Special Issue: Nanoscience and Emerging Nanotechnologies (Edited by C. M. Lieber) |
|
|
|
Progress of nanoscience in China |
Yu-Liang Zhao1,4,Yan-Lin Song2,Wei-Guo Song2,Wei Liang5,Xing-Yu Jiang1,Zhi-Yong Tang1,Hong-Xing Xu3,Zhi-Xiang Wei1,Yun-Qi Liu2,Ming-Hua Liu2,Lei Jiang2,1,6,Xin-He Bao7,Li-Jun Wan2,Chun-Li Bai8,*( ) |
1. National Center for Nanoscience and Nanotechnology, Beijing 100190, China
2. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
3. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
4. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
5. Institute of Biophysics, Chinese Academy of Sciences, Beijing 100190, China
6. School of Chemistry and Environment, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
7. Shenyang Branch, Chinese Academy of Sciences, Shenyang 110004, China
8. Chinese Academy of Sciences, Beijing 100864, China |
|
|
Abstract Fast evolving nanosciences and nanotechnology in China has made it one of the front countries of nanotechnology development. In this review, we summarize some most recent progresses in nanoscience research and nanotechnology development in China. The topics we selected in this article include nano-fabrication, nanocatalysis, bioinspired nanotechnology, green printing nanotechnology, nanoplasmonics, nanomedicine, nanomaterials and their applications, energy and environmental nanotechnology, nano EHS (nanosafety), etc. Most of them have great potentials in applications or application-related key issues in future.
|
Keywords
nanoscience
nanotechnology
nanomaterials
nanomedicine
plasmonics
fabrication
catalysis
nano EHS (nanosafety)
|
Corresponding Author(s):
Chun-Li Bai
|
Issue Date: 26 June 2014
|
|
1 |
C. L. Bai, Global voices of science: Ascent of nanoscience in China, Science, 2005, 309(5731): 61 doi: 10.1126/science.1115172
|
2 |
T.Chen, Q.Chen, X.Zhang, D.Wang, and L. J.Wan, Chiral Kagome network from thiacalix[4]arene tetrasulfonate at the interface of aqueous solution/Au(111) surface: An in situ electrochemical scanning tunneling microscopy study, J. Am. Chem. Soc., 2010, 132(16): 5598 doi: 10.1021/ja101598p
|
3 |
S. S.Li, B. H.Northrop, Q. H. Yuan, L. J. Wan, and P. J. Stang, Surface confined metallosupramolecular architectures: Formation and scanning tunneling microscopy characterization, Acc. Chem. Res., 2009, 42(2): 249 doi: 10.1021/ar800117j
|
4 |
Q. Chen, T. Chen, G. B. Pan, H. J. Yan, W. G. Song, L. J. Wan, Z. T. Li, Z. H. Wang, B. Shang, L. F. Yuan, and J. L. Yang, Structural selection of graphene supramolecular assembly oriented by molecular conformation and alkyl chain, Proc. Natl. Acad. Sci. USA, 2008, 105(44): 16849 doi: 10.1073/pnas.0809427105
|
5 |
J. Liu, T. Chen, X. Deng, D. Wang, J. Pei, and L. J. Wan, Chiral hierarchical molecular nanostructures on twodimensional surface by controllable trinary self-assembly, J. Am. Chem. Soc., 2011, 133(51): 21010 doi: 10.1021/ja209469d
|
6 |
L. J.Wan, Fabricating and controlling molecular selforganization at solid surfaces: Studies by scanning tunneling microscopy, Acc. Chem. Res., 2006, 39(5): 334 doi: 10.1021/ar0501929
|
7 |
J. S.Hu, Y. G.Guo, H. P.Liang, L. J.Wan, and L. Jiang, Three-dimensional self-organization of supramolecular selfassembled porphyrin hollow hexagonal nanoprisms, J. Am. Chem. Soc., 2005, 127(48): 17090 doi: 10.1021/ja0553912
|
8 |
J. S. Hu, L. S. Zhong, W. G. Song, and L. J. Wan, Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal, Adv. Mater., 2008, 20(15): 2977 doi: 10.1002/adma.200800623
|
9 |
H. P.Liang, H. M. Zhang, J. S. Hu, Y. G. Guo, L. J. Wan, and C. L. Bai, Pt hollow nanospheres: Facile synthesis and enhanced electrocatalysts, Angew. Chem. Int. Ed. Engl., 2004, 43(12): 1540 doi: 10.1002/anie.200352956
|
10 |
M. Cao, J. S. Hu, H. P. Liang, and L. J. Wan, Selfassembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries, Angew. Chem. Int. Ed. Engl., 2005, 44(28): 4391 doi: 10.1002/anie.200500946
|
11 |
Y. G. Guo, J. S. Hu, and L. J. Wan, Nanostru<?Pub Caret?>ctured materials for electrochemical energy conversion and storage devices, Adv. Mater., 2008, 20(15): 2878 doi: 10.1002/adma.200800627
|
12 |
X. Sen, Y. G. Guo, and L. J. Wan, Nanocarbon networks for advanced rechargeable lithium batteries, Acc. Chem. Res., 2012, 45(10): 1759 doi: 10.1021/ar300094m
|
13 |
S. Xin, L. Gu, N. H. Zhao, Y. X. Yin, L. J. Zhou, Y. G. Guo, and L. J. Wan, Smaller sulfur molecules promise better lithium-sulfur batteries, J. Am. Chem. Soc., 2012, 134(45): 18510 doi: 10.1021/ja308170k
|
14 |
Y. Q.Wang, L. Gu, Y. G. Guo, H. Li, X. Q. He, S. Tsukimoto, Y. lkuhara, and L. J. Wan, Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery, J. Am. Chem. Soc., 2012, 134(18): 7874 doi: 10.1021/ja301266w
|
15 |
D. J. Xue, S. Xin, Y. Yan, K. C. Jiang, Y. X. Yin, Y. G. Guo, and L. J. Wan, Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks, J. Am. Chem. Soc., 2012, 134(5): 2512 doi: 10.1021/ja211266m
|
16 |
X. L. Pan and X. H. Bao, Reactions over catalysts confined in carbon nanotubes, Chem. Commun., 2008, 47(47): 6271 doi: 10.1039/b810994j
|
17 |
X. L. Pan and X. H. Bao, The effects of confinement inside carbon nanotubes on catalysis, Acc. Chem. Res., 2011, 44(8): 553 doi: 10.1021/ar100160t
|
18 |
D. Deng, L. Yu, X. Chen, G. Wang, L. Jin, X. Pan, J. Deng, G. Sun, and X. Bao, Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction, Angew. Chem. Int. Ed., 2013, 52(1): 371 doi: 10.1002/anie.201204958
|
19 |
W. Chen, Z. L. Fan, X. L. Pan, and X. H. Bao, Effect of confinement in carbon nanotubes on the activity of FischerTropsch iron catalyst, J. Am. Chem. Soc., 2008, 130(29): 9414 doi: 10.1021/ja8008192
|
20 |
