nanotube battery anodes through solidelectrolyte interphase control, Nat. Nanotechnol., 2012, 7(5): 310 doi: 10.1038/nnano.2012.35
|
20 |
C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol., 2008, 3(1): 31 doi: 10.1038/nnano.2007.411
|
21 |
H. Wu and Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today, 2012, 7(5): 414 doi: 10.1016/j.nantod.2012.08.004
|
22 |
C. K. Chan, R. N. Patel, M. J. O’Connell, B. A. Korgel, and Y. Cui, Solution-grown silicon nanowires for lithium-ion battery anodes, ACS Nano, 2010, 4(3): 1443 doi: 10.1021/nn901409q
|
23 |
C. K. Chan, X. F. Zhang, and Y. Cui, High capacity Li ion battery anodes using Ge nanowires, Nano Lett., 2008, 8(1): 307 doi: 10.1021/nl0727157
|
24 |
P. Meduri, C. Pendyala, V. Kumar, G. U. Sumanasekera, and M. K. Sunkara, Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries, Nano Lett., 2009, 9(2): 612 doi: 10.1021/nl802864a
|
25 |
C. K. Chan, R. Ruffo, S. S. Hong, and Y. Cui, Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes, J. Power Sources, 2009, 189(2): 1132 doi: 10.1016/j.jpowsour.2009.01.007
|
26 |
R. Ruffo, S. S. Hong, C. K. Chan, R. A. Huggins, and Y. Cui, Impedance analysis of silicon nanowire lithium ion battery anodes, J. Phys. Chem. C, 2009, 113(26): 11390 doi: 10.1021/jp901594g
|
27 |
C. K. Chan, R. Ruffo, S. S. Hong, R. A. Huggins, and Y. Cui, Structural and electrochemical study of the reaction of lithium with silicon nanowires, J. Power Sources, 2009, 189(1): 34 doi: 10.1016/j.jpowsour.2008.12.047
|
28 |
S. Misra, N. Liu, J. Nelson, S. S. Hong, Y. Cui, and M. F. Toney, In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes, ACS Nano, 2012, 6(6): 5465 doi: 10.1021/nn301339g
|
29 |
J. W. Choi, J. McDonough, S. Jeong, J. S. Yoo, C. K. Chan, and Y. Cui, Stepwise nanopore evolution in one-dimensional nanostructures, Nano Lett., 2010, 10(4): 1409 doi: 10.1021/nl100258p
|
30 |
L. F. Cui, Y. Yang, C. M. Hsu, and Y. Cui, Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries, Nano Lett., 2009, 9(9): 3370 doi: 10.1021/nl901670t
|
31 |
L. F. Cui, R. Ruffo, C. K. Chan, H. Peng, and Y. Cui, Crystalline-amorphous coretshell silicon nanowires for high capacity and high current battery electrodes, Nano Lett., 2009, 9(1): 491 doi: 10.1021/nl8036323
|
32 |
X. Chen, K. Gerasopoulos, J. Guo, A. Brown, C. Wang, R. Ghodssi, and J. N. Culver, Virus-enabled silicon anode for lithium-ion batteries, ACS Nano, 2010, 4(9): 5366 doi: 10.1021/nn100963j
|
33 |
S. Zhou, X. Liu, and D. Wang, Si/TiSi2 Heteronanostructures as high-capacity anode material for li ion batteries, Nano Lett., 2010, 10(3): 860 doi: 10.1021/nl903345f
|
34 |
Y. Yao, K. Huo, L. Hu, N. Liu, J. J. Cha, M. T. McDowell, P. K. Chu, and Y. Cui, Highly conductive, mechanically robust, and electrochemically inactive TiC/C nanofiber scaffold for high-performance silicon anode batteries, ACS Nano, 2011, 5(10): 8346 doi: 10.1021/nn2033693
|
35 |
H. Zhang and P. V. Braun, Three-dimensional metal scaffold supported bicontinuous silicon battery anodes, Nano Lett., 2012, 12(6): 2778 doi: 10.1021/nl204551m
|
36 |
R. Huang, X. Fan, W. Shen, and J. Zhu, Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes, Appl. Phys. Lett., 2009, 95(13): 133119 doi: 10.1063/1.3238572
|
37 |
L. Su, Z. Zhou, and M. Ren, Core double-shell Si@SiO2@C nanocomposites as anode materials for Li-ion batteries, Chem. Commun., 2010, 46(15): 2590 doi: 10.1039/b925696b
|
38 |
A. Vlad, A. L.M. Reddy, A Ajayan. N. Singh, J. F. Gohy, S. Melinte, and P. M. Ajayan, Roll up nanowire battery from silicon chips, Proc. Natl. Acad. Sci. USA, 2012, 109(38): 15168 doi: 10.1073/pnas.1208638109
|
39 |
A. Kohandehghan, P. Kalisvaart, K. Cui, M. Kupsta, E. Memarzadeh, and D. Mitlin, Silicon nanowire lithium-ion battery anodes with ALD deposited TiN coatings demonstrate a major improvement in cycling performance, J. Mater. Chem. A, 2013, 1: 12850 doi: 10.1039/c3ta12964k
|
40 |
Y. Yao, N. Liu, M. T. McDowell, M. Pasta, and Y. Cui, Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings, Energy Environ. Sci., 2012, 5: 7927 doi: 10.1039/c2ee21437g
|
41 |
L. Su, Y. Jing, and Z. Zhou, Li ion battery materials with core-shell nanostructures, Nanoscale, 2011, 3(10): 3967 doi: 10.1039/c1nr10550g
|
42 |
L. F. Cui, L. Hu, H. Wu, J. W. Choi, and Y. Cui, Inorganic glue enabling high performance of silicon particles as lithium ion battery anode, J. Electrochem. Soc., 2011, 158(5): A592 doi: 10.1149/1.3560030
|
43 |
L. Hu, H. Wu, S. S. Hong, L. Cui, J. R. McDonough, S. Bohy, and Y. Cui, Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes, Chem. Commun., 2011, 47(1): 367 doi: 10.1039/c0cc02078h
|
44 |
A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, and G. Yushin, Highperformance lithium-ion anodes using a hierarchical bottom-up approach, Nat. Mater., 2010, 9(4): 353 doi: 10.1038/nmat2725
