Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2014, Vol. 9 Issue (3) : 257-288    https://doi.org/10.1007/s11467-013-0324-x
Special Issue: Nanoscience and Emerging Nanotechnologies (Edited by C. M. Lieber)
Progress of nanoscience in China
Yu-Liang Zhao1,4,Yan-Lin Song2,Wei-Guo Song2,Wei Liang5,Xing-Yu Jiang1,Zhi-Yong Tang1,Hong-Xing Xu3,Zhi-Xiang Wei1,Yun-Qi Liu2,Ming-Hua Liu2,Lei Jiang2,1,6,Xin-He Bao7,Li-Jun Wan2,Chun-Li Bai8,*()
1. National Center for Nanoscience and Nanotechnology, Beijing 100190, China
2. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
3. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
4. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
5. Institute of Biophysics, Chinese Academy of Sciences, Beijing 100190, China
6. School of Chemistry and Environment, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
7. Shenyang Branch, Chinese Academy of Sciences, Shenyang 110004, China
8. Chinese Academy of Sciences, Beijing 100864, China
 Download: PDF(1827 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Fast evolving nanosciences and nanotechnology in China has made it one of the front countries of nanotechnology development. In this review, we summarize some most recent progresses in nanoscience research and nanotechnology development in China. The topics we selected in this article include nano-fabrication, nanocatalysis, bioinspired nanotechnology, green printing nanotechnology, nanoplasmonics, nanomedicine, nanomaterials and their applications, energy and environmental nanotechnology, nano EHS (nanosafety), etc. Most of them have great potentials in applications or application-related key issues in future.

Keywords nanoscience      nanotechnology      nanomaterials      nanomedicine      plasmonics      fabrication      catalysis      nano EHS (nanosafety)     
Corresponding Author(s): Chun-Li Bai   
Issue Date: 26 June 2014
 Cite this article:   
Yu-Liang Zhao,Yan-Lin Song,Wei-Guo Song, et al. Progress of nanoscience in China[J]. Front. Phys. , 2014, 9(3): 257-288.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-013-0324-x
https://academic.hep.com.cn/fop/EN/Y2014/V9/I3/257
1 C. L. Bai, Global voices of science: Ascent of nanoscience in China, Science, 2005, 309(5731): 61
doi: 10.1126/science.1115172
2 T.Chen, Q.Chen, X.Zhang, D.Wang, and L. J.Wan, Chiral Kagome network from thiacalix[4]arene tetrasulfonate at the interface of aqueous solution/Au(111) surface: An in situ electrochemical scanning tunneling microscopy study, J. Am. Chem. Soc., 2010, 132(16): 5598
doi: 10.1021/ja101598p
3 S. S.Li, B. H.Northrop, Q. H. Yuan, L. J. Wan, and P. J. Stang, Surface confined metallosupramolecular architectures: Formation and scanning tunneling microscopy characterization, Acc. Chem. Res., 2009, 42(2): 249
doi: 10.1021/ar800117j
4 Q. Chen, T. Chen, G. B. Pan, H. J. Yan, W. G. Song, L. J. Wan, Z. T. Li, Z. H. Wang, B. Shang, L. F. Yuan, and J. L. Yang, Structural selection of graphene supramolecular assembly oriented by molecular conformation and alkyl chain, Proc. Natl. Acad. Sci. USA, 2008, 105(44): 16849
doi: 10.1073/pnas.0809427105
5 J. Liu, T. Chen, X. Deng, D. Wang, J. Pei, and L. J. Wan, Chiral hierarchical molecular nanostructures on twodimensional surface by controllable trinary self-assembly, J. Am. Chem. Soc., 2011, 133(51): 21010
doi: 10.1021/ja209469d
6 L. J.Wan, Fabricating and controlling molecular selforganization at solid surfaces: Studies by scanning tunneling microscopy, Acc. Chem. Res., 2006, 39(5): 334
doi: 10.1021/ar0501929
7 J. S.Hu, Y. G.Guo, H. P.Liang, L. J.Wan, and L. Jiang, Three-dimensional self-organization of supramolecular selfassembled porphyrin hollow hexagonal nanoprisms, J. Am. Chem. Soc., 2005, 127(48): 17090
doi: 10.1021/ja0553912
8 J. S. Hu, L. S. Zhong, W. G. Song, and L. J. Wan, Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal, Adv. Mater., 2008, 20(15): 2977
doi: 10.1002/adma.200800623
9 H. P.Liang, H. M. Zhang, J. S. Hu, Y. G. Guo, L. J. Wan, and C. L. Bai, Pt hollow nanospheres: Facile synthesis and enhanced electrocatalysts, Angew. Chem. Int. Ed. Engl., 2004, 43(12): 1540
doi: 10.1002/anie.200352956
10 M. Cao, J. S. Hu, H. P. Liang, and L. J. Wan, Selfassembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries, Angew. Chem. Int. Ed. Engl., 2005, 44(28): 4391
doi: 10.1002/anie.200500946
11 Y. G. Guo, J. S. Hu, and L. J. Wan, Nanostru<?Pub Caret?>ctured materials for electrochemical energy conversion and storage devices, Adv. Mater., 2008, 20(15): 2878
doi: 10.1002/adma.200800627
12 X. Sen, Y. G. Guo, and L. J. Wan, Nanocarbon networks for advanced rechargeable lithium batteries, Acc. Chem. Res., 2012, 45(10): 1759
doi: 10.1021/ar300094m
13 S. Xin, L. Gu, N. H. Zhao, Y. X. Yin, L. J. Zhou, Y. G. Guo, and L. J. Wan, Smaller sulfur molecules promise better lithium-sulfur batteries, J. Am. Chem. Soc., 2012, 134(45): 18510
doi: 10.1021/ja308170k
14 Y. Q.Wang, L. Gu, Y. G. Guo, H. Li, X. Q. He, S. Tsukimoto, Y. lkuhara, and L. J. Wan, Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery, J. Am. Chem. Soc., 2012, 134(18): 7874
doi: 10.1021/ja301266w
15 D. J. Xue, S. Xin, Y. Yan, K. C. Jiang, Y. X. Yin, Y. G. Guo, and L. J. Wan, Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks, J. Am. Chem. Soc., 2012, 134(5): 2512
doi: 10.1021/ja211266m
16 X. L. Pan and X. H. Bao, Reactions over catalysts confined in carbon nanotubes, Chem. Commun., 2008, 47(47): 6271
doi: 10.1039/b810994j
17 X. L. Pan and X. H. Bao, The effects of confinement inside carbon nanotubes on catalysis, Acc. Chem. Res., 2011, 44(8): 553
doi: 10.1021/ar100160t
18 D. Deng, L. Yu, X. Chen, G. Wang, L. Jin, X. Pan, J. Deng, G. Sun, and X. Bao, Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction, Angew. Chem. Int. Ed., 2013, 52(1): 371
doi: 10.1002/anie.201204958
19 W. Chen, Z. L. Fan, X. L. Pan, and X. H. Bao, Effect of confinement in carbon nanotubes on the activity of FischerTropsch iron catalyst, J. Am. Chem. Soc., 2008, 130(29): 9414