W. Chen, X. L. Pan, and X. H. Bao, Tuning of redox properties of iron and iron oxides via encapsulation within carbon nanotubes, J. Am. Chem. Soc., 2007, 129(23): 7421 doi: 10.1021/ja0713072
|
21 |
W. Chen, X. L. Pan, M. G. Willinger, D. S. Su, and X. H. Bao, Facile autoreduction of iron oxide/carbon nanotube encapsulates, J. Am. Chem. Soc., 2006, 128(10): 3136 doi: 10.1021/ja056721l
|
22 |
X. L. Pan, Z. L. Fan, W. Chen, Y. J. Ding, H. Y. Luo, and X. H. Bao, Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles, Nat. Mater., 2007, 6(7): 507 doi: 10.1038/nmat1916
|
23 |
Q. Fu, W. X. Li, Yunxi Yao, H. Y. Liu, H. Y. Su, D. Ma, X. K. Gu, L. M. Chen, Z. Wang, H. Zhang, B. Wang, and X. H. Bao, Interface-confined ferrous centers for catalytic oxidation, Science, 2010, 328(5982): 1141 doi: 10.1126/science.1188267
|
24 |
R. T. Mu, Q. Fu, L. Jin, L. Yu, G. Z. Fang, D. L. Tan, and X. H. Bao, Visualizing chemical reactions confined under graphene, Angew. Chem. Int. Ed. Engl., 2012, 51(20): 4856 doi: 10.1002/anie.201200413
|
25 |
Q. Fu, F. Yang, and X. H. Bao, Interface-confined oxide nanostructures for catalytic oxidation reactions, Acc. Chem. Res., 2013 (in press) doi: 10.1021/ar300249b
|
26 |
L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, and D. Zhu, Super-hydrophobic surfaces: from natural to artificial, Adv. Mater., 2002, 14(24): 1857 doi: 10.1002/adma.200290020
|
27 |
T. Sun, L. Feng, X. F. Gao, and L. Jiang, Bioinspired surfaces with special wettability, Acc. Chem. Res., 2005, 38(8): 644 doi: 10.1021/ar040224c
|
28 |
F. Xia and L. Jiang, Bio-inspired, smart, multiscale interfacial materials, Adv. Mater., 2008, 20(15): 2842 doi: 10.1002/adma.200800836
|
29 |
M. J. Liu, S. T. Wang, Z. X. Wei, Y. L. Song, and L. Jiang, Bioinspired design of a superoleophobic and low adhesive water/solid interface, Adv. Mater., 2009, 21(6): 665 doi: 10.1002/adma.200801782
|
30 |
Y. M. Zheng, H. Bai, Z. B. Huang, X. L. Tian, F. Q. Nie, Y. Zhao, J. Zhai, and L. Jiang, Directional water collection on wetted spider silk, Nature, 2010, 463(7281): 640 doi: 10.1038/nature08729
|
31 |
H. Bai, J. Ju, R. Z. Sun, Y. Chen, Y. M. Zheng, and L. Jiang, Controlled fabrication and water collection ability of bioinspired artificial spider silks, Adv. Mater., 2011, 23(32): 3708 doi: 10.1002/adma.201101740
|
32 |
X. Hou, W. Guo, and L. Jiang, Biomimetic smart nanopores and nanochannels, Chem. Soc. Rev., 2011, 40(5): 2385 doi: 10.1039/c0cs00053a
|
33 |
W. Guo, L. X. Cao, J. C. Xia, F. Q. Nie, W. Ma, J. M. Xue, Y. L. Song, D. B. Zhu, Y. G. Wang, and L. Jiang, Energy harvesting with single-ion-selective nanopores: A concentration-gradient-driven nanofluidic power source, Adv. Funct. Mater., 2010, 20(8): 1339 doi: 10.1002/adfm.200902312
|
34 |
S. Wang, H. Wang, J. Jiao, K. J. Chen, G. E. Owens, K. I. Kamei, J. Sun, D. J. Sherman, C. P. Behrenbruch, H. Wu, and H. R. Tseng, Three-dimensional nanostructured substrates toward efficient capture of circulating tumor cells, Angew. Chem. Int. Ed. Engl., 2009, 48(47): 8970 doi: 10.1002/anie.200901668
|
35 |
S. Wang, K. Liu, J. Liu, Z. T. F.Yu, X. Xu, L. Zhao, T. Lee, E. K. Lee, J. Reiss, Y. K. Lee, L. W. K. Chung, J. Huang, M. Rettig, D. Seligson, K. N. Duraiswamy, C. K. F. Shen, and H. R. Tseng, Highly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic micromixers, Angew. Chem. Int. Ed Engl., 2011, 50(13): 3084 doi: 10.1002/anie.201005853
|
36 |
L. Chen, X. L. Liu, B. Su, J. Li, L. Jiang, D. Han, and S. T. Wang, Aptamer-mediated efficient capture and release of T lymphocytes on nanostructured surfaces, Adv. Mater., 2011, 23(38): 4376 doi: 10.1002/adma.201102435
|
37 |
H. B. Yao, Z. H. Tan, H. Y. Fang, and S. H. Yu, Artificial nacre-like bionanocomposite films from the self-assembly of chitosan-montmorillonite hybrid building blocks, Angew. Chem. Int. Ed. Engl., 2010, 49(52): 10127 doi: 10.1002/anie.201004748
|
38 |
H. B. Yao, H. Y. Fang, Z. H. Tan, L. H. Wu, and S. H. Yu, Biologically inspired, strong, transparent, and functional layered organic-inorganic hybrid films, Angew. Chem. Int. Ed. Engl., 2010, 49(12): 2140 doi: 10.1002/anie.200906920
|
39 |
J. F. Wang, L. Lin, Q. F. Cheng, and L. Jiang, A strong bio-inspired layered PNIPAM-clay nanocomposite hydrogel, Angew. Chem. Int. Ed. Engl., 2012, 51(19): 4676 doi: 10.1002/anie.201200267
|
40 |
Y. Demao, Practical Guide of Photosensitive Material and Print Plate, Beijing: Graphic Communications Press, 2007: 53
|
41 |
H. H. Zhou and Y. L. Song, Green plate making technology based on nano-materials, Adv. Mater. Res., 2011, 174: 447 doi: 10.4028/www.scientific.net/AMR.174.447
|
42 |
C. Neinhuis and W. Barthlott, Characterization and distribution of water-repellent, self-cleaning plant surfaces, Ann. Bot., 1997, 79(6): 667 doi: 10.1006/anbo.1997.0400
|
43 |
X. F. Gao and L. Jiang, Biophysics: Water-repellent legs of water striders, Nature, 2004, 432(7013): 36 doi: 10.1038/432036a
|
44 |
X. Yao, Y. L. Song, and L. Jiang, Applications of bioinspired special wettable surfaces, Adv. Mater., 2011, 23(6): 719 doi: 10.1002/adma.201002689
|
45 |
R. N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem., 1936, 28(8): 988 doi: 10.1021/ie50320a024
|
46 |
B. D. Cassie and S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc., 1944, 40: 546 doi: 10.1039/tf9444000546
|
47 |
J. X. Wang, Y. Zhang, S. Wang, Y. L. Song, and L. Jiang, Bioinspired colloidal photonic crystals with controllable wettability, Acc. Chem. Res., 2011, 44(6): 405 doi: 10.1021/ar1001236
|
48 |
Y. Huang, M. Liu, J. X. Wang, J. M. Zhou, L. B. Wang, Y. L. Song, and L. Jiang, Controllable underwater oil-adhesioninterface films assembled from nonspherical particles, Adv. Funct. Mater., 2011, 21(23): 4436 doi: 10.1002/adfm.201101598