|
45 |
D. S. Jung, T. H. Hwang, S. B. Park, and J. W. Choi, Spray drying method for large-scale and high-performance silicon negative electrodes in Li-ion batteries, Nano Lett., 2013, 13(5): 2092 doi: 10.1021/nl400437f
|
46 |
A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C. F. Huebner, T. F. Fuller, I. Luzinov, and G. Yushin, Toward efficient binders for Li-ion battery Sibased anodes: Polyacrylic acid, ACS Appl. Mater. Interfaces, 2010, 2(11): 3004 doi: 10.1021/am100871y
|
47 |
I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, and G. Yushin, A major constituent of brown algae for use in high-capacity Li-ion batteries, Science, 2011, 334(6052): 75 doi: 10.1126/science.1209150
|
48 |
G. Liu, S. Xun, N. Vukmirovic, X. Song, P. Olalde-Velasco, H. Zheng, V. S. Battaglia, L. Wang, and W. Yang, Polymers with tailored electronic structure for high capacity lithium battery electrodes, Adv. Mater., 2011, 23(40): 4679 doi: 10.1002/adma.201102421
|
49 |
H. Wu, G. Yu, L. Pan, N. Liu, M. T. McDowell, Z. Bao, and Y. Cui, Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles, Nat. Commun., 2013, 4: 1943 doi: 10.1038/ncomms2941
|
50 |
M. H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, and J. Cho, Silicon nanotube battery anodes, Nano Lett., 2009, 9(11): 3844 doi: 10.1021/nl902058c
|
51 |
T. Song, J. Xia, J. H. Lee, D. H. Lee, M. S. Kwon, J. M. Choi, J. Wu, S. K. Doo, H. Chang, W. I. Park, D. S. Zang, H. Kim, Y. Huang, K. C. Hwang, J. A. Rogers, and U. Paik, Arrays of sealed silicon nanotubes as anodes for lithium ion batteries, Nano Lett., 2010, 10(5): 1710 doi: 10.1021/nl100086e
|
52 |
Y. Yao, M. T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, W. D. Nix, and Y. Cui, Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life, Nano Lett., 2011, 11(7): 2949 doi: 10.1021/nl201470j
|
53 |
M. H. Park, Y. Cho, K. Kim, J. Kim, M. Liu, and J. Cho, Germanium nanotubes prepared by using the Kirkendall effect as anodes for high-rate lithium batteries, Angew. Chem. Int. Ed., 2011, 123(41): 9821 doi: 10.1002/ange.201103062
|
54 |
S. Han, B. Jang, T. Kim, S. M. Oh, and T. Hyeon, Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes, Adv. Funct. Mater., 2005, 15(11): 1845 doi: 10.1002/adfm.200500243
|
55 |
X. W. Lou, Y. Wang, C. Yuan, J. Y. Lee, and L. A. Archer, Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity, Adv. Mater., 2006, 18(17): 2325 doi: 10.1002/adma.200600733
|
56 |
H. Kim, B. Han, J. Choo, and J. Cho, Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries, Angew. Chem. Int. Ed., 2008, 120(52): 10305 doi: 10.1002/ange.200804355
|
57 |
Y. Yu, L. Gu, C. Zhu, S. Tsukimoto, P. A. van Aken, and J. Maier, Reversible storage of lithium in silver-coated threedimensional macroporous silicon, Adv. Mater., 2010, 22(20): 2247 doi: 10.1002/adma.200903755
|
58 |
J. Cho, Porous Si anode materials for lithium rechargeable batteries, J. Mater. Chem., 2010, 20(20): 4009 doi: 10.1039/b923002e
|
59 |
H. Jia, P. Gao, J. Yang, J. Wang, Y. Nuli, and Z. Yang, Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material, Adv. Energy Mater., 2011, 1(6): 1036 doi: 10.1002/aenm.201100485
|
60 |
D. Chen, X. Mei, G. Ji, M. Lu, J. Xie, J. Lu, and J. Y. Lee, Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles, Angew. Chem. Int. Ed., 2012, 51(10): 2409 doi: 10.1002/anie.201107885
|
61 |
J. Zhu, C. Gladden, N. Liu, Y. Cui, and X. Zhang, Nanoporous silicon networks as anodes for lithium ion batteries, Phys. Chem. Chem. Phys., 2013, 15(2): 440 doi: 10.1039/c2cp44046f
|
62 |
M. Ge, J. Rong, X. Fang, and C. Zhou, Porous doped silicon nanowires for lithium ion battery anode with long cycle life, Nano Lett., 2012, 12(5): 2318 doi: 10.1021/nl300206e
|
63 |
Z. Bao, M. R. Weatherspoon, S. Shian, Y. Cai, P. D. Graham, S. M. Allan, G. Ahmad, M. B. Dickerson, B. C. Church, Z. Kang, H. W. III Abernathy, C. J. Summers, M. Liu, and K. H. Sandhage, Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas, Nature, 2007, 446(7132): 172 doi: 10.1038/nature05570
|
64 |
W. St?ber, A. Fink, and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci., 1968, 26(1): 62 doi: 10.1016/0021-9797(68)90272-5
|
65 |
D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science, 1998, 279(5350): 548 doi: 10.1126/science.279.5350.548
|
66 |
C. O. Tuck, E. Párez, I. T. Horváth, R. A. Sheldon, and M. Poliakoff, Valorization of biomass: Deriving more value from waste, Science, 2012, 337(6095): 695 doi: 10.1126/science.1218930
|
67 |
N. Liu, K. Huo, M. T. McDowell, J. Zhao, and Y. Cui, Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes, Sci. Rep., 2013, 3: 1919 doi: 10.1038/srep01919
|
68 |
A. Xing, S. Tian, H. Tang, D. Losic, and Z. Bao, Mesoporous silicon engineered by the reduction of biosilica from rice husk as a high-performance anode for lithium-ion batteries, RSC Adv., 2013, 3(26): 10145 doi: 10.1039/c3ra41889h