doi: 10.1021/ja8008192
20 W. Chen, X. L. Pan, and X. H. Bao, Tuning of redox properties of iron and iron oxides via encapsulation within carbon nanotubes, J. Am. Chem. Soc., 2007, 129(23): 7421
doi: 10.1021/ja0713072
21 W. Chen, X. L. Pan, M. G. Willinger, D. S. Su, and X. H. Bao, Facile autoreduction of iron oxide/carbon nanotube encapsulates, J. Am. Chem. Soc., 2006, 128(10): 3136
doi: 10.1021/ja056721l
22 X. L. Pan, Z. L. Fan, W. Chen, Y. J. Ding, H. Y. Luo, and X. H. Bao, Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles, Nat. Mater., 2007, 6(7): 507
doi: 10.1038/nmat1916
23 Q. Fu, W. X. Li, Yunxi Yao, H. Y. Liu, H. Y. Su, D. Ma, X. K. Gu, L. M. Chen, Z. Wang, H. Zhang, B. Wang, and X. H. Bao, Interface-confined ferrous centers for catalytic oxidation, Science, 2010, 328(5982): 1141
doi: 10.1126/science.1188267
24 R. T. Mu, Q. Fu, L. Jin, L. Yu, G. Z. Fang, D. L. Tan, and X. H. Bao, Visualizing chemical reactions confined under graphene, Angew. Chem. Int. Ed. Engl., 2012, 51(20): 4856
doi: 10.1002/anie.201200413
25 Q. Fu, F. Yang, and X. H. Bao, Interface-confined oxide nanostructures for catalytic oxidation reactions, Acc. Chem. Res., 2013 (in press)
doi: 10.1021/ar300249b
26 L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, and D. Zhu, Super-hydrophobic surfaces: from natural to artificial, Adv. Mater., 2002, 14(24): 1857
doi: 10.1002/adma.200290020
27 T. Sun, L. Feng, X. F. Gao, and L. Jiang, Bioinspired surfaces with special wettability, Acc. Chem. Res., 2005, 38(8): 644
doi: 10.1021/ar040224c
28 F. Xia and L. Jiang, Bio-inspired, smart, multiscale interfacial materials, Adv. Mater., 2008, 20(15): 2842
doi: 10.1002/adma.200800836
29 M. J. Liu, S. T. Wang, Z. X. Wei, Y. L. Song, and L. Jiang, Bioinspired design of a superoleophobic and low adhesive water/solid interface, Adv. Mater., 2009, 21(6): 665
doi: 10.1002/adma.200801782
30 Y. M. Zheng, H. Bai, Z. B. Huang, X. L. Tian, F. Q. Nie, Y. Zhao, J. Zhai, and L. Jiang, Directional water collection on wetted spider silk, Nature, 2010, 463(7281): 640
doi: 10.1038/nature08729
31 H. Bai, J. Ju, R. Z. Sun, Y. Chen, Y. M. Zheng, and L. Jiang, Controlled fabrication and water collection ability of bioinspired artificial spider silks, Adv. Mater., 2011, 23(32): 3708
doi: 10.1002/adma.201101740
32 X. Hou, W. Guo, and L. Jiang, Biomimetic smart nanopores and nanochannels, Chem. Soc. Rev., 2011, 40(5): 2385
doi: 10.1039/c0cs00053a
33 W. Guo, L. X. Cao, J. C. Xia, F. Q. Nie, W. Ma, J. M. Xue, Y. L. Song, D. B. Zhu, Y. G. Wang, and L. Jiang, Energy harvesting with single-ion-selective nanopores: A concentration-gradient-driven nanofluidic power source, Adv. Funct. Mater., 2010, 20(8): 1339
doi: 10.1002/adfm.200902312
34 S. Wang, H. Wang, J. Jiao, K. J. Chen, G. E. Owens, K. I. Kamei, J. Sun, D. J. Sherman, C. P. Behrenbruch, H. Wu, and H. R. Tseng, Three-dimensional nanostructured substrates toward efficient capture of circulating tumor cells, Angew. Chem. Int. Ed. Engl., 2009, 48(47): 8970
doi: 10.1002/anie.200901668
35 S. Wang, K. Liu, J. Liu, Z. T. F.Yu, X. Xu, L. Zhao, T. Lee, E. K. Lee, J. Reiss, Y. K. Lee, L. W. K. Chung, J. Huang, M. Rettig, D. Seligson, K. N. Duraiswamy, C. K. F. Shen, and H. R. Tseng, Highly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic micromixers, Angew. Chem. Int. Ed Engl., 2011, 50(13): 3084
doi: 10.1002/anie.201005853
36 L. Chen, X. L. Liu, B. Su, J. Li, L. Jiang, D. Han, and S. T. Wang, Aptamer-mediated efficient capture and release of T lymphocytes on nanostructured surfaces, Adv. Mater., 2011, 23(38): 4376
doi: 10.1002/adma.201102435
37 H. B. Yao, Z. H. Tan, H. Y. Fang, and S. H. Yu, Artificial nacre-like bionanocomposite films from the self-assembly of chitosan-montmorillonite hybrid building blocks, Angew. Chem. Int. Ed. Engl., 2010, 49(52): 10127
doi: 10.1002/anie.201004748
38 H. B. Yao, H. Y. Fang, Z. H. Tan, L. H. Wu, and S. H. Yu, Biologically inspired, strong, transparent, and functional layered organic-inorganic hybrid films, Angew. Chem. Int. Ed. Engl., 2010, 49(12): 2140
doi: 10.1002/anie.200906920
39 J. F. Wang, L. Lin, Q. F. Cheng, and L. Jiang, A strong bio-inspired layered PNIPAM-clay nanocomposite hydrogel, Angew. Chem. Int. Ed. Engl., 2012, 51(19): 4676
doi: 10.1002/anie.201200267
40 Y. Demao, Practical Guide of Photosensitive Material and Print Plate, Beijing: Graphic Communications Press, 2007: 53
41 H. H. Zhou and Y. L. Song, Green plate making technology based on nano-materials, Adv. Mater. Res., 2011, 174: 447
doi: 10.4028/www.scientific.net/AMR.174.447
42 C. Neinhuis and W. Barthlott, Characterization and distribution of water-repellent, self-cleaning plant surfaces, Ann. Bot., 1997, 79(6): 667
doi: 10.1006/anbo.1997.0400
43 X. F. Gao and L. Jiang, Biophysics: Water-repellent legs of water striders, Nature, 2004, 432(7013): 36
doi: 10.1038/432036a
44 X. Yao, Y. L. Song, and L. Jiang, Applications of bioinspired special wettable surfaces, Adv. Mater., 2011, 23(6): 719
doi: 10.1002/adma.201002689
45 R. N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem., 1936, 28(8): 988
doi: 10.1021/ie50320a024
46 B. D. Cassie and S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc., 1944, 40: 546
doi: 10.1039/tf9444000546
47 J. X. Wang, Y. Zhang, S. Wang, Y. L. Song, and L. Jiang, Bioinspired colloidal photonic crystals with controllable wettability, Acc. Chem. Res., 2011, 44(6): 405
doi: 10.1021/ar1001236
48 Y. Huang, M. Liu, J. X. Wang, J. M. Zhou, L. B. Wang, Y. L. Song, and L. Jiang, Controllable underwater oil-adhesioninterface films assembled from nonspherical particles, Adv. Funct. Mater., 2011, 21(23): 4436
doi: 10.1002/adfm.201101598
49 W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature, 2003, 424(6950): 824
doi: 10.1038/nature01937
50 Z. Y. Fang, L. R. Fan, C. F. Lin, D. Zhang, A. J. Meixner, and X. Zhu, Plasmonic coupling of bow tie antennas with Ag nanowire, Nano Lett., 2011, 11(4): 1676