|
49 |
W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature, 2003, 424(6950): 824 doi: 10.1038/nature01937
|
50 |
Z. Y. Fang, L. R. Fan, C. F. Lin, D. Zhang, A. J. Meixner, and X. Zhu, Plasmonic coupling of bow tie antennas with Ag nanowire, Nano Lett., 2011, 11(4): 1676 doi: 10.1021/nl200179y
|
51 |
X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits, Nano Lett., 2009, 9(12): 4515 doi: 10.1021/nl902860d
|
52 |
Y. R. Fang, Z. P. Li, Y. Z. Huang, S. P. Zhang, P. Nordlander, N. J. Halas, and H. X. Xu, Branched silver nanowires as controllable plasmon routers, Nano Lett., 2010, 10(5): 1950 doi: 10.1021/nl101168u
|
53 |
S. P. Zhang, H. Wei, K. Bao, U. H?kanson, N. J. Halas, P. Nordlander, and H. X. Xu, Chiral surface plasmon polaritons on metallic nanowires, Phys. Rev. Lett., 2011, 107(9): 096801 doi: 10.1103/PhysRevLett.107.096801
|
54 |
H. Wei, Z. P. Li, X. R. Tian, Z. X. Wang, F. Z. Cong, N. Liu, S. P. Zhang, P. Nordlander, N. J. Halas, and H. X. Xu, Quantum dot-based local field imaging reveals plasmonbased interferometric logic in silver nanowire networks, Nano Lett., 2011, 11(2): 471 doi: 10.1021/nl103228b
|
55 |
H. Wei, Z. X. Wang, X. R. Tian, M. K?ll, and H. X. Xu, Cascaded logic gates in nanophotonic plasmon networks, Nat. Commun., 2011, 2: 387 doi: 10.1038/ncomms1388
|
56 |
Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array, Phys. Rev. Lett., 2008, 101(8): 087401 doi: 10.1103/PhysRevLett.101.087401
|
57 |
X. B. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, All-angle broadband negative refraction of metal waveguide arrays in the visible range: Theoretical analysis and numerical demonstration, Phys. Rev. Lett., 2006, 97(7): 073901 doi: 10.1103/PhysRevLett.97.073901
|
58 |
H. S. Chen, B. I. Wu, B. Zhang, and J. A. Kong, Electromagnetic wave interactions with a metamaterial cloak, Phys. Rev. Lett., 2007, 99(6): 063903 doi: 10.1103/PhysRevLett.99.063903
|
59 |
X. R. Huang, R. W. Peng, and R. H. Fan, Making metals transparent for white light by spoof surface plasmons, Phys. Rev. Lett., 2010, 105(24): 243901 doi: 10.1103/PhysRevLett.105.243901
|
60 |
R. H. Fan, R. W. Peng, X. R. Huang, J. Li, Y. Liu, Q. Hu, M. Wang, and X. Zhang, Transparent metals for ultrabroadband electromagnetic waves, Adv. Mater., 2012, 24(15): 1980 doi: 10.1002/adma.201104483
|
61 |
S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves, Nat. Mater., 2012, 11(5): 426 doi: 10.1038/nmat3292
|
62 |
Y. H. Chen, L. Huang, L. Gan, and Z. Y. Li, Wavefront shaping of infrared light through a subwavelength hole, Light: Science & Applications, 2012, 1(8): e26 doi: 10.1038/lsa.2012.26
|
63 |
L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, Plasmonic Airy beam generated by in-plane diffraction, Phys. Rev. Lett., 2011, 107(12): 126804 doi: 10.1103/PhysRevLett.107.126804
|
64 |
H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering, Phys. Rev. Lett., 1999, 83(21): 4357 doi: 10.1103/PhysRevLett.83.4357
|
65 |
Z. Q. Tian, B. Ren, and D. Y. Wu, Surface-enhanced raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures, J. Phys. Chem. B, 2002, 106(37): 9463 doi: 10.1021/jp0257449
|
66 |
J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, Shell-isolated nanoparticle-enhanced Raman spectroscopy, Nature, 2010, 464(7287): 392 doi: 10.1038/nature08907
|
67 |
H. Wei, F. Hao, Y. Huang, W. Wang, P. Nordlander, and H. Xu, Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems, Nano Lett., 2008, 8(8): 2497 doi: 10.1021/nl8015297
|
68 |
H. Wei, U. H?kanson, Z. L. Yang, F. H??k, and H. X. Xu, Individual nanometer hole-particle pairs for surface-enhanced Raman scattering, Small, 2008, 4(9): 1296 doi: 10.1002/smll.200701135
|
69 |
H. Y. Liang, Z. P. Li, W. Z. Wang, Y. S. Wu, and H. X. Xu, Highly surface-roughened flower-like silver nanoparticles for extremely sensitive substrates of surface-enhanced Raman scattering, Adv. Mater., 2009, 21(45): 4614 doi: 10.1002/adma.200901139
|
70 |
Y. R. Fang, H. Wei, F. Hao, P. Nordlander, and H. X. Xu, Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons, Nano Lett., 2009, 9(5): 2049 doi: 10.1021/nl900321e
|
71 |
M. T. Sun, Z. Zhang, H. Zheng, and H. X. Xu, In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy, Scientific Reports, 2012, 2: 647 doi: 10.1038/srep00647
|
72 |
Z. Liu, S. Y. Ding, Z. B. Chen, X. Wang, J. H. Tian, J. R. Anema, X. S. Zhou, D. Y. Wu, B. W. Mao, X. Xu, B. Ren, and Z. Q. Tian, Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy, Nat. Commun., 2011, 2: 305 doi: 10.1038/ncomms1310
|
73 |
C. Y. Chen, G. M. Xing, J. X. Wang, Y. L. Zhao, B. Li, J. Tang, G. Jia, T. C. Wang, J. Sun, L. Xing, H. Yuan, Y. X. Gao, H. Meng, Z. Chen, F. Zhao, Z. F. Chai, and X. H. Fang, Multihydroxylated [Gd@C82(OH)22]n nanoparticles: Antineoplastic activity of high efficiency and low toxicity, Nano Lett., 2005, 5(10): 2050 doi: 10.1021/nl051624b
|
74 |
X. J. Liang, H. Meng, Y. Wang, H. Y. He, J. Meng, J. Lu, P. C. Wang, Y. Zhao, X. Gao, B. Sun, C. Y. Chen, G. Xing, D. Shen, M. M. Gottesman, Y. Wu, J. J. Yin, and L. Jia, Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis, Proc. Natl. Acad. Sci. USA, 2010, 107(16): 7449 doi: 10.1073/pnas.0909707107
|
75 |
S. G. Kang, G. Q. Zhou, P. Yang, Y. Liu, B. Y. Sun, T. Huynh, H. Meng, L. N. Zhao, G. M. Xing, C. Y. Chen, Y. L. Zhao, and R. H. Zhou, Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C82(OH)22 and its implication for de novo design of nanomedicine, Proc. Natl. Acad. Sci. USA, 2012, 109(38): 15431 doi: 10.1073/pnas.1204600109
|
76 |
X. W. Ma, Y. L. Zhao, and X. J. Liang, Theranostic nanoparticles engineered for clinic and pharmaceutics, Acc. Chem. Res., 2011, 44(10): 1114 doi: 10.1021/ar2000056