|
69 |
D. S. Jung, M. H. Ryou, Y. J. Sung, S. B. Park, and J. W. Choi, Recycling rice husks for highcapacity lithium battery anodes, Proc. Natl. Acad. Sci. USA, 2013, 110(30): 12229 doi: 10.1073/pnas.1305025110
|
70 |
R. Yi, F. Dai, M. L. Gordin, S. Chen, and D. Wang, Microsized Si-C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries, Adv. Energy Mater., 2013, 3(3): 295 doi: 10.1002/aenm.201200857
|
71 |
K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev., 2004, 104(10): 4303 doi: 10.1021/cr030203g
|
72 |
P. Verma, P. Maire, and P. Novák, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries, Electrochim. Acta, 2010, 55(22): 6332 doi: 10.1016/j.electacta.2010.05.072
|
73 |
D. Aurbach, Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries, J. Power Sources, 2000, 89(2): 206 doi: 10.1016/S0378-7753(00)00431-6
|
74 |
N. Liu, L. Hu, M. T. McDowell, A. Jackson, and Y. Cui, Prelithiated silicon nanowires as an anode for lithium ion batteries, ACS Nano, 2011, 5(8): 6487 doi: 10.1021/nn2017167
|
75 |
V. Etacheri, O. Haik, Y. Goffer, G. A. Roberts, I. C. Stefan, R. Fasching, and D. Aurbach, Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes, Langmuir, 2012, 28(1): 965 doi: 10.1021/la203712s
|
76 |
V. Etacheri, U. Geiger, Y. Gofer, G. A. Roberts, I. C. Stefan, R. Fasching, and D. Aurbach, Exceptional electrochemical performance of Si-nanowires in 1,3-dioxolane solutions: A surface chemical investigation, Langmuir, 2012, 28(14): 6175 doi: 10.1021/la300306v
|
77 |
N. Liu, H. Wu, M. T. McDowell, Y. Yao, C. Wang, and Y. Cui, A yolk-shell design for stabilized and scalable li-ion battery alloy anodes, Nano Lett., 2012, 12(6): 3315 doi: 10.1021/nl3014814
|
78 |
B. Hertzberg, A. Alexeev, and G. Yushin, Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space, J. Am. Chem. Soc., 2010, 132(25): 8548 doi: 10.1021/ja1031997
|
79 |
H. Wu, G. Zheng, N. Liu, T. J. Carney, Y. Yang, and Y. Cui, Engineering empty space between Si nanoparticles for lithium-ion battery anodes, Nano Lett., 2012, 12(2): 904 doi: 10.1021/nl203967r
|
80 |
X. Li, P. Meduri, X. Chen, W. Qi, M. H. Engelhard, W. Xu, F. Ding, J. Xiao, W. Wang, C. Wang, J. G. Zhang, and J. Liu, Hollow core-shell structured porous Si-C nanocomposites for Li-ion battery anodes, J. Mater. Chem., 2012, 22(22): 11014 doi: 10.1039/c2jm31286g
|
81 |
B. Wang, X. Li, X. Zhang, B. Luo, Y. Zhang, and L. Zhi, Contact-engineered and voidinvolved silicon/carbon nanohybrids as lithium-ion-battery anodes, Adv. Mater., 2013, 25(26): 3560 doi: 10.1002/adma.201300844
|
82 |
K. Karki, Y. Zhu, Y. Liu, C. F. Sun, L. Hu, Y. Wang, C. Wang, and J. Cumings, Hoop-strong nanotubes for battery electrodes, ACS Nano, 2013, 7(9): 8295 doi: 10.1021/nn403895h
|
83 |
X. W. Lou, C. M. Li, and L. A. Archer, Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage, Adv. Mater., 2009, 21(24): 2536 doi: 10.1002/adma.200803439
|
84 |
J. Y. Huang, L. Zhong, C. M. Wang, J. P. Sullivan, W. Xu, L. Q. Zhang, S. X. Mao, N. S. Hudak, X. H. Liu, A. Subramanian, H. Fan, L. Qi, A. Kushima, and J. Li, In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode, Science, 2010, 330(6010): 1515 doi: 10.1126/science.1195628
|
85 |
M. T. McDowell, I. Ryu, S. W. Lee, C. Wang, W. D. Nix, and Y. Cui, Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy, Adv. Mater., 2012, 24(45): 6034 doi: 10.1002/adma.201202744
|
86 |
Y. Yang, G. Zheng, and Y. Cui, Nanostructured sulfur cathodes, Chem. Soc. Rev., 2013, 42(7): 3018 doi: 10.1039/c2cs35256g
|
87 |
A. Manthiram, Y. Fu, and Y. S. Su, Challenges and prospects of lithium–sulfur batteries, Acc. Chem. Res., 2013, 46(5): 1125 doi: 10.1021/ar300179v
|
88 |
Y. V. Mikhaylik and J. R. Akridge, Polysulfide shuttle study in the Li/S battery system, J. Electrochem. Soc., 2004, 151(11): A1969 doi: 10.1149/1.1806394
|
89 |
X. L. Ji and L. F. Nazar, Advances in Li-S batteries, J. Mater. Chem., 2010, 20(44): 9821 doi: 10.1039/b925751a
|
90 |
C. Barchasz, J. C. Lepretre, F. Alloin, and S. Patoux, New insights into the limiting parameters of the Li/S rechargeable cell, J. Power Sources, 2012, 199:322 doi: 10.1016/j.jpowsour.2011.07.021
|
91 |
J. Shim, K. A. Striebel, and E. J. Cairns, The lithium/sulfur rechargeable cell, J. Electrochem. Soc., 2002, 149(10): A1321 doi: 10.1149/1.1503076
|
92 |
X. Ji, K. T. Lee, and L. F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries, Nat. Mater., 2009, 8(6): 500 doi: 10.1038/nmat2460
|
93 |
N. Jayaprakash, J. Shen, S. S. Moganty, A. Corona, and L. A. Archer, Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries, Angew. Chem. Int. Ed., 2011, 50(26): 5904 doi: 10.1002/anie.201100637
|
94 |
J. Kim, D. J. Lee, H. G. Jung, Y. K. Sun, J. Hassoun, and B. Scrosati, An advanced lithium-sulfur battery, Adv. Funct. Mater., 2013, 23(8): 1076 doi: 10.1002/adfm.201200689