doi: 10.1021/nl200179y
51 X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits, Nano Lett., 2009, 9(12): 4515
doi: 10.1021/nl902860d
52 Y. R. Fang, Z. P. Li, Y. Z. Huang, S. P. Zhang, P. Nordlander, N. J. Halas, and H. X. Xu, Branched silver nanowires as controllable plasmon routers, Nano Lett., 2010, 10(5): 1950
doi: 10.1021/nl101168u
53 S. P. Zhang, H. Wei, K. Bao, U. H?kanson, N. J. Halas, P. Nordlander, and H. X. Xu, Chiral surface plasmon polaritons on metallic nanowires, Phys. Rev. Lett., 2011, 107(9): 096801
doi: 10.1103/PhysRevLett.107.096801
54 H. Wei, Z. P. Li, X. R. Tian, Z. X. Wang, F. Z. Cong, N. Liu, S. P. Zhang, P. Nordlander, N. J. Halas, and H. X. Xu, Quantum dot-based local field imaging reveals plasmonbased interferometric logic in silver nanowire networks, Nano Lett., 2011, 11(2): 471
doi: 10.1021/nl103228b
55 H. Wei, Z. X. Wang, X. R. Tian, M. K?ll, and H. X. Xu, Cascaded logic gates in nanophotonic plasmon networks, Nat. Commun., 2011, 2: 387
doi: 10.1038/ncomms1388
56 Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array, Phys. Rev. Lett., 2008, 101(8): 087401
doi: 10.1103/PhysRevLett.101.087401
57 X. B. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, All-angle broadband negative refraction of metal waveguide arrays in the visible range: Theoretical analysis and numerical demonstration, Phys. Rev. Lett., 2006, 97(7): 073901
doi: 10.1103/PhysRevLett.97.073901
58 H. S. Chen, B. I. Wu, B. Zhang, and J. A. Kong, Electromagnetic wave interactions with a metamaterial cloak, Phys. Rev. Lett., 2007, 99(6): 063903
doi: 10.1103/PhysRevLett.99.063903
59 X. R. Huang, R. W. Peng, and R. H. Fan, Making metals transparent for white light by spoof surface plasmons, Phys. Rev. Lett., 2010, 105(24): 243901
doi: 10.1103/PhysRevLett.105.243901
60 R. H. Fan, R. W. Peng, X. R. Huang, J. Li, Y. Liu, Q. Hu, M. Wang, and X. Zhang, Transparent metals for ultrabroadband electromagnetic waves, Adv. Mater., 2012, 24(15): 1980
doi: 10.1002/adma.201104483
61 S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves, Nat. Mater., 2012, 11(5): 426
doi: 10.1038/nmat3292
62 Y. H. Chen, L. Huang, L. Gan, and Z. Y. Li, Wavefront shaping of infrared light through a subwavelength hole, Light: Science & Applications, 2012, 1(8): e26
doi: 10.1038/lsa.2012.26
63 L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, Plasmonic Airy beam generated by in-plane diffraction, Phys. Rev. Lett., 2011, 107(12): 126804
doi: 10.1103/PhysRevLett.107.126804
64 H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering, Phys. Rev. Lett., 1999, 83(21): 4357
doi: 10.1103/PhysRevLett.83.4357
65 Z. Q. Tian, B. Ren, and D. Y. Wu, Surface-enhanced raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures, J. Phys. Chem. B, 2002, 106(37): 9463
doi: 10.1021/jp0257449
66 J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, Shell-isolated nanoparticle-enhanced Raman spectroscopy, Nature, 2010, 464(7287): 392
doi: 10.1038/nature08907
67 H. Wei, F. Hao, Y. Huang, W. Wang, P. Nordlander, and H. Xu, Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems, Nano Lett., 2008, 8(8): 2497
doi: 10.1021/nl8015297
68 H. Wei, U. H?kanson, Z. L. Yang, F. H??k, and H. X. Xu, Individual nanometer hole-particle pairs for surface-enhanced Raman scattering, Small, 2008, 4(9): 1296
doi: 10.1002/smll.200701135
69 H. Y. Liang, Z. P. Li, W. Z. Wang, Y. S. Wu, and H. X. Xu, Highly surface-roughened flower-like silver nanoparticles for extremely sensitive substrates of surface-enhanced Raman scattering, Adv. Mater., 2009, 21(45): 4614
doi: 10.1002/adma.200901139
70 Y. R. Fang, H. Wei, F. Hao, P. Nordlander, and H. X. Xu, Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons, Nano Lett., 2009, 9(5): 2049
doi: 10.1021/nl900321e
71 M. T. Sun, Z. Zhang, H. Zheng, and H. X. Xu, In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy, Scientific Reports, 2012, 2: 647
doi: 10.1038/srep00647
72 Z. Liu, S. Y. Ding, Z. B. Chen, X. Wang, J. H. Tian, J. R. Anema, X. S. Zhou, D. Y. Wu, B. W. Mao, X. Xu, B. Ren, and Z. Q. Tian, Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy, Nat. Commun., 2011, 2: 305
doi: 10.1038/ncomms1310
73 C. Y. Chen, G. M. Xing, J. X. Wang, Y. L. Zhao, B. Li, J. Tang, G. Jia, T. C. Wang, J. Sun, L. Xing, H. Yuan, Y. X. Gao, H. Meng, Z. Chen, F. Zhao, Z. F. Chai, and X. H. Fang, Multihydroxylated [Gd@C82(OH)22]n nanoparticles: Antineoplastic activity of high efficiency and low toxicity, Nano Lett., 2005, 5(10): 2050
doi: 10.1021/nl051624b
74 X. J. Liang, H. Meng, Y. Wang, H. Y. He, J. Meng, J. Lu, P. C. Wang, Y. Zhao, X. Gao, B. Sun, C. Y. Chen, G. Xing, D. Shen, M. M. Gottesman, Y. Wu, J. J. Yin, and L. Jia, Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis, Proc. Natl. Acad. Sci. USA, 2010, 107(16): 7449
doi: 10.1073/pnas.0909707107
75 S. G. Kang, G. Q. Zhou, P. Yang, Y. Liu, B. Y. Sun, T. Huynh, H. Meng, L. N. Zhao, G. M. Xing, C. Y. Chen, Y. L. Zhao, and R. H. Zhou, Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C82(OH)22 and its implication for de novo design of nanomedicine, Proc. Natl. Acad. Sci. USA, 2012, 109(38): 15431
doi: 10.1073/pnas.1204600109
76 X. W. Ma, Y. L. Zhao, and X. J. Liang, Theranostic nanoparticles engineered for clinic and pharmaceutics, Acc. Chem. Res., 2011, 44(10): 1114
doi: 10.1021/ar2000056
77 J. Tang, G. M. Xing, Y. L. Zhao, L. Jing, X. F. Gao, Y. Cheng, H. Yuan, F. Zhao, Z. Chen, H. Meng, H. Zhang, H. J. Qian, R. Su, and K. Ibrahim, Periodical variation of electronic properties in polyhydroxylated metallofullerene materials, Adv. Mater., 2006, 18(11): 1458
doi: 10.1002/adma.200600049
78 L. Yan, Y. B. Zheng, F. Zhao, S. J. Li, X. F. Gao, B. Q. Xu, P. S. Weiss, and Y. L. Zhao, Chemistry and physics of a single atomic layer: Strategies and challenges for functionalization of graphene and graphene-based materials, Chem. Soc. Rev., 2012, 41(1): 97
doi: 10.1039/c1cs15193b