|
77 |
J. Tang, G. M. Xing, Y. L. Zhao, L. Jing, X. F. Gao, Y. Cheng, H. Yuan, F. Zhao, Z. Chen, H. Meng, H. Zhang, H. J. Qian, R. Su, and K. Ibrahim, Periodical variation of electronic properties in polyhydroxylated metallofullerene materials, Adv. Mater., 2006, 18(11): 1458 doi: 10.1002/adma.200600049
|
78 |
L. Yan, Y. B. Zheng, F. Zhao, S. J. Li, X. F. Gao, B. Q. Xu, P. S. Weiss, and Y. L. Zhao, Chemistry and physics of a single atomic layer: Strategies and challenges for functionalization of graphene and graphene-based materials, Chem. Soc. Rev., 2012, 41(1): 97 doi: 10.1039/c1cs15193b
|
79 |
H. Meng, G. M. Xing, B. Y. Sun, F. Zhao, H. Lei, W. Li, Y. Song, and Z. Chen, H. Yuan, X. X. Wang, J. Long, C. Y. Chen, X. J. Liang, N. Zhang, Z. F. Chai, and Y. L. Zhao, Potent Angiogenesis Inhibition by the Particulate Form of Fullerene Derivatives, ACS Nano, 2010, 4(5): 2773 doi: 10.1021/nn100448z
|
80 |
D. Yang, Y. L. Zhao, H. Guo, Y. N. Li, P. Tewary, G. M. Xing, W. Hou, J. J. Oppenheim, and N. Zhang, [Gd@C(82)(OH)(22)](n) nanoparticles induce dendritic cell maturation and activate Th1 immune responses, ACS Nano, 2010, 4(2): 1178 doi: 10.1021/nn901478z
|
81 |
H. Meng, G. M. Xing, E. Blanco, Y. Song, L. Zhao, B. Y. Sun, X. Li, P. C.Wang, A. Korotcov, W. Li, X. J. Liang, and C. Y. Yuan, H. Chen, F. Zhao, Z. Chen, T. Sun, Z. F. Chai, M. Ferrari, and Y. L. Zhao, Gadolinium metallofullerenol nanoparticles inhibit cancer metastasis through matrix metalloproteinase inhibition: imprisoning instead of poisoning cancer cells, Nanomedicine: Nanotechnology, Biology and Medicine, 2012, 8(2): 136 doi: 10.1016/j.nano.2011.08.019
|
82 |
M. J. Bissell and D. Radisky, Putting tumours in context, Nat. Rev. Cancer, 2001, 1(1): 46 doi: 10.1038/35094059
|
83 |
R. Duncan, Polymer conjugates as anticancer nanomedicines, Nat. Rev. Cancer, 2006, 6(9): 688 doi: 10.1038/nrc1958
|
84 |
N. Tang, G. Du, N. Wang, C. Liu, H. Hang, and W. Liang, Improving penetration in tumors with nanoassemblies of phospholipids and doxorubicin, J. Natl. Cancer Inst., 2007, 99(13): 1004 doi: 10.1093/jnci/djm027
|
85 |
X. Lu, F. Zhang, L. Qin, F. Xiao, and W. Liang, Polymeric micelles as a drug delivery system enhance cytotoxicity of vinorelbine through more intercellular accumulation, Drug Deliv., 2010, 17(4): 255 doi: 10.3109/10717541003702769
|
86 |
Y. Wang, R. Wang, X. Lu, W. Lu, C. Zhang, and W. Liang, Pegylated phospholipids-based self-assembly with water-soluble drugs, Pharm. Res., 2010, 27(2): 361 doi: 10.1007/s11095-009-0029-6
|
87 |
J. Wang, Y. Wang, and W. Liang, Delivery of drugs to cell membranes by encapsulation in PEG-PE micelles, J. Control. Release, 2012, 160(3): 637 doi: 10.1016/j.jconrel.2012.02.021
|
88 |
J. Wang, H. Qu, L. Jin, W. Zeng, L. Qin, F. Zhang, X. Wei, W. Lu, C. Zhang, and W. Liang, Pegylated phosphotidylethanolamine inhibiting P-glycoprotein expression and enhancing retention of doxorubicin in MCF7/ADR cells, J. Pharm. Sci., 2011, 100(6): 2267 doi: 10.1002/jps.22461
|
89 |
T. F. Liu, D. Fu, S. Gao, Y. Z. Zhang, H. L. Sun, G. Su, and Y. J. Liu, An azide-bridged homospin single-chain magnet: [Co(2,2′-bithiazoline)(N3)2]n, J. Am. Chem. Soc., 2003, 125(46): 13976 doi: 10.1021/ja0380751
|
90 |
H. B. Xu, B. W. Wang, F. Pan, Z. M. Wang, and S. Gao, Stringing oxo-centered trinuclear [MnIII3O] units into single-chain magnets with formate or azide linkers, Angew. Chem. Int. Ed. Engl., 2007, 46(39): 7388 doi: 10.1002/anie.200702648
|
91 |
M. Ding, B. Wang, Z. Wang, J. Zhang, O. Fuhr, D. Fenske, and S. Gao, Constructing single-chain magnets by supramolecular- stacking and spin canting: A case study on manganese (III) corroles, Chemistry, 2012, 18(3): 915 doi: 10.1002/chem.201101912
|
92 |
B. Q. Ma, S. Gao, G. Su, and G. X. Xu, Cyano-bridged 4f-3d coordination polymers with a unique twodimensional topological architecture and unusual magnetic behavior, Angew. Chem. Int. Ed. Engl., 2001, 40(2): 434 doi: 10.1002/1521-3773(20010119)40:2<434::AID-ANIE434>3.0.CO;2-Z
|
93 |
S. Gao, G. Su, T. Yi, and B. Q. Ma, Observation of an unusual field-dependent slow magnetic relaxation and two distinct transitions in a family of rare-earth_transition-metal complexes, Phys. Rev. B, 2001, 63(5): 054431 doi: 10.1103/PhysRevB.63.054431
|
94 |
S. D. Jiang, B. W. Wang, G. Su, Z. M. Wang, and S. Gao, A mononuclear dysprosium complex featuring singlemolecule-magnet behavior, Angew. Chem. Int. Ed. Engl., 2010, 49(41): 7448 doi: 10.1002/anie.201004027
|
95 |
S. D. Jiang, B. W. Wang, H. L. Sun, Z. M. Wang, and S. Gao, An organometallic single-ion magnet, J. Am. Chem. Soc., 2011, 133(13): 4730 doi: 10.1021/ja200198v
|
96 |
G. C. Xu, W. Zhang, X. M. Ma, Y. H. Chen, L. Zhang, H. L. Cai, Z. M. Wang, R. G. Xiong, and S. Gao, Coexistence of magnetic and electric orderings in the metal-formate frameworks of [NH4][M(HCOO)3], J. Am. Chem. Soc., 2011, 133(38): 14948 doi: 10.1021/ja206891q
|
97 |
F. Zhao, M. Yuan, W. Zhang, and S. Gao, Monodisperse lanthanide oxysulfide nanocrystals, J. Am. Chem. Soc., 2006, 128(36): 11758 doi: 10.1021/ja0638410
|
98 |
F. Zhao, H. L. Sun, G. Su, and S. Gao, Synthesis and size-dependent magnetic properties of monodisperse EuS nanocrystals, Small, 2006, 2(2): 244 doi: 10.1002/smll.200500294
|
99 |
Y. G. Yao, Q. W. Li, J. Zhang, R. Liu, L. Y. Jiao, Y. T. Zhu, and Z. F. Liu, Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions, Nat. Mater., 2007, 6(4): 283 doi: 10.1038/nmat1865
|
100 |
G. Hong, B. Zhang, B. H. Peng, J. Zhang, W. M. Choi, J. Y. Choi, J. M. Kim, and Z. F. Liu, Direct growth of semiconducting single-walled carbon nanotube array, J. Am. Chem. Soc., 2009, 131(41): 14642 doi: 10.1021/ja9068529