|
95 |
J. Guo, Y. Xu, and C. Wang, Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries, Nano Lett., 2011, 11(10): 4288 doi: 10.1021/nl202297p
|
96 |
L. Ji, M. Rao, S. Aloni, L. Wang, E. J. Cairns, and Y. Zhang, Porous carbon nanofibersulfur composite electrodes for lithium/sulfurcells, Energy Environ. Sci., 2011, 4: 5053 doi: 10.1039/c1ee02256c
|
97 |
C. Zu, Y. Fu, and A. Manthiram, Highly reversible Li/dissolved polysulfide batteries with binder-free carbon nanofiber electrodes, J. Mater. Chem. A, 2013, 1(35): 10362 doi: 10.1039/c3ta11958k
|
98 |
R. Elazari, G. Salitra, A. Garsuch, A. Panchenko, and D. Aurbach, Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries, Adv. Mater., 2011, 23(47): 5641 doi: 10.1002/adma.201103274
|
99 |
Y. S. Su and A. Manthiram, Lithium-sulfur batteries with a microporous carbon paper as a bifunctional interlayer, Nat. Commun., 2012, 3: 1166 doi: 10.1038/ncomms2163
|
100 |
B. Zhang, C. Lai, Z. Zhou, and X. P. Gao, Preparation and electrochemical properties of sulfur-acetylene black composites as cathode materials, Electrochim. Acta, 2009, 54(14): 3708 doi: 10.1016/j.electacta.2009.01.056
|
101 |
C. Lai, X. P. Gao, B. Zhang, T. Y. Yan, and Z. Zhou, Synthesis and Electrochemical Performance of Sulfur/Highly Porous Carbon Composites, J. Phys. Chem. C, 2009, 113(11): 4712 doi: 10.1021/jp809473e
|
102 |
L. Ji, M. Rao, H. Zheng, L. Zhang, Y. Li, W. Duan, J. Guo, E. J. Cairns, and Y. Zhang, Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells, J. Am. Chem. Soc., 2011, 133(46): 18522 doi: 10.1021/ja206955k
|
103 |
H. Wang, Y. Yang, Y. Liang, J. T. Robinson, Y. Li, A. Jackson, Y. Cui, and H. Dai, Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability, Nano Lett., 2011, 11(7): 2644 doi: 10.1021/nl200658a
|
104 |
G. Zheng, Y. Yang, J. J. Cha, S. S. Hong, and Y. Cui, Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries, Nano Lett., 2011, 11(10): 4462 doi: 10.1021/nl2027684
|
105 |
G. Zheng, Q. Zhang, J. J. Cha, Y. Yang, W. Li, Z. W. Seh, and Y. Cui, Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries, Nano Lett., 2013, 13(3): 1265 doi: 10.1021/nl304795g
|
106 |
H. Yao, G. Zheng, W. Li, M. T.McDowell, Z. W. Seh, N. Liu, Z. Lu, and Y. Cui, Crab shells as sustainable templates from nature for nanostructured battery electrodes, Nano Lett., 2013, 13(7): 3385 doi: 10.1021/nl401729r
|
107 |
Y. Yang, G. Yu, J. J. Cha, H. Wu, M. Vosgueritchian, Y. Yao, Z. Bao, and Y. Cui, Improving the performance of lithium-sulfur batteries by conductive polymer coating, ACS Nano, 2011, 5(11): 9187 doi: 10.1021/nn203436j
|
108 |
X. Ji, S. Evers, R. Black, and L. F. Nazar, Stabilizing lithium-sulphur cathodes using polysulphide reservoirs, Nat. Commun., 2011, 2: 325 doi: 10.1038/ncomms1293
|
109 |
S. Evers, T. Yim, and L. F. Nazar, Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li-S battery, J. Phys. Chem. C, 2012, 116(37): 19653 doi: 10.1021/jp304380j
|
110 |
J. Schuster, G. He, B. Mandlmeier, T. Yim, K. T. Lee, T. Bein, and L. F. Nazar, Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries, Angew. Chem. Int. Ed., 2012, 51(15): 3591 doi: 10.1002/anie.201107817
|
111 |
J. Nelson, S. Misra, Y. Yang, A. Jackson, Y. Liu, H. Wang, H. Dai, J. C. Andrews, Y. Cui, and M. F. Toney, In Operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries, J. Am. Chem. Soc., 2012, 134(14): 6337 doi: 10.1021/ja2121926
|
112 |
Z. W. Seh, W. Li, J. J. Cha, G. Zheng, Y. Yang, M. T. McDowell, P. C. Hsu, and Y. Cui, Sulphur-TiO2 yolkshell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries, Nat. Commun., 2013, 4: 1331 doi: 10.1038/ncomms2327
|
113 |
W. Li, G. Zheng, Y. Yang, Z. W. Seh, N. Liu, and Y. Cui, High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach, Proc. Natl. Acad. Sci. USA, 2013, 110(18): 7148 doi: 10.1073/pnas.1220992110
|
114 |
R. Demir-Cakan, M. Morcrette, F. Nouar, C. Davoisne, T. Devic, D. Gonbeau, R. Dominko, C. Serre, G. Férey, and J. M. Tarascon, Cathode composites for Li-S batteries via the use of oxygenated porous architectures, J. Am. Chem. Soc., 2011, 133(40): 16154 doi: 10.1021/ja2062659
|
115 |
L. Xiao, Y. Cao, J. Xiao, B. Schwenzer, M. H. Engelhard, L. V. Saraf, Z. Nie, G. J. Exarhos, and J. Liu, A soft approach to encapsulate sulfur: Polyaniline nanotubes for lithiumsulfur batteries with long cycle life, Adv. Mater., 2012, 24(9): 1176 doi: 10.1002/adma.201103392
|
116 |
Y. Fu and A. Manthiram, Core-shell structured sulfurpolypyrrole composite cathodes for lithium–sulfur batteries, RSC Adv., 2012, 2: 5927 doi: 10.1039/c2ra20393f
|
117 |
H. Chen, W. Dong, J. Ge, C. Wang, X. Wu, W. Lu, and L. Chen, Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries, Sci. Rep., 2013, 3: 1910 doi: 10.1038/srep01910
|
118 |
Y. Bouligand, Twisted fibrous arrangements in biological materials and cholesteric mesophases, Tissue Cell, 1972, 4(2): 189 doi: 10.1016/S0040-8166(72)80042-9