79 H. Meng, G. M. Xing, B. Y. Sun, F. Zhao, H. Lei, W. Li, Y. Song, and Z. Chen, H. Yuan, X. X. Wang, J. Long, C. Y. Chen, X. J. Liang, N. Zhang, Z. F. Chai, and Y. L. Zhao, Potent Angiogenesis Inhibition by the Particulate Form of Fullerene Derivatives, ACS Nano, 2010, 4(5): 2773
doi: 10.1021/nn100448z
80 D. Yang, Y. L. Zhao, H. Guo, Y. N. Li, P. Tewary, G. M. Xing, W. Hou, J. J. Oppenheim, and N. Zhang, [Gd@C(82)(OH)(22)](n) nanoparticles induce dendritic cell maturation and activate Th1 immune responses, ACS Nano, 2010, 4(2): 1178
doi: 10.1021/nn901478z
81 H. Meng, G. M. Xing, E. Blanco, Y. Song, L. Zhao, B. Y. Sun, X. Li, P. C.Wang, A. Korotcov, W. Li, X. J. Liang, and C. Y. Yuan, H. Chen, F. Zhao, Z. Chen, T. Sun, Z. F. Chai, M. Ferrari, and Y. L. Zhao, Gadolinium metallofullerenol nanoparticles inhibit cancer metastasis through matrix metalloproteinase inhibition: imprisoning instead of poisoning cancer cells, Nanomedicine: Nanotechnology, Biology and Medicine, 2012, 8(2): 136
doi: 10.1016/j.nano.2011.08.019
82 M. J. Bissell and D. Radisky, Putting tumours in context, Nat. Rev. Cancer, 2001, 1(1): 46
doi: 10.1038/35094059
83 R. Duncan, Polymer conjugates as anticancer nanomedicines, Nat. Rev. Cancer, 2006, 6(9): 688
doi: 10.1038/nrc1958
84 N. Tang, G. Du, N. Wang, C. Liu, H. Hang, and W. Liang, Improving penetration in tumors with nanoassemblies of phospholipids and doxorubicin, J. Natl. Cancer Inst., 2007, 99(13): 1004
doi: 10.1093/jnci/djm027
85 X. Lu, F. Zhang, L. Qin, F. Xiao, and W. Liang, Polymeric micelles as a drug delivery system enhance cytotoxicity of vinorelbine through more intercellular accumulation, Drug Deliv., 2010, 17(4): 255
doi: 10.3109/10717541003702769
86 Y. Wang, R. Wang, X. Lu, W. Lu, C. Zhang, and W. Liang, Pegylated phospholipids-based self-assembly with water-soluble drugs, Pharm. Res., 2010, 27(2): 361
doi: 10.1007/s11095-009-0029-6
87 J. Wang, Y. Wang, and W. Liang, Delivery of drugs to cell membranes by encapsulation in PEG-PE micelles, J. Control. Release, 2012, 160(3): 637
doi: 10.1016/j.jconrel.2012.02.021
88 J. Wang, H. Qu, L. Jin, W. Zeng, L. Qin, F. Zhang, X. Wei, W. Lu, C. Zhang, and W. Liang, Pegylated phosphotidylethanolamine inhibiting P-glycoprotein expression and enhancing retention of doxorubicin in MCF7/ADR cells, J. Pharm. Sci., 2011, 100(6): 2267
doi: 10.1002/jps.22461
89 T. F. Liu, D. Fu, S. Gao, Y. Z. Zhang, H. L. Sun, G. Su, and Y. J. Liu, An azide-bridged homospin single-chain magnet: [Co(2,2′-bithiazoline)(N3)2]n, J. Am. Chem. Soc., 2003, 125(46): 13976
doi: 10.1021/ja0380751
90 H. B. Xu, B. W. Wang, F. Pan, Z. M. Wang, and S. Gao, Stringing oxo-centered trinuclear [MnIII3O] units into single-chain magnets with formate or azide linkers, Angew. Chem. Int. Ed. Engl., 2007, 46(39): 7388
doi: 10.1002/anie.200702648
91 M. Ding, B. Wang, Z. Wang, J. Zhang, O. Fuhr, D. Fenske, and S. Gao, Constructing single-chain magnets by supramolecular- stacking and spin canting: A case study on manganese (III) corroles, Chemistry, 2012, 18(3): 915
doi: 10.1002/chem.201101912
92 B. Q. Ma, S. Gao, G. Su, and G. X. Xu, Cyano-bridged 4f-3d coordination polymers with a unique twodimensional topological architecture and unusual magnetic behavior, Angew. Chem. Int. Ed. Engl., 2001, 40(2): 434
doi: 10.1002/1521-3773(20010119)40:2<434::AID-ANIE434>3.0.CO;2-Z
93 S. Gao, G. Su, T. Yi, and B. Q. Ma, Observation of an unusual field-dependent slow magnetic relaxation and two distinct transitions in a family of rare-earth_transition-metal complexes, Phys. Rev. B, 2001, 63(5): 054431
doi: 10.1103/PhysRevB.63.054431
94 S. D. Jiang, B. W. Wang, G. Su, Z. M. Wang, and S. Gao, A mononuclear dysprosium complex featuring singlemolecule-magnet behavior, Angew. Chem. Int. Ed. Engl., 2010, 49(41): 7448
doi: 10.1002/anie.201004027
95 S. D. Jiang, B. W. Wang, H. L. Sun, Z. M. Wang, and S. Gao, An organometallic single-ion magnet, J. Am. Chem. Soc., 2011, 133(13): 4730
doi: 10.1021/ja200198v
96 G. C. Xu, W. Zhang, X. M. Ma, Y. H. Chen, L. Zhang, H. L. Cai, Z. M. Wang, R. G. Xiong, and S. Gao, Coexistence of magnetic and electric orderings in the metal-formate frameworks of [NH4][M(HCOO)3], J. Am. Chem. Soc., 2011, 133(38): 14948
doi: 10.1021/ja206891q
97 F. Zhao, M. Yuan, W. Zhang, and S. Gao, Monodisperse lanthanide oxysulfide nanocrystals, J. Am. Chem. Soc., 2006, 128(36): 11758
doi: 10.1021/ja0638410
98 F. Zhao, H. L. Sun, G. Su, and S. Gao, Synthesis and size-dependent magnetic properties of monodisperse EuS nanocrystals, Small, 2006, 2(2): 244
doi: 10.1002/smll.200500294
99 Y. G. Yao, Q. W. Li, J. Zhang, R. Liu, L. Y. Jiao, Y. T. Zhu, and Z. F. Liu, Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions, Nat. Mater., 2007, 6(4): 283
doi: 10.1038/nmat1865
100 G. Hong, B. Zhang, B. H. Peng, J. Zhang, W. M. Choi, J. Y. Choi, J. M. Kim, and Z. F. Liu, Direct growth of semiconducting single-walled carbon nanotube array, J. Am. Chem. Soc., 2009, 131(41): 14642
doi: 10.1021/ja9068529
101 Y. G. Yao, C. Q. Feng, J. Zhang, and Z. F. Liu, “Cloning” of single-walled carbon nanotubes via open-end growth mechanism, Nano Lett., 2009, 9(4): 1673
doi: 10.1021/nl900207v
102 X. Yu, J. Zhang, W. Choi, J. Y. Choi, J. M. Kim, L. Gan, and Z. Liu, Cap formation engineering: from opened C60 to single-walled carbon nanotubes, Nano Lett., 2010, 10(9): 3343
doi: 10.1021/nl1010178
103 N. Liu, L. Fu, B. Y. Dai, K. Yan, X. Liu, R. Q. Zhao, Y. F. Zhang, and Z. F. Liu, Universal segregation growth approach to wafer-size graphene from non-noble metals, Nano Lett., 2010, 11(1): 297
doi: 10.1021/nl103962a
104 C. Zhang, L. Fu, N. Liu, M. Liu, Y. Wang, and Z. F. Liu, Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources, Adv. Mater., 2011, 23(8): 1020
doi: 10.1002/adma.201004110
105 B. Dai, L. Fu, Z. Zou, M. Wang, H. Xu, S. Wang, and Z. Liu, Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene, Nat. Commun., 2011, 2: 522
doi: 10.1038/ncomms1539
106 W. H. Dang, H. L. Peng, H. Li, P. Wang, and Z. F. Liu, Epitaxial heterostructures of ultrathin topological insulator nanoplate and graphene, Nano Lett., 2010, 10(8): 2870