|
101 |
Y. G. Yao, C. Q. Feng, J. Zhang, and Z. F. Liu, “Cloning” of single-walled carbon nanotubes via open-end growth mechanism, Nano Lett., 2009, 9(4): 1673 doi: 10.1021/nl900207v
|
102 |
X. Yu, J. Zhang, W. Choi, J. Y. Choi, J. M. Kim, L. Gan, and Z. Liu, Cap formation engineering: from opened C60 to single-walled carbon nanotubes, Nano Lett., 2010, 10(9): 3343 doi: 10.1021/nl1010178
|
103 |
N. Liu, L. Fu, B. Y. Dai, K. Yan, X. Liu, R. Q. Zhao, Y. F. Zhang, and Z. F. Liu, Universal segregation growth approach to wafer-size graphene from non-noble metals, Nano Lett., 2010, 11(1): 297 doi: 10.1021/nl103962a
|
104 |
C. Zhang, L. Fu, N. Liu, M. Liu, Y. Wang, and Z. F. Liu, Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources, Adv. Mater., 2011, 23(8): 1020 doi: 10.1002/adma.201004110
|
105 |
B. Dai, L. Fu, Z. Zou, M. Wang, H. Xu, S. Wang, and Z. Liu, Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene, Nat. Commun., 2011, 2: 522 doi: 10.1038/ncomms1539
|
106 |
W. H. Dang, H. L. Peng, H. Li, P. Wang, and Z. F. Liu, Epitaxial heterostructures of ultrathin topological insulator nanoplate and graphene, Nano Lett., 2010, 10(8): 2870 doi: 10.1021/nl100938e
|
107 |
K. Yan, H. L. Peng, Y. Zhou, H. Li, and Z. F. Liu, Formation of bilayer bernal graphene: layer-by-layer epitaxy via chemical vapor deposition, Nano Lett., 2011, 11(3): 1106 doi: 10.1021/nl104000b
|
108 |
K. Yan, D. Wu, H. Peng, L. Jin, Q. Fu, X. Bao, and Z. Liu, Modulation-doped growth of mosaic graphene with singlecrystalline p-n junctions for efficient photocurrent generation, Nat. Commun., 2012, 3: 1280 doi: 10.1038/ncomms2286
|
109 |
Z. H. Pan, N. Liu, L. Fu, and Z. F. Liu, Wrinkle engineering: A new approach to massive graphene nanoribbon arrays, J. Am. Chem. Soc., 2011, 133(44): 17578 doi: 10.1021/ja207517u
|
110 |
Y. Pan, H. G. Zhang, D. X. Shi, J. T. Sun, S. X. Du, F. Liu, and H. J. Gao, Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001), Adv. Mater., 2009, 21(27): 2777 doi: 10.1002/adma.200800761
|
111 |
J. H. Mao, L. Huang, Y. Pan, M. Gao, J. F. He, H. T. Zhou, H. M. Guo, Y. Tian, Q. Zou, L. Z. Zhang, H. G. Zhang, Y. L. Wang, S. X. Du, X. J. Zhou, A. H. C. Neto, and H. J. Gao, Silicon layer intercalation of centimeter-scale, epitaxially grown monolayer graphene on Ru(0001), Appl. Phys. Lett., 2012, 100(9): 093101 doi: 10.1063/1.3687190
|
112 |
Z. W. Shi, R. Yang, L. C. Zhang, Y. Wang, D. H. Liu, D. X. Shi, E. G. Wang, and G. Y. Zhang, Patterning graphene with zigzag edges by self-aligned anisotropic etching, Adv. Mater., 2011, 23(27): 3061 doi: 10.1002/adma.201100633
|
113 |
D. C. Geng, B. Wu, Y. L. Guo, L. P. Huang, Y. Z. Xue, J. Y. Chen, G. Yu, L. Jiang, W. P. Hu, and Y. Q. Liu, Uniform hexagonal graphene flakes and films grown on liquid copper surface, Proc. Natl. Acad. Sci. USA, 2012, 109(21): 7992 doi: 10.1073/pnas.1200339109
|
114 |
L. B. Gao, W. C. Ren, H. L. Xu, L. Jin, Z. X. Wang, T. Ma, L. P. Ma, Z. Y. Zhang, Q. Fu, L. M. Peng, X. H. Bao, and H. M. Cheng, Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum, Nat. Commun., 2012, 3: 699 doi: 10.1038/ncomms1702
|
115 |
Z. P. Chen, W. C. Ren, L. B. Gao, B. L. Liu, S. F. Pei, and H. M. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition, Nat. Mater., 2011, 10(6): 424 doi: 10.1038/nmat3001
|
116 |
N. Li, Z. P. Chen, W. C. Ren, F. Li, and H. M. Cheng, Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates, Proc. Natl. Acad. Sci. USA, 2012, 109(43): 17360 doi: 10.1073/pnas.1210072109
|
117 |
Y. J. Wei, J. T. Wu, H. Q. Yin, X. H. Shi, R. G. Yang, and M. Dresselhaus, The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene, Nat. Mater., 2012, 11(9): 759 doi: 10.1038/nmat3370
|
118 |
P. H. Tan, W. P. Han, W. J. Zhao, Z. H. Wu, K. Chang, H. Wang, Y. F. Wang, N. Bonini, N. Marzari, N. Pugno, G. Savini, A. Lombardo, and A. C. Ferrari, The shear mode of multilayer graphene, Nat. Mater., 2012, 11(4): 294 doi: 10.1038/nmat3245
|
119 |
W. G. Xu, X. Ling, J. Q. Xiao, M. S. Dresselhaus, J. Kong, H. X. Xu, Z. F. Liu, and J. Zhang, Surface enhanced Raman spectroscopy on a flat graphene surface, Proc. Natl. Acad. Sci. USA, 2012, 109(24): 9281 doi: 10.1073/pnas.1205478109
|
120 |
S. S. Chen, Q. Z.Wu, C. Mishra, J. Y. Kang, H. J. Zhang, K. Cho, W. W. Cai, A. A. Balandin, and R. S. Ruoff, Thermal conductivity of isotopically modified graphene, Nat. Mater., 2012, 11(3): 203 doi: 10.1038/nmat3207
|
121 |
Z. Xu and C. Gao, Graphene chiral liquid crystals and macroscopic assembled fibres, Nat. Commun., 2011, 2: 571 doi: 10.1038/ncomms1583
|
122 |
Y. X. Xu, H. Bai, G. W. Lu, C. Li, and G. Q. Shi, Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets, J. Am. Chem. Soc., 2008, 130(18): 5856 doi: 10.1021/ja800745y
|
123 |
Y. Z. Tan, S. Y. Xie, R. B. Huang, and L. S. Zheng, The stabilization of fused-pentagon fullerene molecules, Nat. Chem., 2009, 1(6): 450 doi: 10.1038/nchem.329
|
124 |
S. Y. Xie, F. Gao, X. Lu, R. B. Huang, C. R. Wang, X. Zhang, M. L. Liu, S. L. Deng, and L. S. Zheng, Capturing the labile fullerene[50] as C50Cl10, Science, 2004, 304(5671): 699 doi: 10.1126/science.1095567
|
125 |
X. Lu, Z. Chen, W. Thiel, Pv. Schleyer, R. B. Huang, and L. S. Zheng, Properties of fullerene[50] and D5h decachlorofullerene[ 50]: A computational study, J. Am. Chem. Soc., 2004, 126(45): 14871 doi: 10.1021/ja046725a
|
126 |
X. Han, S. J. Zhou, Y. Z. Tan, X. Wu, F. Gao, Z. J. Liao, R. B. Huang, Y. Q. Feng, X. Lu, S. Y. Xie, and L. S. Zheng, Crystal structures of saturn-like C50Cl10 and pineapple-shaped C64Cl4: geometric implications of doubleand triple-pentagon-fused chlorofullerenes, Angew. Chem. Int. Ed., 2008, 47(29): 5340 doi: 10.1002/anie.200800338