|
119 |
R. Roer and R. Dillaman, The structure and calcification of the crustacean cuticle, Am. Zool., 1984, 24: 893
|
120 |
M. M. Giraud-Guille, Plywood structures in nature, Curr. Opin. Solid State Mater. Sci., 1998, 3(3): 221 doi: 10.1016/S1359-0286(98)80094-6
|
121 |
P. Y. Chen, A. Y. M.Lin, J. McKittrick, and M. A. Meyers, Structure and mechanical properties of crab exoskeletons, Acta Biomater., 2008, 4(3): 587 doi: 10.1016/j.actbio.2007.12.010
|
122 |
N. Fujita, M. Asai, T. Yamashita, and S. Shinkai, Solgel transcription of silica-based hybrid nanostructures using poly(N-vinylpyrrolidone)-coated [60]fullerene, single-walled carbon nanotube and block copolymer templates, J. Mater. Chem., 2004, 14(14): 2106 doi: 10.1039/b401471e
|
123 |
M. J. O’Connell, P. Boul, L. M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K. D. Ausman, and R. E. Smalley, Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping, Chem. Phys. Lett., 2001, 342(3-4): 265 doi: 10.1016/S0009-2614(01)00490-0
|
124 |
J. Hassoun and B. Scrosati, A high-performance polymer tin sulfur lithium ion battery, Angew. Chem. Int. Ed., 2010, 49(13): 2371 doi: 10.1002/anie.200907324
|
125 |
M. Nagao, A. Hayashi, and M. Tatsumisago, High-capacity Li2S–nanocarbon composite electrode for all-solid-state rechargeable lithium batteries, J. Mater. Chem., 2012, 22(19): 10015 doi: 10.1039/c2jm16802b
|
126 |
K. Cai, M. K. Song, E. J. Cairns, and Y. Zhang, Nanostructured Li2S-C composites as cathode material for high-energy lithium/sulfur batteries, Nano Lett., 2012, 12(12): 6474 doi: 10.1021/nl303965a
|
127 |
J. Guo, Z. Yang, Y. Yu, H. D. Abru?a, and L. A. Archer, Lithium-sulfur battery cathode enabled by lithium-nitrile interaction, J. Am. Chem. Soc., 2013, 135(2): 763 doi: 10.1021/ja309435f
|
128 |
Z. Lin, Z. Liu, N. J. Dudney, and C. Liang, Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries, ACS Nano, 2013, 7(3): 2829 doi: 10.1021/nn400391h
|
129 |
Y. Yang, M. T. McDowell, A. Jackson, J. J. Cha, S. S. Hong, and Y. Cui, New nanostructured Li2S/silicon rechargeable battery with high specific energy, Nano Lett., 2010, 10(4): 1486 doi: 10.1021/nl100504q
|
130 |
Y. Yang, G. Zheng, S. Misra, J. Nelson, M. F. Toney, and Y. Cui, High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries, J. Am. Chem. Soc., 2012, 134(37): 15387 doi: 10.1021/ja3052206
|
131 |
Z. W. Seh, Q. Zhang, W. Li, G. Zheng, H. Yao, and Y. Cui, Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder, Chem. Sci., 2013, 4(9): 3673 doi: 10.1039/c3sc51476e
|
132 |
A. Kraft, On the discovery and history of prussian blue, Bull. Hist. Chem., 2008, 33(2): 61
|
133 |
S. I. Ohkoshi, K. I. Arai, Y. Sato, and K. Hashimoto, Humidity-induced magnetization and magnetic pole inversion in a cyano-bridged metal assembly, Nat. Mater., 2004, 3(12): 857 doi: 10.1038/nmat1260
|
134 |
T. Matsuda, J. Kim, and Y. Moritomo, Symmetry switch of cobalt ferrocyanide framework by alkaline cation exchange, J. Am. Chem. Soc., 2010, 132(35): 12206 doi: 10.1021/ja105482k
|
135 |
E. Coronado, M. C. Giménez-López, G. Levchenko, F. M. Romero, V. García-Baonza, A. Milner, and M. Paz-Pasternak, Pressure-tuning of magnetism and linkage isomerism in iron(II) hexacyanochromate, J. Am. Chem. Soc., 2005, 127(13): 4580 doi: 10.1021/ja043166z
|
136 |
S. Margadonna, K. Prassides, and A. N. Fitch, Zero thermal expansion in a Prussian Blue analogue, J. Am. Chem. Soc., 2004, 126(47): 15390 doi: 10.1021/ja044959o
|
137 |
S. S. Kaye and J. R. Long, Hydrogen storage in the dehydrated prussian blue analogues M3[Co(CN)6]2 (M= Mn, Fe, Co, Ni, Cu, Zn), J. Am. Chem. Soc., 2005, 127(18): 6506 doi: 10.1021/ja051168t
|
138 |
K. Hashimoto and H. Ohkoshi, Design of novel magnets using Prussian blue analogues, Phil. Trans. R. Soc. Lond. A, 1999, 357(1762): 2977
|
139 |
T. Mallah, A. Marvilliers, and E. Rivière, From ferromagnets to high-spin molecules: The role of the organic ligands, Phil. Trans. R. Soc. Lond. A, 1999, 357(1762): 3139
|
140 |
M. Verdaguer, A. Bleuzen, V. Marvaud, J. Vaissermann, M. Seuleiman, C. Desplanches, A. Scuiller, C. Train, R. Garde, G. Gelly, C. Lomenech, I. Rosenman, P. Veillet, C. Cartier, and F. Villain, Molecules to build solids: High Tc moleculebased magnets by design and recent revival of cyano complexes chemistry, Coord. Chem. Rev., 1999, 190-192: 1023 doi: 10.1016/S0010-8545(99)00156-3
|
141 |
A. A. Karyakin, Prussian blue and its analogues: Electrochemistry and analytical applications, Electroanalysis, 2001, 13(10): 813 doi: 10.1002/1521-4109(200106)13:10<813::AID-ELAN813>3.0.CO;2-Z
|
142 |
T. Matsuda, J. Kim, K. Ohoyama, and Y. Moritomo, Universal thermal response of the Prussian blue lattice, Phys. Rev. B, 2009, 79(17): 172302 doi: 10.1103/PhysRevB.79.172302
|
143 |