doi: 10.1021/nl100938e
107 K. Yan, H. L. Peng, Y. Zhou, H. Li, and Z. F. Liu, Formation of bilayer bernal graphene: layer-by-layer epitaxy via chemical vapor deposition, Nano Lett., 2011, 11(3): 1106
doi: 10.1021/nl104000b
108 K. Yan, D. Wu, H. Peng, L. Jin, Q. Fu, X. Bao, and Z. Liu, Modulation-doped growth of mosaic graphene with singlecrystalline p-n junctions for efficient photocurrent generation, Nat. Commun., 2012, 3: 1280
doi: 10.1038/ncomms2286
109 Z. H. Pan, N. Liu, L. Fu, and Z. F. Liu, Wrinkle engineering: A new approach to massive graphene nanoribbon arrays, J. Am. Chem. Soc., 2011, 133(44): 17578
doi: 10.1021/ja207517u
110 Y. Pan, H. G. Zhang, D. X. Shi, J. T. Sun, S. X. Du, F. Liu, and H. J. Gao, Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001), Adv. Mater., 2009, 21(27): 2777
doi: 10.1002/adma.200800761
111 J. H. Mao, L. Huang, Y. Pan, M. Gao, J. F. He, H. T. Zhou, H. M. Guo, Y. Tian, Q. Zou, L. Z. Zhang, H. G. Zhang, Y. L. Wang, S. X. Du, X. J. Zhou, A. H. C. Neto, and H. J. Gao, Silicon layer intercalation of centimeter-scale, epitaxially grown monolayer graphene on Ru(0001), Appl. Phys. Lett., 2012, 100(9): 093101
doi: 10.1063/1.3687190
112 Z. W. Shi, R. Yang, L. C. Zhang, Y. Wang, D. H. Liu, D. X. Shi, E. G. Wang, and G. Y. Zhang, Patterning graphene with zigzag edges by self-aligned anisotropic etching, Adv. Mater., 2011, 23(27): 3061
doi: 10.1002/adma.201100633
113 D. C. Geng, B. Wu, Y. L. Guo, L. P. Huang, Y. Z. Xue, J. Y. Chen, G. Yu, L. Jiang, W. P. Hu, and Y. Q. Liu, Uniform hexagonal graphene flakes and films grown on liquid copper surface, Proc. Natl. Acad. Sci. USA, 2012, 109(21): 7992
doi: 10.1073/pnas.1200339109
114 L. B. Gao, W. C. Ren, H. L. Xu, L. Jin, Z. X. Wang, T. Ma, L. P. Ma, Z. Y. Zhang, Q. Fu, L. M. Peng, X. H. Bao, and H. M. Cheng, Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum, Nat. Commun., 2012, 3: 699
doi: 10.1038/ncomms1702
115 Z. P. Chen, W. C. Ren, L. B. Gao, B. L. Liu, S. F. Pei, and H. M. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition, Nat. Mater., 2011, 10(6): 424
doi: 10.1038/nmat3001
116 N. Li, Z. P. Chen, W. C. Ren, F. Li, and H. M. Cheng, Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates, Proc. Natl. Acad. Sci. USA, 2012, 109(43): 17360
doi: 10.1073/pnas.1210072109
117 Y. J. Wei, J. T. Wu, H. Q. Yin, X. H. Shi, R. G. Yang, and M. Dresselhaus, The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene, Nat. Mater., 2012, 11(9): 759
doi: 10.1038/nmat3370
118 P. H. Tan, W. P. Han, W. J. Zhao, Z. H. Wu, K. Chang, H. Wang, Y. F. Wang, N. Bonini, N. Marzari, N. Pugno, G. Savini, A. Lombardo, and A. C. Ferrari, The shear mode of multilayer graphene, Nat. Mater., 2012, 11(4): 294
doi: 10.1038/nmat3245
119 W. G. Xu, X. Ling, J. Q. Xiao, M. S. Dresselhaus, J. Kong, H. X. Xu, Z. F. Liu, and J. Zhang, Surface enhanced Raman spectroscopy on a flat graphene surface, Proc. Natl. Acad. Sci. USA, 2012, 109(24): 9281
doi: 10.1073/pnas.1205478109
120 S. S. Chen, Q. Z.Wu, C. Mishra, J. Y. Kang, H. J. Zhang, K. Cho, W. W. Cai, A. A. Balandin, and R. S. Ruoff, Thermal conductivity of isotopically modified graphene, Nat. Mater., 2012, 11(3): 203
doi: 10.1038/nmat3207
121 Z. Xu and C. Gao, Graphene chiral liquid crystals and macroscopic assembled fibres, Nat. Commun., 2011, 2: 571
doi: 10.1038/ncomms1583
122 Y. X. Xu, H. Bai, G. W. Lu, C. Li, and G. Q. Shi, Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets, J. Am. Chem. Soc., 2008, 130(18): 5856
doi: 10.1021/ja800745y
123 Y. Z. Tan, S. Y. Xie, R. B. Huang, and L. S. Zheng, The stabilization of fused-pentagon fullerene molecules, Nat. Chem., 2009, 1(6): 450
doi: 10.1038/nchem.329
124 S. Y. Xie, F. Gao, X. Lu, R. B. Huang, C. R. Wang, X. Zhang, M. L. Liu, S. L. Deng, and L. S. Zheng, Capturing the labile fullerene[50] as C50Cl10, Science, 2004, 304(5671): 699
doi: 10.1126/science.1095567
125 X. Lu, Z. Chen, W. Thiel, Pv. Schleyer, R. B. Huang, and L. S. Zheng, Properties of fullerene[50] and D5h decachlorofullerene[ 50]: A computational study, J. Am. Chem. Soc., 2004, 126(45): 14871
doi: 10.1021/ja046725a
126 X. Han, S. J. Zhou, Y. Z. Tan, X. Wu, F. Gao, Z. J. Liao, R. B. Huang, Y. Q. Feng, X. Lu, S. Y. Xie, and L. S. Zheng, Crystal structures of saturn-like C50Cl10 and pineapple-shaped C64Cl4: geometric implications of doubleand triple-pentagon-fused chlorofullerenes, Angew. Chem. Int. Ed., 2008, 47(29): 5340
doi: 10.1002/anie.200800338
127 Y. Z. Tan, Z. J. Liao, Z. Z. Qian, R. T. Chen, X. Wu, H. Liang, X. Han, F. Zhu, S. J. Zhou, Z. Zheng, X. Lu, S. Y. Xie, R. B. Huang, and L. S. Zheng, Two I(h)-symmetry-breaking C60 isomers stabilized by chlorination, Nat. Mater., 2008, 7(10): 790
doi: 10.1038/nmat2275
128 Y. Z. Tan, T. Zhou, J. Bao, G. J. Shan, S. Y. Xie, R. B. Huang, and L. S. Zheng, C72Cl4: A pristine fullerene with favorable pentagon-adjacent structure, J. Am. Chem. Soc., 2010, 132(48): 17102
doi: 10.1021/ja108860y
129 Y. Z. Tan, J. Li, F. Zhu, X. Han, W. S. Jiang, R. B. Huang, Z. Zheng, Z. Z. Qian, R. T. Chen, Z. J. Liao, S. Y. Xie, X. Lu, and L. S. Zheng, Chlorofullerenes featuring triple sequentially fused pentagons, Nat. Chem., 2010, 2(4): 269
doi: 10.1038/nchem.549
130 Y. Z. Tan, R. T. Chen, Z. J. Liao, J. Li, F. Zhu, X. Lu, S. Y. Xie, J. Li, R. B. Huang, and L. S. Zheng, Carbon arc production of heptagon-containing fullerene[68], Nat. Commun., 2011, 2: 420
doi: 10.1038/ncomms1431
131 X. W. Liu, D. S.Wang, and Y. D. Li, Synthesis and catalytic properties of bimetallic nanomaterials with various architectures, Nano Today, 2012, 7(5): 448
doi: 10.1016/j.nantod.2012.08.003
132 R. Si, Y. W. Zhang, L. P. You, and C. H. Yan, Rare-earth oxide nanopolyhedra, nanoplates, and nanodisks, Angew. Chem. Int. Ed. Engl., 2005, 44(21): 3256
doi: 10.1002/anie.200462573
133 W. D. Shi, J. B. Yu, H. S. Wang, and H. J. Zhang, Hydrothermal synthesis of single-crystalline antimony telluride nanobelts, J. Am. Chem. Soc., 2006, 128(51): 16490