|
127 |
Y. Z. Tan, Z. J. Liao, Z. Z. Qian, R. T. Chen, X. Wu, H. Liang, X. Han, F. Zhu, S. J. Zhou, Z. Zheng, X. Lu, S. Y. Xie, R. B. Huang, and L. S. Zheng, Two I(h)-symmetry-breaking C60 isomers stabilized by chlorination, Nat. Mater., 2008, 7(10): 790 doi: 10.1038/nmat2275
|
128 |
Y. Z. Tan, T. Zhou, J. Bao, G. J. Shan, S. Y. Xie, R. B. Huang, and L. S. Zheng, C72Cl4: A pristine fullerene with favorable pentagon-adjacent structure, J. Am. Chem. Soc., 2010, 132(48): 17102 doi: 10.1021/ja108860y
|
129 |
Y. Z. Tan, J. Li, F. Zhu, X. Han, W. S. Jiang, R. B. Huang, Z. Zheng, Z. Z. Qian, R. T. Chen, Z. J. Liao, S. Y. Xie, X. Lu, and L. S. Zheng, Chlorofullerenes featuring triple sequentially fused pentagons, Nat. Chem., 2010, 2(4): 269 doi: 10.1038/nchem.549
|
130 |
Y. Z. Tan, R. T. Chen, Z. J. Liao, J. Li, F. Zhu, X. Lu, S. Y. Xie, J. Li, R. B. Huang, and L. S. Zheng, Carbon arc production of heptagon-containing fullerene[68], Nat. Commun., 2011, 2: 420 doi: 10.1038/ncomms1431
|
131 |
X. W. Liu, D. S.Wang, and Y. D. Li, Synthesis and catalytic properties of bimetallic nanomaterials with various architectures, Nano Today, 2012, 7(5): 448 doi: 10.1016/j.nantod.2012.08.003
|
132 |
R. Si, Y. W. Zhang, L. P. You, and C. H. Yan, Rare-earth oxide nanopolyhedra, nanoplates, and nanodisks, Angew. Chem. Int. Ed. Engl., 2005, 44(21): 3256 doi: 10.1002/anie.200462573
|
133 |
W. D. Shi, J. B. Yu, H. S. Wang, and H. J. Zhang, Hydrothermal synthesis of single-crystalline antimony telluride nanobelts, J. Am. Chem. Soc., 2006, 128(51): 16490 doi: 10.1021/ja066944r
|
134 |
X. Wang, J. Zhuang, Q. Peng, and Y. D. Li, A general strategy for nanocrystal synthesis, Nature, 2005, 437(7055): 121 doi: 10.1038/nature03968
|
135 |
X. Wang, Q. Peng, and Y. D. Li, Interface-mediated growth of monodispersed nanostructures, Acc. Chem. Res., 2007, 40(8): 635 doi: 10.1021/ar600007y
|
136 |
D. S. Wang and Y. D. Li, One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process, J. Am. Chem. Soc., 2010, 132(18): 6280 doi: 10.1021/ja100845v
|
137 |
D. S. Wang, Q. Peng, and Y. D. Li, Nanocrystalline intermetallics and alloys, Nano Res., 2010, 3(8): 574 doi: 10.1007/s12274-010-0018-4
|
138 |
D. S. Wang and Y. D. Li, Bimetallic nanocrystals: Liquidphase synthesis and catalytic applications, Adv. Mater., 2011, 23(9): 1044 doi: 10.1002/adma.201003695
|
139 |
D. S. Wang, P. Zhao, and Y. D. Li, General preparation for Pt-based alloy nanoporous nanoparticles as potential nanocatalysts, Scientific Reports, 2011, 1: 37 doi: 10.1038/srep00037
|
140 |
K. B. Zhou, X. Wang, X. M. Sun, Q. Peng, and Y. D. Li, Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes, J. Catal., 2005, 229(1): 206 doi: 10.1016/j.jcat.2004.11.004
|
141 |
X. W. Liu, K. B. Zhou, L. Wang, B. Y. Wang, and Y. D. Li, Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods, J. Am. Chem. Soc., 2009, 131(9): 3140 doi: 10.1021/ja808433d
|
142 |
C. Chen, C. Y. Nan, D. S. Wang, Q. Su, H. H. Duan, X. W. Liu, L. S. Zhang, D. R. Chu, W. G. Song, Q. Peng, and Y. D. Li, Mesoporous multicomponent nanocomposite colloidal spheres: ideal high-temperature stable model catalysts, Angew. Chem. Int. Ed. Engl., 2011, 50(16): 3725 doi: 10.1002/anie.201007229
|
143 |
Y. E. Wu, S. F. Cai, D. S. Wang, W. He, and Y. D. Li, Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and their structure-activity study in model hydrogenation reactions, J. Am. Chem. Soc., 2012, 134(21): 8975 doi: 10.1021/ja302606d
|
144 |
Y. Xia, T. D. Nguyen, M. Yang, B. Lee, A. Santos, P. Podsiadlo, Z. Tang, S. C. Glotzer, and N. A. Kotov, Selfassembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles, Nat. Nanotechnol., 2011, 6(9): 580 doi: 10.1038/nnano.2011.121
|
145 |
J. W. Chen and Y. Cao, Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices, Acc. Chem. Res., 2009, 42 (11): 1709 doi: 10.1021/ar900061z
|
146 |
L. J. Huo and J. H. Hou, Benzo[1,2-b:4,5-b′]dithiophenebased conjugated polymers: band gap and energy level control and their application in polymer solar cells, Polym Chem., 2011, 2 (11): 2453 doi: 10.1039/c1py00197c
|
147 |
Y. F. Li, Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption, Acc. Chem. Res., 2012, 45(5): 723 doi: 10.1021/ar2002446
|
148 |
H. Y. Chen, J. H. Hou, S. Q. Zhang, Y. Y. Liang, G. W. Yang, Y. Yang, L. P. Yu, Y. Wu, and G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency, Nat. Photon., 2009, 3 (11): 649 doi: 10.1038/nphoton.2009.192
|
149 |
Z. C. He, C. M. Zhong, C. M. Su, M. Xu, H. B. Wu, and Y. Cao, Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure, Nat. Photon., 2012, 6(9): 591 doi: 10.1038/nphoton.2012.190
|
150 |
L. J. Huo, S. Q. Zhang, X. Guo, F. Xu, Y. F. Li, and J. H. Hou, Replacing alkoxy groups with alkylthienyl groups: a feasible approach to improve the properties of photovoltaic polymers, Angew. Chem. Int. Ed. Engl., 2011, 50(41): 9697 doi: 10.1002/anie.201103313
|
151 |
X. Guo, C. Cui, M. Zhang, L. Huo, Y. Huang, J. Hou, and Y. Li, High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene-C70 bisadduct with solvent additive, Energy Environ. Sci., 2012, 5(7): 7943 doi: 10.1039/c2ee21481d
|
152 |
Y. J. He, H. Y. Chen, J. H. Hou, and Y. F. Li, Indene-C(60) bisadduct: a new acceptor for high-performance polymer solar cells, J. Am. Chem. Soc., 2010, 132(4): 1377 doi: 10.1021/ja908602j
|
153 |
Z. C. He, C. Zhang, X. F. Xu, L. J. Zhang, L. Huang, J. W. Chen, H. B. Wu, and Y. Cao, Largely enhanced efficiency with a PFN/Al bilayer cathode in high efficiency bulk heterojunction photovoltaic cells with a low bandgap polycarbazole donor, Adv. Mater., 2011, 23(27): 3086 doi: 10.1002/adma.201101319