A. Ludi and H. Güdel, Inorganic Chemistry, Berlin/ Heidelberg: Springer, 1973: 1
|
144 |
H. J. Buser, D. Schwarzenbach, W. Petter, and A. Ludi, The crystal structure of Prussian blue: Fe4[Fe(CN)6]3.xH2O, Inorg. Chem., 1977, 16(11): 2704 doi: 10.1021/ic50177a008
|
145 |
F. Herren, P. Fischer, A. Ludi, and W. H?lg, Neutron diffraction study of Prussian blue, Fe4[Fe(CN)6]3.xH2O. Location of water molecules and long-range magnetic order, Inorg. Chem., 1980, 19(4): 956 doi: 10.1021/ic50206a032
|
146 |
P. Bhatt, N. Thakur, M. D. Mukadam, S. S. Meena, and S. M. Yusuf, Evidence for the existence of oxygen clustering and understanding of structural disorder in prussian blue analogues molecular magnet M15[Cr(CN)6]?zH2O (M= Fe and Co): Reverse Monte Carlo simulation and neutron diffraction study, J. Phys. Chem. C, 2013, 117(6): 2676 doi: 10.1021/jp312395y
|
147 |
C. D. Wessells, R. A. Huggins, and Y. Cui, Copper hexacyanoferrate battery electrodes with long cycle life and high power, Nat. Commun., 2011, 2: 550 doi: 10.1038/ncomms1563
|
148 |
D. E. Stilwell, K. H. Park, and M. H. Miles, Electrochemical studies of the factors influencing the cycle stability of Prussian blue films, J. Appl. Electrochem., 1992, 22(4): 325 doi: 10.1007/BF01092684
|
149 |
T. Oi, Electrochromic materials, Annu. Rev. Mater. Sci., 1986, 16(1): 185 doi: 10.1146/annurev.ms.16.080186.001153
|
150 |
K. Itaya, T. Ataka, and S. Toshima, Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes, J. Am. Chem. Soc., 1982, 104(18): 4767 doi: 10.1021/ja00382a006
|
151 |
F. Scholz and A. Dostal, The formal potentials of solid metal hexacyanometalates, Angew. Chem. Int. Ed. Engl., 1996, 34(2324): 2685 doi: 10.1002/anie.199526851
|
152 |
N. Imanishi, T. Morikawa, J. Kondo, Y. Takeda, O. Yamamoto, N. Kinugasa, and T. Yamagishi, Lithium intercalation behavior into iron cyanide complex as positive electrode of lithium secondary battery, J. Power Sources, 1999, 79(2): 215 doi: 10.1016/S0378-7753(99)00061-0
|
153 |
D. Asakura, C. H. Li, Y. Mizuno, M. Okubo, H. S. Zhou, and D. R. Talham, Bimetallic cyanide-bridged coordination polymers as lithium ion cathode materials: Core-shell nanoparticles with enhanced cyclability, J. Am. Chem. Soc., 2013, 135(7): 2793 doi: 10.1021/ja312160v
|
154 |
X. J. Wang, F. Krumeich, and R. Nesper, Nanocomposite of manganese ferrocyanide and graphene: A promising cathode material for rechargeable lithium ion batteries, Electrochem. Commun., 2013, 34: 246 doi: 10.1016/j.elecom.2013.06.019
|
155 |
N. Imanishi, T. Morikawa, J. Kondo, R. Yamane, Y. Takeda, O. Yamamoto, H. Sakaebe, and M. Tabuchi, Lithium intercalation behavior of iron cyanometallates, J. Power Sources, 1999, 81-82: 530 doi: 10.1016/S0378-7753(98)00228-6
|
156 |
M. Takachi, Y. Kurihara, and Y. Moritomo, Channel size dependence of Li+ insertion/extraction in nanoporous hexacyanoferrates, J. Mater. Sci. Eng. B, 2012, 2(8): 452
|
157 |
M. Okubo and I. Honma, Ternary metal Prussian blue analogue nanoparticles as cathode materials for Li-ion batteries, Dalton Trans., 2013, 42(45): 15881 doi: 10.1039/c3dt51369f
|
158 |
M. Takachi, T. Matsuda, and Y. Moritomo, Structural, electronic, and electrochemical properties of LixO[Fe(CN)6]0.90?2.9H2O, Jpn. J. Appl. Phys., 2013, 52:044301 doi: 10.7567/JJAP.52.044301
|
159 |
L. Wang, Y. H. Lu, J. Liu, M. W. Xu, J. G. Cheng, D. W. Zhang, and J. B. Goodenough, A superior low-cost cathode for a Na-ion battery, Angew. Chem. Int. Ed., 2013, 52(7): 1964 doi: 10.1002/anie.201206854
|
160 |
Y. Lu, L. Wang, J. Cheng, and J. B. Goodenough, Prussian blue: A new framework of electrode materials for sodium batteries, Chem. Commun., 2012, 48(52): 6544 doi: 10.1039/c2cc31777j
|
161 |
H. Lee, Y. I. Kim, J. K. Park, and J. W. Choi, Sodium zinc hexacyanoferrate with a well-defined open framework as a positive electrode for sodium ion batteries, Chem. Commun., 2012, 48(67): 8416 doi: 10.1039/c2cc33771a
|
162 |
T. Matsuda, M. Takachi, and Y. Moritomo, A sodium manganese ferrocyanide thin film for Na-ion batteries, Chem. Commun., 2013, 49(27): 2750 doi: 10.1039/c3cc38839e
|
163 |
M. Takachi, T. Matsuda, and Y. Moritomo, Cobalt hexacyanoferrate as cathode material for Na+ secondary battery, Appl. Phys. Express, 2013, 6(2): 025802 doi: 10.7567/APEX.6.025802
|
164 |
W. Li, J. R. Dahn, and D. S. Wainwright, Rechargeable lithium batteries with aqueous electrolytes, Science, 1994, 264(5162): 1115 doi: 10.1126/science.264.5162.1115
|
165 |
Y. Mizuno, M. Okubo, D. Asakura, T. Saito, E. Hosono, Y. Saito, K. Oh-ishi, T. Kudo, and H. Zhou, Impedance spectroscopic study on interfacial ion transfers in cyanidebridged coordination polymer electrode with organic electrolyte, Electrochim. Acta, 2012, 63: 139 doi: 10.1016/j.electacta.2011.12.068
|
166 |