doi: 10.1021/ja066944r
134 X. Wang, J. Zhuang, Q. Peng, and Y. D. Li, A general strategy for nanocrystal synthesis, Nature, 2005, 437(7055): 121
doi: 10.1038/nature03968
135 X. Wang, Q. Peng, and Y. D. Li, Interface-mediated growth of monodispersed nanostructures, Acc. Chem. Res., 2007, 40(8): 635
doi: 10.1021/ar600007y
136 D. S. Wang and Y. D. Li, One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process, J. Am. Chem. Soc., 2010, 132(18): 6280
doi: 10.1021/ja100845v
137 D. S. Wang, Q. Peng, and Y. D. Li, Nanocrystalline intermetallics and alloys, Nano Res., 2010, 3(8): 574
doi: 10.1007/s12274-010-0018-4
138 D. S. Wang and Y. D. Li, Bimetallic nanocrystals: Liquidphase synthesis and catalytic applications, Adv. Mater., 2011, 23(9): 1044
doi: 10.1002/adma.201003695
139 D. S. Wang, P. Zhao, and Y. D. Li, General preparation for Pt-based alloy nanoporous nanoparticles as potential nanocatalysts, Scientific Reports, 2011, 1: 37
doi: 10.1038/srep00037
140 K. B. Zhou, X. Wang, X. M. Sun, Q. Peng, and Y. D. Li, Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes, J. Catal., 2005, 229(1): 206
doi: 10.1016/j.jcat.2004.11.004
141 X. W. Liu, K. B. Zhou, L. Wang, B. Y. Wang, and Y. D. Li, Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods, J. Am. Chem. Soc., 2009, 131(9): 3140
doi: 10.1021/ja808433d
142 C. Chen, C. Y. Nan, D. S. Wang, Q. Su, H. H. Duan, X. W. Liu, L. S. Zhang, D. R. Chu, W. G. Song, Q. Peng, and Y. D. Li, Mesoporous multicomponent nanocomposite colloidal spheres: ideal high-temperature stable model catalysts, Angew. Chem. Int. Ed. Engl., 2011, 50(16): 3725
doi: 10.1002/anie.201007229
143 Y. E. Wu, S. F. Cai, D. S. Wang, W. He, and Y. D. Li, Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and their structure-activity study in model hydrogenation reactions, J. Am. Chem. Soc., 2012, 134(21): 8975
doi: 10.1021/ja302606d
144 Y. Xia, T. D. Nguyen, M. Yang, B. Lee, A. Santos, P. Podsiadlo, Z. Tang, S. C. Glotzer, and N. A. Kotov, Selfassembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles, Nat. Nanotechnol., 2011, 6(9): 580
doi: 10.1038/nnano.2011.121
145 J. W. Chen and Y. Cao, Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices, Acc. Chem. Res., 2009, 42 (11): 1709
doi: 10.1021/ar900061z
146 L. J. Huo and J. H. Hou, Benzo[1,2-b:4,5-b′]dithiophenebased conjugated polymers: band gap and energy level control and their application in polymer solar cells, Polym Chem., 2011, 2 (11): 2453
doi: 10.1039/c1py00197c
147 Y. F. Li, Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption, Acc. Chem. Res., 2012, 45(5): 723
doi: 10.1021/ar2002446
148 H. Y. Chen, J. H. Hou, S. Q. Zhang, Y. Y. Liang, G. W. Yang, Y. Yang, L. P. Yu, Y. Wu, and G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency, Nat. Photon., 2009, 3 (11): 649
doi: 10.1038/nphoton.2009.192
149 Z. C. He, C. M. Zhong, C. M. Su, M. Xu, H. B. Wu, and Y. Cao, Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure, Nat. Photon., 2012, 6(9): 591
doi: 10.1038/nphoton.2012.190
150 L. J. Huo, S. Q. Zhang, X. Guo, F. Xu, Y. F. Li, and J. H. Hou, Replacing alkoxy groups with alkylthienyl groups: a feasible approach to improve the properties of photovoltaic polymers, Angew. Chem. Int. Ed. Engl., 2011, 50(41): 9697
doi: 10.1002/anie.201103313
151 X. Guo, C. Cui, M. Zhang, L. Huo, Y. Huang, J. Hou, and Y. Li, High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene-C70 bisadduct with solvent additive, Energy Environ. Sci., 2012, 5(7): 7943
doi: 10.1039/c2ee21481d
152 Y. J. He, H. Y. Chen, J. H. Hou, and Y. F. Li, Indene-C(60) bisadduct: a new acceptor for high-performance polymer solar cells, J. Am. Chem. Soc., 2010, 132(4): 1377
doi: 10.1021/ja908602j
153 Z. C. He, C. Zhang, X. F. Xu, L. J. Zhang, L. Huang, J. W. Chen, H. B. Wu, and Y. Cao, Largely enhanced efficiency with a PFN/Al bilayer cathode in high efficiency bulk heterojunction photovoltaic cells with a low bandgap polycarbazole donor, Adv. Mater., 2011, 23(27): 3086
doi: 10.1002/adma.201101319
154 Y. Bai, J. Zhang, D. Zhou, Y. Wang, M. Zhang, and P. Wang, Engineering organic sensitizers for iodine-free dyesensitized solar cells: red-shifted current response concomitant with attenuated charge recombination, J. Am. Chem. Soc., 2011, 133(30): 11442
doi: 10.1021/ja203708k
155 Z. Dong, X. Lai, J. E. Halpert, N. Yang, L. Yi, J. Zhai, D. Wang, Z. Tang, and L. Jiang, Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency, Adv. Mater., 2012, 24(8): 1046
doi: 10.1002/adma.201104626
156 J. Zhang, J. Yu, M. Jaroniec, and J. R. Gong, Noble metalfree reduced graphene oxide-ZnxCd1-xS nanocomposite with enhanced solar photocatalytic H2-production performance, Nano Lett., 2012, 12 (9): 4584
doi: 10.1021/nl301831h
157 Q. Li, B. D. Guo, J. G. Yu, J. R. Ran, B. H. Zhang, H. J. Yan, and J. R. Gong, Highly efficient visible-lightdriven photocatalytic hydrogen production of CdS-clusterdecorated graphene nanosheets, J. Am. Chem. Soc., 2011, 133(28): 10878
doi: 10.1021/ja2025454
158 S. Xin, Y. G. Guo, and L. J. Wan, Nanocarbon networks for advanced rechargeable lithium batteries, Acc. Chem. Res., 2012, 45(10): 1759
doi: 10.1021/ar300094m
159 Z. L. Gong, Y. X. Li, G. N. He, J. Li, and Y. Yang, Nanostructured Li[sub 2]FeSiO[sub 4] electrode material synthesized through hydrothermal-assisted sol-gel process, Electrochem. Solid-State Lett., 2008, 11(5): A60
doi: 10.1149/1.2844287
160 F. F. Cao, Y. G. Guo, S. F. Zheng, X. L. Wu, L. Y. Jiang, R. R. Bi, L. J. Wan, and J. Maier, Symbiotic coaxial nanocables: Facile synthesis and an efficient and elegant morphological solution to the lithium storage problem, Chem. Mater., 2010, 22(5): 1908
doi: 10.1021/cm9036742
161 L. Huo, J. Hou, S. Zhang, H. Chen, and Y. Yang, A Polybenzo [1,2-b:4,5-b′] dithiophene derivative with deep HOMO level and its application in high-performance polymer solar cells, Angew. Chem. Int. Ed., 2010, 49(8): 1500
doi: 10.1002/anie.200906934