|
154 |
Y. Bai, J. Zhang, D. Zhou, Y. Wang, M. Zhang, and P. Wang, Engineering organic sensitizers for iodine-free dyesensitized solar cells: red-shifted current response concomitant with attenuated charge recombination, J. Am. Chem. Soc., 2011, 133(30): 11442 doi: 10.1021/ja203708k
|
155 |
Z. Dong, X. Lai, J. E. Halpert, N. Yang, L. Yi, J. Zhai, D. Wang, Z. Tang, and L. Jiang, Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency, Adv. Mater., 2012, 24(8): 1046 doi: 10.1002/adma.201104626
|
156 |
J. Zhang, J. Yu, M. Jaroniec, and J. R. Gong, Noble metalfree reduced graphene oxide-ZnxCd1-xS nanocomposite with enhanced solar photocatalytic H2-production performance, Nano Lett., 2012, 12 (9): 4584 doi: 10.1021/nl301831h
|
157 |
Q. Li, B. D. Guo, J. G. Yu, J. R. Ran, B. H. Zhang, H. J. Yan, and J. R. Gong, Highly efficient visible-lightdriven photocatalytic hydrogen production of CdS-clusterdecorated graphene nanosheets, J. Am. Chem. Soc., 2011, 133(28): 10878 doi: 10.1021/ja2025454
|
158 |
S. Xin, Y. G. Guo, and L. J. Wan, Nanocarbon networks for advanced rechargeable lithium batteries, Acc. Chem. Res., 2012, 45(10): 1759 doi: 10.1021/ar300094m
|
159 |
Z. L. Gong, Y. X. Li, G. N. He, J. Li, and Y. Yang, Nanostructured Li[sub 2]FeSiO[sub 4] electrode material synthesized through hydrothermal-assisted sol-gel process, Electrochem. Solid-State Lett., 2008, 11(5): A60 doi: 10.1149/1.2844287
|
160 |
F. F. Cao, Y. G. Guo, S. F. Zheng, X. L. Wu, L. Y. Jiang, R. R. Bi, L. J. Wan, and J. Maier, Symbiotic coaxial nanocables: Facile synthesis and an efficient and elegant morphological solution to the lithium storage problem, Chem. Mater., 2010, 22(5): 1908 doi: 10.1021/cm9036742
|
161 |
L. Huo, J. Hou, S. Zhang, H. Chen, and Y. Yang, A Polybenzo [1,2-b:4,5-b′] dithiophene derivative with deep HOMO level and its application in high-performance polymer solar cells, Angew. Chem. Int. Ed., 2010, 49(8): 1500 doi: 10.1002/anie.200906934
|
162 |
D. J. Xue, S. Xin, Y. Yan, K. C. Jiang, Y. X. Yin, Y. G. Guo, and L. J. Wan, Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks, J. Am. Chem. Soc., 2012, 134(5): 2512 doi: 10.1021/ja211266m
|
163 |
Q. Zhang, Q. F. Dong, M. S. Zheng, and Z. W. Tian, Electrochemical energy storage device for electric vehicles, J. Electrochem. Soc., 2011, 158(5): A443 doi: 10.1149/1.3556586
|
164 |
L. Gu, C. Zhu, H. Li, Y. Yu, C. Li, S. Tsukimoto, J. Maier, and Y. Ikuhara, Direct observation of lithium staging in partially delithiated LiFePO4 at atomic resolution, J. Am. Chem. Soc., 2011, 133(13): 4661 doi: 10.1021/ja109412x
|
165 |
D. W. Wang, F. Li, M. Liu, G. Q. Lu, and H. M. Cheng, 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage, Angew. Chem. Int. Ed. Engl., 2008, 47(2): 373 doi: 10.1002/anie.200702721
|
166 |
X. F. Xie and L. Gao, Characterization of a manganese dioxide/ carbon nanotube composite fabricated using an in situ coating method, Carbon, 2007, 45(12): 2365 doi: 10.1016/j.carbon.2007.07.014
|
167 |
J. J. Xu, K. Wang, S. Z. Zu, B. H. Han, and Z. X. Wei, Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Graphene Oxide Sheets with Synergistic Effect for Energy Storage, ACS Nano, 2010, 4(9): 5019 doi: 10.1021/nn1006539
|
168 |
C. Chen, W. Ma, and J. Zhao, Semiconductor-mediated photodegradation of pollutants under visible-light irradiation, Chem. Soc. Rev., 2010, 39(11): 4206 doi: 10.1039/b921692h
|
169 |
M. Zhang, Q. Wang, C. Chen, L. Zang, W. Ma, and J. Zhao, Oxygen atom transfer in the photocatalytic oxidation of alcohols by TiO2: Oxygen isotope studies, Angew. Chem. Int. Ed., 2009, 48(33): 6081 doi: 10.1002/anie.200900322
|
170 |
C. Y. Cao, J. Qu, W. S. Yan, J. F. Zhu, Z. Y. Wu, and W. G. Song, Low-cost synthesis of flowerlike-Fe2O3 nanostructures for heavy metal ion removal: Adsorption property and mechanism, Langmuir, 2012, 28(9): 4573 doi: 10.1021/la300097y
|
171 |
C. Y. Cao, P. Li, J. Qu, Z. F. Dou, W. S. Yan, J. F. Zhu, Z. Y. Wu, and W. G. Song, High adsorption capacity and the key role of carbonate groups for heavy metal ion removal by basic aluminum carbonate porous nanospheres, J. Mater. Chem., 2012, 22(37): 19898 doi: 10.1039/c2jm34138g
|
172 |
C. Y. Cao, J. Qu, F. Wei, H. Liu, and W. G. Song, Superb adsorption capacity and mechanism of flowerlike magnesium oxide nanostructures for lead and cadmium ions, ACS Appl. Mater. Interfaces, 2012, 4(8): 4283 doi: 10.1021/am300972z
|
173 |
W. Liu, F. Huang, Y. Liao, J. Zhang, G. Ren, Z. Zhuang, J. Zhen, Z. Lin, and C. Wang, Treatment of CrVI-containing Mg(OH)2 nanowaste, Angew. Chem. Int. Ed. Engl., 2008, 47(30): 5619 doi: 10.1002/anie.200800172
|
174 |
W. Liu, F. Huang, Y. Wang, T. Zou, J. Zheng, and Z. Lin, Recycling MgOH2 nanoadsorbent during treating the low concentration of CrVI, Environ. Sci. Technol., 2011, 45(5): 1955 doi: 10.1021/es1035199
|
175 |
Q. Cao, F. Huang, Z. Zhuang, and Z. Lin, A study of the potential application of nano-Mg(OH)2 in adsorbing low concentrations of uranyl tricarbonate from water, Nanoscale, 2012, 4(7): 2423 doi: 10.1039/c2nr11993e
|
176 |
S. Guo and E. Wang, Noble metal nanomaterials: Controllable synthesis and application in fuel cells and analytical sensors, Nano Today, 2011, 6(3): 240 doi: 10.1016/j.nantod.2011.04.007
|
177 |
S. Guo and S. Dong, Biomolecule-nanoparticle hybrids for electrochemical biosensors, Trends Analyt. Chem., 2009, 28(1): 96 doi: 10.1016/j.trac.2008.10.014
|
178 |
D. Wen, S. Guo, J. Zhai, L. Deng, W. Ren, and S. Dong, Pt Nanoparticles Supported on TiO2 Colloidal Spheres with Nanoporous Surface: Preparation and Use as an Enhancing Material for Biosensing Applications, J. Phys. Chem. C, 2009, 113(30): 13023 doi: 10.1021/jp9003714