Y. Mizuno, M. Okubo, E. Hosono, T. Kudo, H. Zhou, and K. Oh-ishi, Suppressed activation energy for interfacial charge transfer of a Prussian blue analog thin film electrode with hydrated ions (Li+, Na+, and Mg2+), J. Phys. Chem. C, 2013, 117(21): 10877 doi: 10.1021/jp311616s
|
167 |
S. I. Ohkoshi, K. Nakagawa, K. Tomono, K. Imoto, Y. Tsunobuchi, and H. Tokoro, High proton conductivity in prussian blue analogues and the interference effect by magnetic ordering, J. Am. Chem. Soc., 2010, 132(19): 6620 doi: 10.1021/ja100385f
|
168 |
Y. Moritomo, T. Matsuda, Y. Kurihara, and J. Kim, Cubic-rhombohedral structural phase transition in Na1.32Mn[Fe(CN)6]0.83?3.6H2O, J. Phys. Soc. Jpn., 2011, 80(7): 074608 doi: 10.1143/JPSJ.80.074608
|
169 |
C. D.Wessells, M. T. McDowell, S. V. Peddada, M. Pasta, R. A. Huggins, and Y. Cui, Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage, ACS Nano, 2012, 6(2): 1688 doi: 10.1021/nn204666v
|
170 |
R. Chen, H. Tanaka, T. Kawamoto, M. Asai, C. Fukushima, H. Na, M. Kurihara, M. Watanabe, M. Arisaka, and T. Nankawa, Selective removal of cesium ions from wastewater using copper hexacyanoferrate nanofilms in an electrochemical system, Electrochim. Acta, 2013, 87: 119 doi: 10.1016/j.electacta.2012.08.124
|
171 |
C. D. Wessells, S. V. Peddada, M. T. McDowell, R. A. Huggins, and Y. Cui, The effect of insertion species on nanostruc-tured open framework hexacyanoferrate battery electrodes, J. Electrochem. Soc., 2012, 159(2): A98 doi: 10.1149/2.060202jes
|
172 |
C. D. Wessells, S. V. Peddada, R. A. Huggins, and Y. Cui, Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries, Nano Lett., 2011, 11(12): 5421 doi: 10.1021/nl203193q
|
173 |
M. Pasta, C. D. Wessells, R. A. Huggins, and Y. Cui, A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage, Nat. Commun., 2012, 3: 1149 doi: 10.1038/ncomms2139
|
174 |
R. Klenze, B. Kanellakopulos, G. Trageser, and H. H. Eysel, Manganese hexacyanomanganate: Magnetic interactions via cyanide in a mixed valence Prussian blue type compound, J. Chem. Phys., 1980, 72(11): 5819 doi: 10.1063/1.439105
|
175 |
J. H. Her, P. W. Stephens, C. M. Kareis, J. G. Moore, K. S. Min, J. W. Park, G. Bali, B. S. Kennon, and J. S. Miller, Anomalous non-Prussian blue structures and magnetic ordering of K2MnII[MnII(CN)6] and Rb2 MnII[MnII(CN)6], Inorg. Chem., 2010, 49(4): 1524 doi: 10.1021/ic901903f
|
176 |
M. Pasta, C. D. Wessells, N. Liu, J. Nelson, M. T. Mc-Dowell, R. A. Huggins, M. F. Toney, and Y. Cui, Full open-framework batteries for stationary energy storage, Nat. Commun.,, 2014 doi: 10.1038/ncomms4007
|
177 |
R. Y. Wang, C. D. Wessells, R. A. Huggins, and Y. Cui, Highly reversible open framework nanoscale electrodes for divalent ion batteries, Nano Lett., 2013, 13(11): 5748 doi: 10.1021/nl403669a
|
178 |
F. La Mantia, M. Pasta, H. D. Deshazer, B. E. Logan, and Y. Cui, Batteries for efficient energy extraction from a water salinity difference, Nano Lett., 2011, 11(4): 1810 doi: 10.1021/nl200500s
|
179 |
M. Pasta, C. D. Wessells, Y. Cui, and F. La Mantia, A desalination battery, Nano Lett., 2012, 12(2): 839 doi: 10.1021/nl203889e
|
180 |
M. Pasta, A. Battistel, and F. La Mantia, Batteries for lithium recovery from brines, Energy Environ. Sci., 2012, 5(11): 9487 doi: 10.1039/c2ee22977c
|
181 |
P. J. Hall, M. Mirzaeian, S. I. Fletcher, F. B. Sillars, A. J. R. Rennie, G. O. Shitta-Bey, G. Wilson, A. Cruden, and R. Carter, Energy storage in electrochemical capacitors: designing functional materials to improve performance, Energy Environ. Sci., 2010, 3(9): 1238 doi: 10.1039/c0ee00004c
|
182 |
M. Winter and R. J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev., 2004, 104(10): 4245 doi: 10.1021/cr020730k
|
183 |
J. R. Miller and P. Simon, Electrochemical capacitors for energy management, Science, 2008, 321(5889): 651 doi: 10.1126/science.1158736
|
184 |
P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater., 2008, 7(11): 845 doi: 10.1038/nmat2297
|
185 |
V. Subramanian, S. C. Hall, P. H. Smith, and B. Rambabu, Mesoporous anhydrous RuO2 as a supercapacitor electrode material, Solid State Ion., 2004, 175(1-4): 511 doi: 10.1016/j.ssi.2004.01.070
|
186 |
C. C. Hu, K. H. Chang, M. C. Lin, and Y. T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors, Nano Lett., 2006, 6(12): 2690 doi: 10.1021/nl061576a
|
187 |
H. Y. Lee and J. B. Goodenough, Supercapacitor behavior with KCl electrolyte, J. Solid State Chem., 1999, 144(1): 220 doi: 10.1006/jssc.1998.8128
|
188 |
A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, and J. P. Ferraris, Conducting polymers as active materials in electrochemical capacitors, J. Power Sources, 1994, 47(1-2): 89 doi: 10.1016/0378-7753(94)80053-7
|
189 |
L. Hu and Y. Cui, Energy and environmental nanotechnology in conductive paper and textiles, Energy Environ. Sci., 2012, 5(4): 6423 doi: 10.1039/c2ee02414d
|
190 |