162 D. J. Xue, S. Xin, Y. Yan, K. C. Jiang, Y. X. Yin, Y. G. Guo, and L. J. Wan, Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks, J. Am. Chem. Soc., 2012, 134(5): 2512
doi: 10.1021/ja211266m
163 Q. Zhang, Q. F. Dong, M. S. Zheng, and Z. W. Tian, Electrochemical energy storage device for electric vehicles, J. Electrochem. Soc., 2011, 158(5): A443
doi: 10.1149/1.3556586
164 L. Gu, C. Zhu, H. Li, Y. Yu, C. Li, S. Tsukimoto, J. Maier, and Y. Ikuhara, Direct observation of lithium staging in partially delithiated LiFePO4 at atomic resolution, J. Am. Chem. Soc., 2011, 133(13): 4661
doi: 10.1021/ja109412x
165 D. W. Wang, F. Li, M. Liu, G. Q. Lu, and H. M. Cheng, 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage, Angew. Chem. Int. Ed. Engl., 2008, 47(2): 373
doi: 10.1002/anie.200702721
166 X. F. Xie and L. Gao, Characterization of a manganese dioxide/ carbon nanotube composite fabricated using an in situ coating method, Carbon, 2007, 45(12): 2365
doi: 10.1016/j.carbon.2007.07.014
167 J. J. Xu, K. Wang, S. Z. Zu, B. H. Han, and Z. X. Wei, Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Graphene Oxide Sheets with Synergistic Effect for Energy Storage, ACS Nano, 2010, 4(9): 5019
doi: 10.1021/nn1006539
168 C. Chen, W. Ma, and J. Zhao, Semiconductor-mediated photodegradation of pollutants under visible-light irradiation, Chem. Soc. Rev., 2010, 39(11): 4206
doi: 10.1039/b921692h
169 M. Zhang, Q. Wang, C. Chen, L. Zang, W. Ma, and J. Zhao, Oxygen atom transfer in the photocatalytic oxidation of alcohols by TiO2: Oxygen isotope studies, Angew. Chem. Int. Ed., 2009, 48(33): 6081
doi: 10.1002/anie.200900322
170 C. Y. Cao, J. Qu, W. S. Yan, J. F. Zhu, Z. Y. Wu, and W. G. Song, Low-cost synthesis of flowerlike-Fe2O3 nanostructures for heavy metal ion removal: Adsorption property and mechanism, Langmuir, 2012, 28(9): 4573
doi: 10.1021/la300097y
171 C. Y. Cao, P. Li, J. Qu, Z. F. Dou, W. S. Yan, J. F. Zhu, Z. Y. Wu, and W. G. Song, High adsorption capacity and the key role of carbonate groups for heavy metal ion removal by basic aluminum carbonate porous nanospheres, J. Mater. Chem., 2012, 22(37): 19898
doi: 10.1039/c2jm34138g
172 C. Y. Cao, J. Qu, F. Wei, H. Liu, and W. G. Song, Superb adsorption capacity and mechanism of flowerlike magnesium oxide nanostructures for lead and cadmium ions, ACS Appl. Mater. Interfaces, 2012, 4(8): 4283
doi: 10.1021/am300972z
173 W. Liu, F. Huang, Y. Liao, J. Zhang, G. Ren, Z. Zhuang, J. Zhen, Z. Lin, and C. Wang, Treatment of CrVI-containing Mg(OH)2 nanowaste, Angew. Chem. Int. Ed. Engl., 2008, 47(30): 5619
doi: 10.1002/anie.200800172
174 W. Liu, F. Huang, Y. Wang, T. Zou, J. Zheng, and Z. Lin, Recycling MgOH2 nanoadsorbent during treating the low concentration of CrVI, Environ. Sci. Technol., 2011, 45(5): 1955
doi: 10.1021/es1035199
175 Q. Cao, F. Huang, Z. Zhuang, and Z. Lin, A study of the potential application of nano-Mg(OH)2 in adsorbing low concentrations of uranyl tricarbonate from water, Nanoscale, 2012, 4(7): 2423
doi: 10.1039/c2nr11993e
176 S. Guo and E. Wang, Noble metal nanomaterials: Controllable synthesis and application in fuel cells and analytical sensors, Nano Today, 2011, 6(3): 240
doi: 10.1016/j.nantod.2011.04.007
177 S. Guo and S. Dong, Biomolecule-nanoparticle hybrids for electrochemical biosensors, Trends Analyt. Chem., 2009, 28(1): 96
doi: 10.1016/j.trac.2008.10.014
178 D. Wen, S. Guo, J. Zhai, L. Deng, W. Ren, and S. Dong, Pt Nanoparticles Supported on TiO2 Colloidal Spheres with Nanoporous Surface: Preparation and Use as an Enhancing Material for Biosensing Applications, J. Phys. Chem. C, 2009, 113(30): 13023
doi: 10.1021/jp9003714
179 S. Guo and S. Dong, Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications, Chem. Soc. Rev., 2011, 40(5): 2644
doi: 10.1039/c0cs00079e
180 M. Zhou, Y. Zhai, and S. Dong, Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide, Anal. Chem., 2009, 81(14): 5603
doi: 10.1021/ac900136z
181 X. Wu, Y. Hu, J. Jin, N. Zhou, P. Wu, H. Zhang, and C. Cai, Electrochemical approach for detection of extracellular oxygen released from erythrocytes based on graphene film integrated with laccase and 2,2-azino-bis(3ethylbenzothiazoline-6-sulfonic acid), Anal. Chem., 2010, 82(9): 3588
doi: 10.1021/ac100621r
182 K. Qian, J. Wan, L. Qiao, X. Huang, J. Tang, Y. Wang, J. Kong, P. Yang, C. Yu, and B. Liu, Macroporous materials as novel catalysts for efficient and controllable proteolysis, Anal. Chem., 2009, 81(14): 5749
doi: 10.1021/ac900550q
183 Y. Zhang, X. Wang, W. Shan, B. Wu, H. Fan, X. Yu, Y. Tang, and P. Yang, Enrichment of low-abundance peptides and proteins on zeolite nanocrystals for direct MALDI-TOF MS analysis, Angew. Chem. Int. Ed. Engl., 2005, 44(4): 615
doi: 10.1002/anie.200460741
184 H. M. Xiong, X. Y. Guan, L. H. Jin, W. W. Shen, H. J. Lu, and Y. Y. Xia, Surfactant-free synthesis of SnO2@PMMA and TiO2@PMMA core-shell nanobeads designed for peptide/protein enrichment and MALDI-TOF MS analysis, Angew. Chem. Int. Ed. Engl., 2008, 47(22): 4204
doi: 10.1002/anie.200705942
185 R. Tian, H. Zhang, M. Ye, X. Jiang, L. Hu, X. Li, X. Bao, and H. Zou, Selective extraction of peptides from human plasma by highly ordered mesoporous silica particles for peptidome analysis, Angew. Chem. Int. Ed. Engl., 2007, 46(6): 962
doi: 10.1002/anie.200603917
186 S. Song, Y. Qin, Y. He, Q. Huang, C. Fan, and H. Y. Chen, Functional nanoprobes for ultrasensitive detection of biomolecules, Chem. Soc. Rev., 2010, 39(11): 4234
doi: 10.1039/c000682n
187 Y. M. Long, Q. L. Zhao, Z. L. Zhang, Z. Q. Tian, and D. W. Pang, Electrochemical methodsimportant means for fabrication of fluorescent nanoparticles, Analyst, 2012, 137(4): 805
doi: 10.1039/c2an15740c
188 D. Liu, W. Chen, K. Sun, K. Deng, W. Zhang, Z. Wang, and X. Jiang, Resettable, multi-readout logic gates based on controllably reversible aggregation of gold nanoparticles, Angew. Chem. Int. Ed. Engl., 2011, 50(18): 4103
doi: 10.1002/anie.201008198