|
179 |
S. Guo and S. Dong, Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications, Chem. Soc. Rev., 2011, 40(5): 2644 doi: 10.1039/c0cs00079e
|
180 |
M. Zhou, Y. Zhai, and S. Dong, Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide, Anal. Chem., 2009, 81(14): 5603 doi: 10.1021/ac900136z
|
181 |
X. Wu, Y. Hu, J. Jin, N. Zhou, P. Wu, H. Zhang, and C. Cai, Electrochemical approach for detection of extracellular oxygen released from erythrocytes based on graphene film integrated with laccase and 2,2-azino-bis(3ethylbenzothiazoline-6-sulfonic acid), Anal. Chem., 2010, 82(9): 3588 doi: 10.1021/ac100621r
|
182 |
K. Qian, J. Wan, L. Qiao, X. Huang, J. Tang, Y. Wang, J. Kong, P. Yang, C. Yu, and B. Liu, Macroporous materials as novel catalysts for efficient and controllable proteolysis, Anal. Chem., 2009, 81(14): 5749 doi: 10.1021/ac900550q
|
183 |
Y. Zhang, X. Wang, W. Shan, B. Wu, H. Fan, X. Yu, Y. Tang, and P. Yang, Enrichment of low-abundance peptides and proteins on zeolite nanocrystals for direct MALDI-TOF MS analysis, Angew. Chem. Int. Ed. Engl., 2005, 44(4): 615 doi: 10.1002/anie.200460741
|
184 |
H. M. Xiong, X. Y. Guan, L. H. Jin, W. W. Shen, H. J. Lu, and Y. Y. Xia, Surfactant-free synthesis of SnO2@PMMA and TiO2@PMMA core-shell nanobeads designed for peptide/protein enrichment and MALDI-TOF MS analysis, Angew. Chem. Int. Ed. Engl., 2008, 47(22): 4204 doi: 10.1002/anie.200705942
|
185 |
R. Tian, H. Zhang, M. Ye, X. Jiang, L. Hu, X. Li, X. Bao, and H. Zou, Selective extraction of peptides from human plasma by highly ordered mesoporous silica particles for peptidome analysis, Angew. Chem. Int. Ed. Engl., 2007, 46(6): 962 doi: 10.1002/anie.200603917
|
186 |
S. Song, Y. Qin, Y. He, Q. Huang, C. Fan, and H. Y. Chen, Functional nanoprobes for ultrasensitive detection of biomolecules, Chem. Soc. Rev., 2010, 39(11): 4234 doi: 10.1039/c000682n
|
187 |
Y. M. Long, Q. L. Zhao, Z. L. Zhang, Z. Q. Tian, and D. W. Pang, Electrochemical methodsimportant means for fabrication of fluorescent nanoparticles, Analyst, 2012, 137(4): 805 doi: 10.1039/c2an15740c
|
188 |
D. Liu, W. Chen, K. Sun, K. Deng, W. Zhang, Z. Wang, and X. Jiang, Resettable, multi-readout logic gates based on controllably reversible aggregation of gold nanoparticles, Angew. Chem. Int. Ed. Engl., 2011, 50(18): 4103 doi: 10.1002/anie.201008198
|
189 |
W. Qu, Y. Liu, D. Liu, Z. Wang, and X. Jiang, Coppermediated amplification allows readout of immunoassays by the naked eye, Angew. Chem. Int. Ed. Engl., 2011, 50(15): 3442 doi: 10.1002/anie.201006025
|
190 |
M. T. Zhu, G. J. Nie, H. Meng, T. Xia, A. Nel, and Y. L. Zhao, Physicochemical Properties Determine Nanomaterial Cellular Uptake, Transport, and Fate, Acc. Chem. Res., 2013, 46(3): 622 doi: 10.1021/ar300031y
|
191 |
B. Wang, X. He, Z. Y. Zhang, Y. L. Zhao, and W. Y. Feng, Metabolism of nanomaterials in vivo: Blood circulation and organ clearance, Acc. Chem. Res., 2013, 46(3): 761 doi: 10.1021/ar2003336
|
192 |
Y. Liu, Y. L. Zhao, B. Y. Sun, and C. Y. Chen, Understanding the toxicity of carbon nanotubes, Acc. Chem. Res., 2013, 46(3): 702 doi: 10.1021/ar300028m
|
193 |
Y. L. Zhao, G. M. Xing, and Z. F. Chai, Nanotoxicology: Are carbon nanotubes safe? Nat. Nanotech., 2008, 3: 191 doi: 10.1038/nnano.2008.77
|
194 |
H. Yang, C. J. Sun, Z. L. Fan, X. Tian, L. Yan, L. B. Du, Y. Liu, C. Y. Chen, X. J. Liang, G. J. Anderson, J. A. Keelan, Y. L. Zhao, and G. J. Nie, Effects of gestational age and surface modification on materno-fetal transfer of nanoparticles in murine pregnancy, Scientific Reports, 2012, 2(847): 1
|
195 |
C. C. Ge, J. F. Du, L. N. Zhao, L. Wang, Y. Liu, D. Li, Y. Yang, R. H. Zhou, Y. L. Zhao, Z. F. Chai, and C. Y. Chen, Binding of blood proteins to carbon nanotubes reduces cytotoxicity, Proc. Natl. Acad. Sci. USA, 2011, 108: 16968 doi: 10.1073/pnas.1105270108
|
196 |
S. G. Kang, G. Q. Zhou, P. Yang, Y. Liu, B. Y. Sun, T. Huynh, H. Meng, L. N. Zhao, G. M. Xing, C. Y. Chen, Y. L. Zhao, and R. H. Zhou, Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C82(OH)22 and its implication for de novo design of nanomedicine, Proc. Natl. Acad. Sci. USA, 2012, 109(38): 15431 doi: 10.1073/pnas.1204600109
|
197 |
Y. Y. Li, Y. L. Zhou, H. Y. Wang, S. Perrett, Y. L. Zhao, Z. Y. Tang, and G. J. Nie, Chirality of glutathione surface coating affects the cytotoxicity of quantum dots, Angew. Chem. Int. Ed., 2011, 50: 5860 doi: 10.1002/anie.201008206
|
198 |
C. Sun, H. Yang, Y. Yuan, X. Tian, L. Wang, Y. Guo, L. Xu, J. Lei, N. Gao, G. J. Anderson, X. J. Liang, C. Chen, Y. Zhao, and G. Nie, Controlling assembly of paired gold clusters within apoferritin nanoreactor for in vivo kidney targeting and biomedical imaging, J. Am. Chem. Soc., 2011, 133(22): 8617 doi: 10.1021/ja200746p
|
199 |
C. C. Ge, F. Lao, W. Li, Y. Li, C. C. Chen, Y. Qiu, X. Mao, B. Li, Z. F. Chai, and Y. L. Zhao, Quantitative analysis of metal impurities in carbon nanotubes: Efficacy of different pretreatment protocols for ICPMS spectroscopy, Anal. Chem., 2008, 80(24): 9426 doi: 10.1021/ac801469b
|
200 |
Y. Qu, W. Li, Y. Zhou, X. Liu, L. Zhang, L. Wang, Y. F. Li, A. Iida, Z. Tang, Y. Zhao, Z. Chai, and C. Chen, Full assessment of fate and physiological behavior of quantum dots utilizing Caenorhabditis elegans as a model organism, Nano Lett., 2011, 11(8): 3174 doi: 10.1021/nl201391e
|
201 |
X. He, Z. Y. Zhang, J. S. Liu, Y. H. Ma, P. Zhang, Y. Y. Li, Z. Q. Wu, Y. L. Zhao, and Z. F. Chai, Quantifying the biodistribution of nanoparticles, Nat. Nanotechnol., 2011, 6(12): 755 doi: 10.1038/nnano.2011.219
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|