C. Niu, E. K. Sichel, R. Hoch, D. Moy, and H. Tennent, High power electrochemical capacitors based on carbon nanotube electrodes, Appl. Phys. Lett., 1997, 70(11): 1480 doi: 10.1063/1.118568
|
191 |
M. Kaempgen, C. K. Chan, J. Ma, Y. Cui, and G. Gruner, Printable thin film supercapacitors using single-walled carbon nanotubes, Nano Lett., 2009, 9(5): 1872 doi: 10.1021/nl8038579
|
192 |
L. Hu, J. W. Choi, Y. Yang, S. Jeong, F. La Mantia, L. F. Cui, and Y. Cui, Highly conductive paper for energy-storage devices, Proc. Natl. Acad. Sci. USA, 2009, 106(51): 21490 doi: 10.1073/pnas.0908858106
|
193 |
M. Pasta, F. La Mantia, L. Hu, H. Deshazer, and Y. Cui, Aqueous supercapacitors on conductive cotton, Nano Res., 2010, 3(6): 452 doi: 10.1007/s12274-010-0006-8
|
194 |
L. Hu, M. Pasta, F. L. Mantia, L. Cui, S. Jeong, H. D. Deshazer, J. W. Choi, S. M. Han, and Y. Cui, Stretchable, porous, and conductive energy textiles, Nano Lett., 2010, 10(2): 708 doi: 10.1021/nl903949m
|
195 |
X. Xie, G. Yu, N. Liu, Z. Bao, C. S. Criddle, and Y. Cui, Graphene–sponges as highperformance low-cost anodes for microbial fuel cells, Energy Environ. Sci., 2012, 5: 6862 doi: 10.1039/c2ee03583a
|
196 |
L. Hu, H. Wu, and Y. Cui, Printed energy storage devices by integration of electrodes and separators into single sheets of paper, Appl. Phys. Lett., 2010, 96(18): 183502 doi: 10.1063/1.3425767
|
197 |
G. Zheng, L. Hu, H. Wu, X. Xie, and Y. Cui, Paper supercapacitors by a solvent-free drawing method, Energy Environ. Sci., 2011, 4(9): 3368 doi: 10.1039/c1ee01853a
|
198 |
Z. S. Wu, G. Zhou, L. C. Yin, W. Ren, F. Li, and H. M. Cheng, Graphene/metal oxide composite electrode materials for energy storage, Nano Energy, 2012, 1(1): 107 doi: 10.1016/j.nanoen.2011.11.001
|
199 |
G. Yu, X. Xie, L. Pan, Z. Bao, and Y. Cui, Hybrid nanostructured materials for high-performance electrochemical capacitors, Nano Energy, 2013, 2(2): 213 doi: 10.1016/j.nanoen.2012.10.006
|
200 |
X. Lang, A. Hirata, T. Fujita, and M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors, Nat. Nanotechnol., 2011, 6(4): 232 doi: 10.1038/nnano.2011.13
|
201 |
L. Hu, W. Chen, X. Xie, N. Liu, Y. Yang, H. Wu, Y. Yao, M. Pasta, H. N. Alshareef, and Y. Cui, Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading, ACS Nano, 2011, 5(11): 8904 doi: 10.1021/nn203085j
|
202 |
W. Chen, R. B. Rakhi, L. Hu, X. Xie, Y. Cui, and H. N. Alshareef, High-performance nanostructured supercapacitors on a sponge, Nano Lett., 2011, 11(12): 5165 doi: 10.1021/nl2023433
|
203 |
G. Yu, L. Hu, M. Vosgueritchian, H. Wang, X. Xie, J. R. McDonough, X. Cui, Y. Cui, and Z. Bao, Solutionprocessed graphene/MnO2 nanostructured textiles for highperformance electrochemical capacitors, Nano Lett., 2011, 11(7): 2905 doi: 10.1021/nl2013828
|
204 |
G. Yu, L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, and Z. Bao, Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping, Nano Lett., 2011, 11(10): 4438 doi: 10.1021/nl2026635
|
205 |
N. A. Peppas, J. Z. Hilt, A. Khademhosseini, and R. Langer, Hydrogels in biology and medicine: From molecular principles to bionanotechnology, Adv. Mater., 2006, 18(11): 1345 doi: 10.1002/adma.200501612
|
206 |
A. Guiseppi-Elie, Electroconductive hydrogels: Synthesis, characterization and biomedical applications, Biomaterials, 2010, 31(10): 2701 doi: 10.1016/j.biomaterials.2009.12.052
|
207 |
R. A. Green, S. Baek, L. A. Poole-Warren, and P. J. Martens, Conducting polymer-hydrogels for medical electrode applications, Sci. Technol. Adv. Mater., 2010, 11(1): 014107 doi: 10.1088/1468-6996/11/1/014107
|
208 |
S. Ghosh, J. Rasmusson, and O. Ingan?s, Supramolecular self-assembly for enhanced conductivity in conjugated polymer blends: Ionic crosslinking in blends of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) and poly(vinylpyrrolidone), Adv. Mater., 1998, 10(14): 1097 doi: 10.1002/(SICI)1521-4095(199810)10:14<1097::AID-ADMA1097>3.0.CO;2-M
|
209 |
S. Ghosh and O. Ingan?s, Conducting polymer hydrogels as 3D electrodes: Applications for supercapacitors, Adv. Mater., 1999, 11(14): 1214 doi: 10.1002/(SICI)1521-4095(199910)11:14<1214::AID-ADMA1214>3.0.CO;2-3
|
210 |
N. Mano, J. E. Yoo, J. Tarver, Y. L. Loo, and A. Heller, An electron-conducting cross-linked polyanilinebased redox hydrogel, formed in one step at pH 7.2, wires glucose oxidase, J. Am. Chem. Soc., 2007, 129(22): 7006 doi: 10.1021/ja071946c
|
211 |
L. Pan, G. Yu, D. Zhai, H. R. Lee, W. Zhao, N. Liu, H. Wang, B. C. K. Tee, Y. Shi, Y. Cui, and Z. Bao, Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity, Proc. Natl. Acad. Sci. USA, 2012, 109(24): 9287 doi: 10.1073/pnas.1202636109
|
212 |
Y. Zhao, B. Liu, L. Pan, and G. Yu, 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices, Energy Environ. Sci., 2013, 6(10): 2856 doi: 10.1039/c3ee40997j
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|