189 W. Qu, Y. Liu, D. Liu, Z. Wang, and X. Jiang, Coppermediated amplification allows readout of immunoassays by the naked eye, Angew. Chem. Int. Ed. Engl., 2011, 50(15): 3442
doi: 10.1002/anie.201006025
190 M. T. Zhu, G. J. Nie, H. Meng, T. Xia, A. Nel, and Y. L. Zhao, Physicochemical Properties Determine Nanomaterial Cellular Uptake, Transport, and Fate, Acc. Chem. Res., 2013, 46(3): 622
doi: 10.1021/ar300031y
191 B. Wang, X. He, Z. Y. Zhang, Y. L. Zhao, and W. Y. Feng, Metabolism of nanomaterials in vivo: Blood circulation and organ clearance, Acc. Chem. Res., 2013, 46(3): 761
doi: 10.1021/ar2003336
192 Y. Liu, Y. L. Zhao, B. Y. Sun, and C. Y. Chen, Understanding the toxicity of carbon nanotubes, Acc. Chem. Res., 2013, 46(3): 702
doi: 10.1021/ar300028m
193 Y. L. Zhao, G. M. Xing, and Z. F. Chai, Nanotoxicology: Are carbon nanotubes safe? Nat. Nanotech., 2008, 3: 191
doi: 10.1038/nnano.2008.77
194 H. Yang, C. J. Sun, Z. L. Fan, X. Tian, L. Yan, L. B. Du, Y. Liu, C. Y. Chen, X. J. Liang, G. J. Anderson, J. A. Keelan, Y. L. Zhao, and G. J. Nie, Effects of gestational age and surface modification on materno-fetal transfer of nanoparticles in murine pregnancy, Scientific Reports, 2012, 2(847): 1
195 C. C. Ge, J. F. Du, L. N. Zhao, L. Wang, Y. Liu, D. Li, Y. Yang, R. H. Zhou, Y. L. Zhao, Z. F. Chai, and C. Y. Chen, Binding of blood proteins to carbon nanotubes reduces cytotoxicity, Proc. Natl. Acad. Sci. USA, 2011, 108: 16968
doi: 10.1073/pnas.1105270108
196 S. G. Kang, G. Q. Zhou, P. Yang, Y. Liu, B. Y. Sun, T. Huynh, H. Meng, L. N. Zhao, G. M. Xing, C. Y. Chen, Y. L. Zhao, and R. H. Zhou, Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C82(OH)22 and its implication for de novo design of nanomedicine, Proc. Natl. Acad. Sci. USA, 2012, 109(38): 15431
doi: 10.1073/pnas.1204600109
197 Y. Y. Li, Y. L. Zhou, H. Y. Wang, S. Perrett, Y. L. Zhao, Z. Y. Tang, and G. J. Nie, Chirality of glutathione surface coating affects the cytotoxicity of quantum dots, Angew. Chem. Int. Ed., 2011, 50: 5860
doi: 10.1002/anie.201008206
198 C. Sun, H. Yang, Y. Yuan, X. Tian, L. Wang, Y. Guo, L. Xu, J. Lei, N. Gao, G. J. Anderson, X. J. Liang, C. Chen, Y. Zhao, and G. Nie, Controlling assembly of paired gold clusters within apoferritin nanoreactor for in vivo kidney targeting and biomedical imaging, J. Am. Chem. Soc., 2011, 133(22): 8617
doi: 10.1021/ja200746p
199 C. C. Ge, F. Lao, W. Li, Y. Li, C. C. Chen, Y. Qiu, X. Mao, B. Li, Z. F. Chai, and Y. L. Zhao, Quantitative analysis of metal impurities in carbon nanotubes: Efficacy of different pretreatment protocols for ICPMS spectroscopy, Anal. Chem., 2008, 80(24): 9426
doi: 10.1021/ac801469b
200 Y. Qu, W. Li, Y. Zhou, X. Liu, L. Zhang, L. Wang, Y. F. Li, A. Iida, Z. Tang, Y. Zhao, Z. Chai, and C. Chen, Full assessment of fate and physiological behavior of quantum dots utilizing Caenorhabditis elegans as a model organism, Nano Lett., 2011, 11(8): 3174
doi: 10.1021/nl201391e
201 X. He, Z. Y. Zhang, J. S. Liu, Y. H. Ma, P. Zhang, Y. Y. Li, Z. Q. Wu, Y. L. Zhao, and Z. F. Chai, Quantifying the biodistribution of nanoparticles, Nat. Nanotechnol., 2011, 6(12): 755
doi: 10.1038/nnano.2011.219
[1] Ning Zhang, Jiayu Wu, Taoyuan Yu, Jiaqi Lv, He Liu, Xiping Xu. Theory, preparation, properties and catalysis application in 2D graphynes-based materials[J]. Front. Phys. , 2021, 16(2): 23201-.
[2] Junwei Fu (傅俊伟), Shuandi Wang (王栓娣), Zihua Wang (王自华), Kang Liu (刘康), Huangjingwei Li (李黄经纬), Hui Liu (刘恢), Junhua Hu (胡俊华), Xiaowen Xu (徐效文), Hongmei Li (李红梅), Min Liu (刘敏). Graphitic carbon nitride based single-atom photocatalysts[J]. Front. Phys. , 2020, 15(3): 33201-.
[3] O. de los Santos-Sánchez. Probing intensity-field correlations of single-molecule surface-enhanced Raman-scattered light[J]. Front. Phys. , 2019, 14(6): 61601-.
[4] Lian-Zhong Deng, Yun-Hua Yao, Li Deng, Huai-Yuan Jia, Ye Zheng, Cheng Xu, Jian-Ping Li, Tian-Qing Jia, Jian-Rong Qiu, Zhen-Rong Sun, Shi-An Zhang. Tuning up-conversion luminescence in Er3+-doped glass ceramic by phase-shaped femtosecond laser field with optimal feedback control[J]. Front. Phys. , 2019, 14(1): 13602-.
[5] Jun Mao (毛军), Yong Wang (王勇), Zhilong Zheng (郑智龙), Dehui Deng (邓德会). The rise of two-dimensional MoS2 for catalysis[J]. Front. Phys. , 2018, 13(4): 138118-.
[6] Wen-Cheng Yue, Pei-Jun Yao, Li-Xin Xu, Hai Ming. All-dielectric bowtie waveguide with deep subwavelength mode confinement[J]. Front. Phys. , 2018, 13(4): 134207-.
[7] Tingting Zhang,Shuang Wu,Rong Yang,Guangyu Zhang. Graphene: Nanostructure engineering and applications[J]. Front. Phys. , 2017, 12(1): 127206-.
[8] Arthur Losquin,Tom T. A. Lummen. Electron microscopy methods for space-, energy-, and time-resolved plasmonics[J]. Front. Phys. , 2017, 12(1): 127301-.
[9] P. James Schuck,Wei Bao,Nicholas J. Borys. A polarizing situation: Taking an in-plane perspective for next-generation near-field studies[J]. Front. Phys. , 2016, 11(2): 117804-.
[10] Sanshui Xiao,Xiaolong Zhu,Bo-Hong Li,N. Asger Mortensen. Graphene-plasmon polaritons: From fundamental properties to potential applications[J]. Front. Phys. , 2016, 11(2): 117801-.
[11] Ondrej Stranik, Jacqueline Jatschka, Andrea Csáki, Wolfgang Fritzsche. Development of new classes of plasmon active nano-structures and their application in bio-sensing and energy guiding[J]. Front. Phys. , 2014, 9(5): 652-664.
[12] Xiaohu Xia, Younan Xia. Gold nanocages as multifunctional materials for nanomedicine[J]. Front. Phys. , 2014, 9(3): 378-384.
[13] Reshef Tenne. Recent advances in the research of inorganic nanotubes and fullerene-like nanoparticles[J]. Front. Phys. , 2014, 9(3): 370-377.
[14] Zee Hwan Kim. Single-molecule surface-enhanced Raman scattering: Current status and future perspective[J]. Front. Phys. , 2014, 9(1): 25-30.
[15] Yizhuo He, Junxue Fu, Yiping Zhao. Oblique angle deposition and its applications in plasmonics[J]. Front. Phys. , 2014, 9(1): 47-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed