Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2017, Vol. 12 Issue (1) : 127301    https://doi.org/10.1007/s11467-016-0605-2
REVIEW ARTICLE
Electron microscopy methods for space-, energy-, and time-resolved plasmonics
Arthur Losquin1(),Tom T. A. Lummen2
1. Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
2. Laboratory for Ultrafast Microscopy and Electron Scattering, ICMP, École Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
 Download: PDF(30037 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Nanoscale plasmonic systems combine the advantages of optical frequencies with those of small spatial scales, circumventing the limitations of conventional photonic systems by exploiting the strong field confinement of surface plasmons. As a result of this miniaturization to the nanoscale, electron microscopy techniques are the natural investigative methods of choice. Recent years have seen the development of a number of electron microscopy techniques that combine the use of electrons and photons to enable unprecedented views of surface plasmons in terms of combined spatial, energy, and time resolution. This review aims to provide a comparative survey of these different approaches from an experimental viewpoint by outlining their respective experimental domains of suitability and highlighting their complementary strengths and limitations as applied to plasmonics in particular.

Keywords plasmonics      electron microscopy      Electron Energy Loss Spectroscopy (EELS)      cathodoluminescence      Photoemission Electron Microscopy (PEEM)      Photo-Induced Near-field Electron Microscopy (PINEM)      Electron Energy Gain Spectroscopy (EEGS)     
Corresponding Author(s): Arthur Losquin,Tom T. A. Lummen   
Issue Date: 17 October 2016
 Cite this article:   
Arthur Losquin,Tom T. A. Lummen. Electron microscopy methods for space-, energy-, and time-resolved plasmonics[J]. Front. Phys. , 2017, 12(1): 127301.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-016-0605-2
https://academic.hep.com.cn/fop/EN/Y2017/V12/I1/127301
1 W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature 424 (6950), 824 (2003)
https://doi.org/10.1038/nature01937
2 E. Ozbay, Plasmonics: Merging photonics and electronics at nanoscale dimensions, Science 311(5758), 189 (2006)
https://doi.org/10.1126/science.1114849
3 L. Novotny and B. Hecht, Principles of Nano-Optics, Cambridge: Cambridge University Press, 2012, p. 564
https://doi.org/10.1017/CBO9780511794193
4 M. S. Anderson, Locally enhanced Raman spectroscopy with an atomic force microscope, Appl. Phys. Lett. 76(21), 3130 (2000)
https://doi.org/10.1063/1.126546
5 N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata, Metallized tip amplification of near-field Raman scattering, Opt. Commun. 183(1–4), 333 (2000)
https://doi.org/10.1016/S0030-4018(00)00894-4
6 P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. V. Duyne, Surface-Enhanced Raman Spectroscopy, Annu. Rev. Anal. Chem. 1(1), 601 (2008)
https://doi.org/10.1146/annurev.anchem.1.031207.112814
7 M. D. Sonntag, E. A. Pozzi, N. Jiang, M. C. Hersam, and R. P. Van Duyne, Recent advances in tip-enhanced Raman spectroscopy, J. Phys. Chem. Lett. 5(18), 3125 (2014)
https://doi.org/10.1021/jz5015746
8 N. F. V. Hulst, N. P. de Boer, and B. Bölger, An evanescent-field optical microscope, J. Microsc. 163(2), 117 (1991)
https://doi.org/10.1111/j.1365-2818.1991.tb03166.x
9 H. Heinzelmann and D. W. Pohl, Scanning near-field optical microscopy, Appl. Phys. A 59(2), 89 (1994)
https://doi.org/10.1007/BF00332200
10 C. Bohm, J. Bangert, W. Mertin, and E. Kubalek, Time resolved near-field scanning optical microscopy, J. Phys. D Appl. Phys. 27(10), 2237 (1994)
https://doi.org/10.1088/0022-3727/27/10/038
11 H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, Real-space observation of ultraslow light in photonic crystal waveguides, Phys. Rev. Lett. 94(7), 073903 (2005)
https://doi.org/10.1103/PhysRevLett.94.073903
12 P. B. Johnson and R. W. Christy, Optical constants of the Noble metals, Phys. Rev. B 6(12), 4370 (1972)
https://doi.org/10.1103/PhysRevB.6.4370
13 A. Asenjo-Garcia and F. J. García de Abajo, Plasmon electron energy-gain spectroscopy, New J. Phys. 15(10), 103021 (2013)
https://doi.org/10.1088/1367-2630/15/10/103021
14 F. J. García de Abajo, Optical excitations in electron microscopy, Rev. Mod. Phys. 82(1), 209 (2010)
https://doi.org/10.1103/RevModPhys.82.209
15 E. J. R. Vesseur, J. Aizpurua, T. Coenen, A. Reyes- Coronado, P. E. Batson, and A. Polman, Plasmonic excitation and manipulation with an electron beam, MRS Bull. 37(08), 752 (2012)
https://doi.org/10.1557/mrs.2012.174
16 M. Kociak and O. Stéphan, Mapping plasmons at the nanometer scale in an electron microscope, Chem. Soc. Rev. 43(11), 3865 (2014)
https://doi.org/10.1039/c3cs60478k
17 C. Colliex, M. Kociak, and O. Stéphan, Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale, Ultramicroscopy 162, A1 (2016)
https://doi.org/10.1016/j.ultramic.2015.11.012
18 C. Cherqui, N. Thakkar, G. Li, J. P. Camden, and D. Masiello, Characterizing localized surface plasmons using electron energy-loss spectroscopy, arXiv: 1509.08430v2 (2015)
19 R. H. Ritchie, Plasma losses by fast electrons in thin films, Phys. Rev. 106(5), 874 (1957)
https://doi.org/10.1103/PhysRev.106.874
20 C. J. Powell and J. B. Swan, Origin of the characteristic electron energy losses in aluminum, Phys. Rev. 115(4), 869 (1959)
https://doi.org/10.1103/PhysRev.115.869
21 E. A. Stern and R. A. Ferrell, Surface plasma oscillations of a degenerate electron gas, Phys. Rev. 120(1), 130 (1960)
https://doi.org/10.1103/PhysRev.120.130
22 R. A. Ferrell, Predicted radiation of plasma oscillations in metal films, Phys. Rev. 111(5), 1214 (1958)
https://doi.org/10.1103/PhysRev.111.1214
23 W. Steinmann, Experimental verification of radiation of plasma oscillations in thin silver films, Phys. Rev. Lett. 5(10), 470 (1960)
https://doi.org/10.1103/PhysRevLett.5.470
24 P. Batson, Surface plasmon coupling in clusters of small spheres, Phys. Rev. Lett. 49(13), 936 (1982)
https://doi.org/10.1103/PhysRevLett.49.936
25 P. Batson, A new surface plasmon resonance in clusters of small aluminum spheres, Ultramicroscopy 9(3), 277 (1982)
https://doi.org/10.1016/0304-3991(82)90212-1
26 J. Cowley, Surface energies and surface structure of small crystals studied by use of a stem instrument, Surf. Sci. 114(2–3), 587 (1982)
https://doi.org/10.1016/0039-6028(82)90707-5
27 L. Marks, Observation of the image force for fast electrons near an MgO surface, Solid State Commun. 43(10), 727 (1982)
https://doi.org/10.1016/0038-1098(82)90979-6
28 M. Scheinfein, A. Muray, and M. Isaacson, Electron energy loss spectroscopy across a metal-insulator interface at sub-nanometer spatial resolution, Ultramicroscopy 16(2), 233 (1985)
https://doi.org/10.1016/0304-3991(85)90077-4
29 A. Howie and R. Milne, Excitations at interfaces and small particles, Ultramicroscopy 18(1–4), 427 (1985)
30 M. Achèche, C. Colliex, H. Kohl, A. Nourtier, and P. Trebbia, Theoretical and experimental study of plasmon excitations in small metallic spheres, Ultramicroscopy 20(1–2), 99 (1986)
https://doi.org/10.1016/0304-3991(86)90175-0
31 Z. Wang and J. Cowley, Size and shape dependence of the surface plasmon frequencies for supported metal particle systems, Ultramicroscopy 23(1), 97 (1987)
https://doi.org/10.1016/0304-3991(87)90230-0
32 D. Ugarte, C. Colliex, and P. Trebbia, Surfaceand interface-plasmon modes on small semiconducting spheres, Phys. Rev. B 45(8), 4332 (1992)
https://doi.org/10.1103/PhysRevB.45.4332
33 P. Moreau, N. Brun, C. A. Walsh, C. Colliex, and A. Howie, Relativistic effects in electron-energy-lossspectroscopy observations of the Si/SiO2 interface plasmon peak, Phys. Rev. B 56(11), 6774 (1997)
https://doi.org/10.1103/PhysRevB.56.6774
34 N. Yamamoto, K. Araya, and F. García de Abajo, Photon emission from silver particles induced by a highenergy electron beam, Phys. Rev. B 64(20), 205419 (2001)
https://doi.org/10.1103/PhysRevB.64.205419
35 J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza- Santos, L. M. Liz-Marzán, and C. Colliex, Mapping surface plasmons on a single metallic nanoparticle, Nat. Phys. 3(5), 348 (2007)
https://doi.org/10.1038/nphys575
36 M. Bosman, V. J. Keast, M. Watanabe, A. I. Maaroof, and M. B. Cortie, Mapping surface plasmons at the nanometre scale with an electron beam, Nanotechnology 18(16), 165505 (2007)
https://doi.org/10.1088/0957-4484/18/16/165505
37 J. T. van Wijngaarden, E. Verhagen, A. Polman, C. E. Ross, H. J. Lezec, and H. A. Atwater, Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy, Appl. Phys. Lett. 88(22), 221111 (2006)
https://doi.org/10.1063/1.2208556
38 M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, Generation of traveling surface plasmon waves by free-electron impact, Nano Lett. 6(6), 1113 (2006)
https://doi.org/10.1021/nl060941v
39 M. V. Bashevoy, F. Jonsson, K. F. Macdonald, Y. Chen, and N. I. Zheludev, Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution, Opt. Express 15(18), 11313 (2007)
https://doi.org/10.1364/OE.15.011313
40 F. J. García de Abajo, Relativistic energy loss and induced photon emission in the interaction of a dielectric sphere with an external electron beam, Phys. Rev. B 59(4), 3095 (1999)
https://doi.org/10.1103/PhysRevB.59.3095
41 G. Boudarham and M. Kociak, Modal decompositions of the local electromagnetic density of states and spatially resolved electron energy loss probability in terms of geometric modes, Phys. Rev. B 85(24), 245447 (2012)
https://doi.org/10.1103/PhysRevB.85.245447
42 A. Losquin, L. F. Zagonel, V. Myroshnychenko, B. Rodríguez-González, M. Tencé, L. Scarabelli, J. Förstner, L. M. Liz-Marzán, F. J. García de Abajo, O. Stéphan, and M. Kociak, Unveiling nanometer scale extinction and scattering phenomena through combined electron energy loss spectroscopy and cathodoluminescence measurements, Nano Lett. 15(2), 1229 (2015)
https://doi.org/10.1021/nl5043775
43 R. Carminati, A. Cazé, D. Cao, F. Peragut, V. Krachmalnicoff, R. Pierrat, and Y. D. Wilde, Electromagnetic density of states in complex plasmonic systems,Surf. Sci. Rep. 70(1), 1 (2015)
https://doi.org/10.1016/j.surfrep.2014.11.001
44 F. J. García de Abajo and M. Kociak, Probing the photonic local density of states with electron energy loss spectroscopy, Phys. Rev. Lett. 100(10), 106804 (2008)
https://doi.org/10.1103/PhysRevLett.100.106804
45 U. Hohenester, H. Ditlbacher, and J. R. Krenn, Electron-energy-loss spectra of plasmonic nanoparticles, Phys. Rev. Lett. 103(10), 106801 (2009)
https://doi.org/10.1103/PhysRevLett.103.106801
46 M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, Local density of states, spectrum, and farfield interference of surface plasmon polaritons probed by cathodoluminescence, Phys. Rev. B 79(11), 113405 (2009)
https://doi.org/10.1103/PhysRevB.79.113405
47 A. Losquin and M. Kociak, Link between cathodoluminescence and electron energy loss spectroscopy and the radiative and full electromagnetic local density of states, ACS Photonics 2(11), 1619 (2015)
https://doi.org/10.1021/acsphotonics.5b00416
48 C. Jeanguillaume and C. Colliex, Spectrum-image: The next step in EELS digital acquisition and processing, Ultramicroscopy 28(1–4), 252 (1989)
49 A. Gloter, A. Douiri, M. Tencé, and C. Colliex, Improving energy resolution of EELS spectra: An alternative to the monochromator solution, Ultramicroscopy 96(3–4), 385 (2003)
https://doi.org/10.1016/S0304-3991(03)00103-7
50 J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, Fabry–Pérot resonances in one-dimensional plasmonic nanostructures, Nano Lett. 9(6), 2372 (2009)
https://doi.org/10.1021/nl900900r
51 B. Schaffer, U. Hohenester, A. Trügler, and F. Hofer, High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy, Phys. Rev. B 79(4), 041401 (2009)
https://doi.org/10.1103/PhysRevB.79.041401
52 T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, Directional emission from plasmonic Yagi– Uda antennas probed by angle-resolved cathodoluminescence spectroscopy, Nano Lett. 11(9), 3779 (2011)
https://doi.org/10.1021/nl201839g
53 G. Kothleitner and F. Hofer, EELS performance measurements on a new high energy resolution imaging filter, Micron 34(3–5), 211 (2003)
https://doi.org/10.1016/S0968-4328(03)00037-4
54 A. Gubbens, M. Barfels, C. Trevor, R. Twesten, P. Mooney, P. Thomas, N. Menon, B. Kraus, C. Mao, and B. McGinn, The GIF Quantum, a next generation postcolumn imaging energy filter, Ultramicroscopy 110(8), 962 (2010)
https://doi.org/10.1016/j.ultramic.2010.01.009
55 L. Gu, W. Sigle, C. T. Koch, B. Ögüt, P. A. van Aken, N. Talebi, R. Vogelgesang, J. Mu, X. Wen, and J. Mao, Resonant wedge-plasmon modes in singlecrystalline gold nanoplatelets, Phys. Rev. B 83(19), 195433 (2011)
https://doi.org/10.1103/PhysRevB.83.195433
56 M. Kociak, O. Stéphan, M. G. Walls, M. Tencé, and C. Colliex, Scanning transmission electron microscopy: Imaging and analysis, New York: Springer New York, 2011, Chap. Spatially Resolved EELS: The Spectrum- Imaging Technique and Its Applications, pp 163–205
57 E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy, Nano Lett. 7(9), 2843 (2007)
https://doi.org/10.1021/nl071480w
58 J. Nelayah, M. Kociak, O. Stéphan, N. Geuquet, L. Henrard, F. J. García de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms, Nano Lett. 10(3), 902 (2010)
https://doi.org/10.1021/nl903653x
59 F. P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, Universal dispersion of surface plasmons in flat nanostructures, Nat. Commun. 5, 3604 (2014)
https://doi.org/10.1038/ncomms4604
60 S. Mazzucco, N. Geuquet, J. Ye, O. Stéphan, W. Van Roy, P. Van Dorpe, L. Henrard, and M. Kociak, Ultralocal modification of surface plasmons properties in silver nanocubes, Nano Lett. 12(3), 1288 (2012)
https://doi.org/10.1021/nl2037672
61 M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam, Nano Lett. 9(1), 399 (2009)
https://doi.org/10.1021/nl803270x
62 E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, Imaging the hidden modes of ultrathin plasmonic strip antennas by cathodoluminescence, Nano Lett. 11(10), 4265 (2011)
https://doi.org/10.1021/nl202256k
63 F. P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, Dark plasmonic breathing modes in silver nanodisks, Nano Lett. 12(11), 5780 (2012)
https://doi.org/10.1021/nl3030938
64 M. Kuttge, W. Cai, F. J. García de Abajo, and A. Polman, Dispersion of metal-insulator-metal plasmon polaritons probed by cathodoluminescence imaging spectroscopy, Phys. Rev. B 80(3), 033409 (2009)
https://doi.org/10.1103/PhysRevB.80.033409
65 M. K. Krug, M. Reisecker, A. Hohenau, H. Ditlbacher, A. Trügler, U. Hohenester, and J. R. Krenn, Probing plasmonic breathing modes optically, Appl. Phys. Lett. 105(17), 171103 (2014)
https://doi.org/10.1063/1.4900615
66 D. Rossouw and G. A. Botton, Plasmonic response of bent silver nanowires for nanophotonic subwavelength waveguiding, Phys. Rev. Lett. 110(6), 066801 (2013)
https://doi.org/10.1103/PhysRevLett.110.066801
67 M. Bosman, E. Ye, S. F. Tan, C. A. Nijhuis, J. K. W. Yang, R. Marty, A. Mlayah, A. Arbouet, C. Girard, and M. Y. Han, Surface plasmon damping quantified with an electron nanoprobe, Sci. Rep. 3, 1312 (2013)
https://doi.org/10.1038/srep01312
68 E. P. Bellido, D. Rossouw, and G. A. Botton, Toward 10 meV electron energy-loss spectroscopy resolution for plasmonics, Microsc. Microanal. 20(03), 767 (2014)
https://doi.org/10.1017/S1431927614000609
69 O. L. Krivanek, T. C. Lovejoy, M. F. Murfitt, G. Skone, P. E. Batson, and N. Dellby, Towards sub-10 meV energy resolution STEM-EELS, J. Phys. Conf. Ser. 522, 012023 (2014)
https://doi.org/10.1088/1742-6596/522/1/012023
70 O. L. Krivanek, T. C. Lovejoy, N. Dellby, T. Aoki, R. W. Carpenter, P. Rez, E. Soignard, J. Zhu, P. E. Batson, M. J. Lagos, R. F. Egerton, and P. A. Crozier, Vibrational spectroscopy in the electron microscope, Nature 514(7521), 209 (2014)
https://doi.org/10.1038/nature13870
71 A. N. Grigorenko, M. Polini, and K. S. Novoselov, Graphene plasmonics, Nat. Photonics 6(11), 749 (2012)
https://doi.org/10.1038/nphoton.2012.262
72 F. J. García de Abajo, Graphene plasmonics: Challenges and opportunities, ACS Photonics 1(3), 135 (2014)
https://doi.org/10.1021/ph400147y
73 D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe, Nano Lett. 11(4), 1499 (2011)
https://doi.org/10.1021/nl200634w
74 A. Losquin, S. Camelio, D. Rossouw, M. Besbes, F. Pailloux, D. Babonneau, G. A. Botton, J. J. Greffet, O. Stéphan, and M. Kociak, Experimental evidence of nanometer-scale confinement of plasmonic eigenmodes responsible for hot spots in random metallic films, Phys. Rev. B 88(11), 115427 (2013)
https://doi.org/10.1103/PhysRevB.88.115427
75 M. Bosman, L. Zhang, H. Duan, S. F. Tan, C. A. Nijhuis, C. W. Qiu, and J. K. Yang, Encapsulated annealing: enhancing the plasmon quality factor in lithographically-defined nanostructures, Sci. Rep. 4, 5537 (2014)
https://doi.org/10.1038/srep05537
76 L. F. Zagonel, S. Mazzucco, M. Tencé, K. March, R. Bernard, B. Laslier, G. Jacopin, M. Tchernycheva, L. Rigutti, F. H. Julien, R. Songmuang, and M. Kociak, Nanometer scale spectral imaging of quantum emitters in nanowires and its correlation to their atomically resolved structure, Nano Lett. 11(2), 568 (2011)
https://doi.org/10.1021/nl103549t
77 B. J. M. Brenny, T. Coenen, and A. Polman, Quantifying coherent and incoherent cathodoluminescence in semiconductors and metals, J. Appl. Phys. 115(24), 244307 (2014)
https://doi.org/10.1063/1.4885426
78 J. A. Scholl, A. L. Koh, and J. A. Dionne, Quantum plasmon resonances of individual metallic nanoparticles, Nature 483(7390), 421 (2012)
https://doi.org/10.1038/nature10904
79 S. Raza, S. Kadkhodazadeh, T. Christensen, M. Di Vece, M. Wubs, N. A. Mortensen, and N. Stenger, Multipole plasmons and their disappearance in fewnanometre silver nanoparticles, Nat. Commun. 6, 8788 (2015)
https://doi.org/10.1038/ncomms9788
80 S. Mazzucco, O. Stéphan, C. Colliex, I. Pastoriza- Santos, L. Liz-Marzán, J. García de Abajo, and M. Kociak, Spatially resolved measurements of plasmonic eigenstates in complex-shaped, asymmetric nanoparticles: gold nanostars, Eur. Phys. J. 54(3), 33512 (2011)
81 A. Maity, A. Maiti, P. Das, D. Senapati, and T. K. Chini, Effect of intertip coupling on the plasmonic behavior of individual multitipped gold nanoflower, ACS Photonics 1(12), 1290 (2014)
https://doi.org/10.1021/ph500309j
82 H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, Nanoplasmonics: classical down to the nanometer scale, Nano Lett. 12(3), 1683 (2012)
https://doi.org/10.1021/nl3001309
83 T. Coenen, E. J. R. Vesseur, and A. Polman, Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas, ACS Nano 6(2), 1742 (2012)
https://doi.org/10.1021/nn204750d
84 F. von Cube, S. Irsen, R. Diehl, J. Niegemann, K. Busch, and S. Linden, From isolated metaatoms to photonic metamaterials: evolution of the plasmonic nearfield, Nano Lett. 13(2), 703 (2013)
https://doi.org/10.1021/nl3043757
85 R. Verre, M. Svedendahl, N. Odebo Länk, Z. J. Yang, G. Zengin, T. J. Antosiewicz, and M. Käll, Directional light extinction and emission in a metasurface of tilted plasmonic nanopillars, Nano Lett. 16(1), 98 (2016)
https://doi.org/10.1021/acs.nanolett.5b03026
86 M. Bosman, G. R. Anstis, V. J. Keast, J. D. Clarke, and M. B. Cortie, Light splitting in nanoporous gold and silver, ACS Nano 6(1), 319 (2012)
https://doi.org/10.1021/nn203600n
87 D. T. Schoen, A. C. Atre, A. García-Etxarri, J. A. Dionne, and M. L. Brongersma, Probing complex reflection coefficients in one-dimensional surface plasmon polariton waveguides and cavities using STEM EELS, Nano Lett. 15(1), 120 (2015)
https://doi.org/10.1021/nl503179j
88 J. Martin, M. Kociak, Z. Mahfoud, J. Proust, D. Gérard, and J. Plain, High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas, Nano Lett. 14(10), 5517 (2014)
https://doi.org/10.1021/nl501850m
89 R. A. Crowther, D. J. DeRosier, and A. Klug, The reconstruction of a three-dimensional structure from projections and its application to electron microscopy, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 317, 319 (1970)
https://doi.org/10.1098/rspa.1970.0119
90 P. A. Midgley and R. E. Dunin-Borkowski, Electron tomography and holography in materials science, Nat. Mater. 8(4), 271 (2009)
https://doi.org/10.1038/nmat2406
91 D. A. De Winter, M. N. Lebbink, D. F. Wiggers De Vries, J. A. Post, and M. R. Drury, FIB-SEM cathodoluminescence tomography: Practical and theoretical considerations, J. Microsc. 243(3), 315 (2011)
https://doi.org/10.1111/j.1365-2818.2011.03510.x
92 R. Leary, Z. Saghi, P. A. Midgley, and D. J. Holland, Compressed sensing electron tomography, Ultramicroscopy 131, 70 (2013)
https://doi.org/10.1016/j.ultramic.2013.03.019
93 O. Nicoletti, F. de la Peña, R. K. Leary, D. J. Holland, C. Ducati, and P. A. Midgley, Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles, Nature 502(7469), 80 (2013)
https://doi.org/10.1038/nature12469
94 A. Hörl, A. Trügler, and U. Hohenester, Tomography of particle plasmon fields from electron energy loss spectroscopy, Phys. Rev. Lett. 111, 076801 (2013)
https://doi.org/10.1103/PhysRevLett.111.076801
95 D. D. Lee and H. S. Seung, Learning the parts of objects by non-negative matrix factorization, Nature 401(6755), 788 (1999)
https://doi.org/10.1038/44565
96 E. J. Candes and M. B. Wakin, An introduction to compressive sampling, IEEE Signal Process. Mag. 25(2), 21 (2008)
https://doi.org/10.1109/MSP.2007.914731
97 A. C. Atre, B. J. M. Brenny, T. Coenen, A. García- Etxarri, A. Polman, and J. A. Dionne, Nanoscale optical tomography with cathodoluminescence spectroscopy, Nat. Nanotechnol. 10(5), 429 (2015)
https://doi.org/10.1038/nnano.2015.39
98 I. Arslan, J. R. Tong, and P. A. Midgley, Reducing the missing wedge: High-resolution dual axis tomography of inorganic materials, Ultramicroscopy 106(11–12), 994 (2006)
https://doi.org/10.1016/j.ultramic.2006.05.010
99 M. Lyra and A. Ploussi, Filtering in SPECT image reconstruction, Int. J. Biomed. Imaging 2011, 693795 (2011)
https://doi.org/10.1155/2011/693795
100 X. Wang, R. Lockwood, M. Malac, H. Furukawa, P. Li, and A. Meldrum, Reconstruction and visualization of nanoparticle composites by transmission electron tomography, Ultramicroscopy 113, 96 (2012)
https://doi.org/10.1016/j.ultramic.2011.11.001
101 A. Hörl, A. Trügler, and U. Hohenester, Full threedimensonal reconstruction of the dyadic green tensor from electron energy loss spectroscopy of plasmonic nanoparticles, ACS Photonics 2(10), 1429 (2015)
https://doi.org/10.1021/acsphotonics.5b00256
102 G. Haberfehlner, A. Trügler, F. P. Schmidt, A. Hörl, F. Hofer, U. Hohenester, and G. Kothleitner, Correlated 3D nanoscale mapping and simulation of coupled plasmonic nanoparticles, Nano Lett. 15(11), 7726 (2015)
https://doi.org/10.1021/acs.nanolett.5b03780
103 S. M. Collins, E. Ringe, M. Duchamp, Z. Saghi, R. E. Dunin-Borkowski, and P. A. Midgley, Eigenmode tomography of surface charge oscillations of plasmonic nanoparticles by electron energy loss spectroscopy, ACS Photonics 2(11), 1628 (2015)
https://doi.org/10.1021/acsphotonics.5b00421
104 F. J. García de Abajo and M. Kociak, Electron energygain spectroscopy, New J. Phys. 10(7), 073035 (2008)
https://doi.org/10.1088/1367-2630/10/7/073035
105 B. Barwick, D. J. Flannigan, and A. H. Zewail, Photon-induced near-field electron microscopy, Nature 462(7275), 902 (2009)
https://doi.org/10.1038/nature08662
106 B. J. M. Brenny, D. van Dam, C. I. Osorio, J. Gómez Rivas, and A. Polman, Azimuthally polarized cathodoluminescence from InP nanowires, Appl. Phys. Lett. 107(20), 201110 (2015)
https://doi.org/10.1063/1.4935798
107 C. I. Osorio, T. Coenen, B. J. M. Brenny, A. Polman, and A. F. Koenderink, Angle-resolved cathodoluminescence imaging polarimetry, ACS Photonics 3(1), 147 (2016)
https://doi.org/10.1021/acsphotonics.5b00596
108 H. G. Berry, G. Gabrielse, and A. E. Livingston, Measurement of the Stokes parameters of light, Appl. Opt. 16(12), 3200 (1977)
https://doi.org/10.1364/AO.16.003200
109 C. Fallet, T. Novikova, M. Foldyna, S. Manhas, B. H. Ibrahim, A. D. Martino, C. Vannuffel, and C. Constancias, Overlay measurements by Mueller polarimetry in back focal plane, MOEMS 10(3), 033017 (2011)
https://doi.org/10.1117/1.3626852
110 G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, Metafocusing by a Metaspiral Plasmonic Lens, Nano Lett. 15(9), 5739 (2015)
https://doi.org/10.1021/acs.nanolett.5b01571
111 M. Uchida and A. Tonomura, Generation of electron beams carrying orbital angular momentum, Nature 464(7289), 737 (2010)
https://doi.org/10.1038/nature08904
112 J. Verbeeck, H. Tian, and P. Schattschneider, Production and application of electron vortex beams, Nature 467(7313), 301 (2010)
https://doi.org/10.1038/nature09366
113 B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, Electron vortex beams with high quanta of orbital angular momentum, Science 331(6014), 192 (2011)
https://doi.org/10.1126/science.1198804
114 K. Saitoh, Y. Hasegawa, K. Hirakawa, N. Tanaka, and M. Uchida, Measuring the orbital angular momentum of electron vortex beams using a forked grating, Phys. Rev. Lett. 111(7), 074801 (2013)
https://doi.org/10.1103/PhysRevLett.111.074801
115 L. Clark, A. Béché, G. Guzzinati, A. Lubk, M. Mazilu, R. Van Boxem, and J. Verbeeck, Exploiting lens aberrations to create electron-vortex beams, Phys. Rev. Lett. 111(6), 064801 (2013)
https://doi.org/10.1103/PhysRevLett.111.064801
116 A. Béché, R. Van Boxem, G. Van Tendeloo, and J. Verbeeck, Magnetic monopole field exposed by electrons, Nat. Phys. 10(1), 26 (2014)
https://doi.org/10.1038/nphys2816
117 J. Handali, P. Shakya, and B. Barwick, Creating electron vortex beams with light, Opt. Express 23(4), 5236 (2015)
https://doi.org/10.1364/OE.23.005236
118 J. Rusz and S. Bhowmick, Boundaries for efficient use of electron vortex beams to measure magnetic properties, Phys. Rev. Lett. 111(10), 105504 (2013)
https://doi.org/10.1103/PhysRevLett.111.105504
119 P. Schattschneider, S. Löffler, M. Stöger-Pollach, and J. Verbeeck, Is magnetic chiral dichroism feasible with electron vortices? Ultramicroscopy 136, 81 (2014)
https://doi.org/10.1016/j.ultramic.2013.07.012
120 Z. Mohammadi, C. P. Van Vlack, S. Hughes, J. Bornemann, and R. Gordon, Vortex electron energy loss spectroscopy for near-field mapping of magnetic plasmons, Opt. Express 20(14), 15024 (2012)
https://doi.org/10.1364/OE.20.015024
121 X. Zambrana-Puyalto, X. Vidal, and G. Molina-Terriza, Angular momentum-induced circular dichroism in nonchiral nanostructures, Nat. Commun. 5, 4922 (2014)
https://doi.org/10.1038/ncomms5922
122 A. Asenjo-Garcia and F. J. García de Abajo, Dichroism in the interaction between vortex electron beams, plasmons, and molecules, Phys. Rev. Lett. 113(6), 066102 (2014)
https://doi.org/10.1103/PhysRevLett.113.066102
123 S. Meuret, L. H. G. Tizei, T. Cazimajou, R. Bourrellier, H. C. Chang, F. Treussart, and M. Kociak, Photon bunching in cathodoluminescence, Phys. Rev. Lett. 114(19), 197401 (2015)
https://doi.org/10.1103/PhysRevLett.114.197401
124 M. Merano, S. Sonderegger, A. Crottini, S. Collin, P. Renucci, E. Pelucchi, A. Malko, M. H. Baier, E. Kapon, B. Deveaud, and J. D. Ganière, Probing carrier dynamics in nanostructures by picosecond cathodoluminescence, Nature 438(7067), 479 (2005)
https://doi.org/10.1038/nature04298
125 T. Onuma, Y. Kagamitani, K. Hazu, T. Ishiguro, T. Fukuda, and S. F. Chichibu, Femtosecond-laserdriven photoelectron-gun for time-resolved cathodoluminescence measurement of GaN, Rev. Sci. Instrum. 83(4), 043905 (2012)
https://doi.org/10.1063/1.3701368
126 F. Carbone, O. H. Kwon, and A. H. Zewail, Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy, Science 325(5937), 181 (2009)
https://doi.org/10.1126/science.1175005
127 O. Schmidt, G. H. Fecher, Y. Hwu, and G. Schönhense, The spatial distribution of non-linear effects in multi-photon photoemission from metallic adsorbates on Si(111), Surf. Sci. 482–485, 687 (2001)
https://doi.org/10.1016/S0039-6028(01)00926-8
128 M. Merschdorf, C. Kennerknecht, and W. Pfeiffer, Collective and single-particle dynamics in time-resolved two-photon photoemission, Phys. Rev. B 70(19), 193401 (2004)
https://doi.org/10.1103/PhysRevB.70.193401
129 C. Lemke, T. Leißner, S. Jauernik, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H. G. Rubahn, and M. Bauer, Mapping surface plasmon polariton propagation via counter-propagating light pulses, Opt. Express 20(12), 12877 (2012)
https://doi.org/10.1364/OE.20.012877
130 L. Douillard, F. Charra, Z. Korczak, R. Bachelot, S. Kostcheev, G. Lerondel, P. M. Adam, and P. Royer, Short range plasmon resonators probed by photoemission electron microscopy, Nano Lett. 8(3), 935 (2008)
https://doi.org/10.1021/nl080053v
131 C. Wiemann, D. Bayer, M. Rohmer, M. Aeschlimann, and M. Bauer, Local 2PPE-yield enhancement in a defined periodic silver nanodisk array, Surf. Sci. 601(20), 4714 (2007)
https://doi.org/10.1016/j.susc.2007.05.040
132 E. Mårsell, R. Svärd, M. Miranda, C. Guo, A. Harth, E. Lorek, J. Mauritsson, C. L. Arnold, H. Xu, A. L’Huillier, A. Mikkelsen, and A. Losquin, Direct subwavelength imaging and control of near-field localization in individual silver nanocubes, Appl. Phys. Lett. 107(20), 201111 (2015)
https://doi.org/10.1063/1.4935831
133 J. T. Stuckless and M. Moskovits, Enhanced two-photon photoemission from coldly deposited silver films, Phys. Rev. B 40(14), 9997 (1989)
https://doi.org/10.1103/PhysRevB.40.9997
134 M. Cinchetti, A. Gloskovskii, S. A. Nepjiko, G. Schönhense, H. Rochholz, and M. Kreiter, Photoemission electron microscopy as a tool for the investigation of optical near fields, Phys. Rev. Lett. 95(4), 047601 (2005)
https://doi.org/10.1103/PhysRevLett.95.047601
135 T. Leißner, C. Lemke, J. Fiutowski, J. W. Radke, A. Klick, L. Tavares, J. Kjelstrup-Hansen, H. G. Rubahn, and M. Bauer, Morphological tuning of the plasmon dispersion relation in dielectric-loaded nanofiber waveguides, Phys. Rev. Lett. 111(4), 046802 (2013)
https://doi.org/10.1103/PhysRevLett.111.046802
136 C. Lemke, T. Leißner, A. Klick, J. Fiutowski, J. W. Radke, M. Thomaschewski, J. Kjelstrup-Hansen, H. G. Rubahn, and M. Bauer, The complex dispersion relation of surface plasmon polaritons at gold/parahexaphenylene interfaces, Appl. Phys. B 116(3), 585 (2014)
https://doi.org/10.1007/s00340-013-5737-2
137 N. M. Buckanie, J. Göhre, P. Zhou, D. von der Linde, M. Horn-von Hoegen, and F. J. Meyer Zu Heringdorf, Space charge effects in photoemission electron microscopy using amplified femtosecond laser pulses, J. Phys.: Condens. Matter 21(31), 314003 (2009)
https://doi.org/10.1088/0953-8984/21/31/314003
138 L. Douillard and F. Charra, Photoemission electron microscopy, a tool for plasmonics, J. Electron Spectrosc. Relat. Phenom. 189(Suppl.), 24 (2013)
https://doi.org/10.1016/j.elspec.2013.03.013
139 A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film, Nano Lett. 5(6), 1123 (2005)
https://doi.org/10.1021/nl0506655
140 E. Mårsell, A. Losquin, R. Svärd, M. Miranda, C. Guo, A. Harth, E. Lorek, J. Mauritsson, C. L. Arnold, H. Xu, A. L’Huillier, and A. Mikkelsen, Nanoscale imaging of local few-femtosecond near-field dynamics within a single plasmonic nanoantenna, Nano Lett. 15(10), 6601 (2015)
https://doi.org/10.1021/acs.nanolett.5b02363
141 Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, Ultrafast imaging of surface plasmons propagating on a gold surface, Nano Lett. 15(5), 3472 (2015)
https://doi.org/10.1021/acs.nanolett.5b00803
142 M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, Spatiotemporal control of nanooptical excitations, Proc. Natl. Acad. Sci. USA 107(12), 5329 (2010)
https://doi.org/10.1073/pnas.0913556107
143 O. Schmidt, M. Bauer, C. Wiemann, R. Porath, M. Scharte, O. Andreyev, G. Schönhense, and M. Aeschlimann, Time-resolved two photon photoemission electron microscopy, Appl. Phys. B 74(3), 223 (2002)
https://doi.org/10.1007/s003400200803
144 J. Lehmann, M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission, Phys. Rev. Lett. 85(14), 2921 (2000)
https://doi.org/10.1103/PhysRevLett.85.2921
145 M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. Krenn, H. Ditlbacher, F. Aussenegg, and A. Liebsch, Do Mie plasmons have a longer lifetime on resonance than off resonance? Appl. Phys. B 73(4), 305 (2001)
https://doi.org/10.1007/s003400100701
146 B. Lamprecht, A. Leitner, and F. Aussenegg, SHG studies of plasmon dephasing in nanoparticles, Appl. Phys. B 68(3), 419 (1999)
https://doi.org/10.1007/s003400050643
147 B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecondresolution third-harmonic generation, Phys. Rev. Lett. 83(21), 4421 (1999)
https://doi.org/10.1103/PhysRevLett.83.4421
148 M. Bauer, C. Wiemann, J. Lange, D. Bayer, M. Rohmer, and M. Aeschlimann, Phase propagation of localized surface plasmons probed by time-resolved photoemission electron microscopy, Appl. Phys. A 88(3), 473 (2007)
https://doi.org/10.1007/s00339-007-4056-z
149 F. J. M. zu Heringdorf, L. Chelaru, S. Möllenbeck, D. Thien, and M. H. von Hoegen, Femtosecond photoemission microscopy, Surf. Sci. 601, 4700 (2007)
https://doi.org/10.1016/j.susc.2007.05.052
150 A. Kubo, N. Pontius, and H. Petek, Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface, Nano Lett. 7(2), 470 (2007)
https://doi.org/10.1021/nl0627846
151 Q. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, and H. Misawa, Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy, Light Sci. Appl. 2(12), e118 (2013)
https://doi.org/10.1038/lsa.2013.74
152 E. Lorek, E. Mårsell, A. Losquin, M. Miranda, A. Harth, C. Guo, R. Svärd, C. L. Arnold, A. L’Huiller, A. Mikkelsen, and J. Mauritsson, Size and shape dependent few-cycle near-field dynamics of bowtie nanoantennas, Opt. Express 23(24), 31460 (2015)
https://doi.org/10.1364/OE.23.031460
153 C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices, Nano Lett. 13(3), 1053 (2013)
https://doi.org/10.1021/nl3042849
154 C. Lemke, T. Leissner, A. Evlyukhin, J. W. Radke, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H. G. Rubahn, B. N. Chichkov, C. Reinhardt, and M. Bauer, The interplay between localized and propagating plasmonic excitations tracked in space and time, Nano Lett. 14(5), 2431 (2014)
https://doi.org/10.1021/nl500106z
155 Q. Sun, H. Yu, K. Ueno, A. Kubo, Y. Matsuo, and H. Misawa, Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy, ACS Nano 10(3), 3835 (2016)
https://doi.org/10.1021/acsnano.6b00715
156 P. Kahl, S. Wall, C. Witt, C. Schneider, D. Bayer, A. Fischer, P. Melchior, M. Horn-von Hoegen, M. Aeschlimann, and F. J. Meyer zu Heringdorf, Normal-incidence photoemission electron microscopy (NI-PEEM) for imaging surface plasmon polaritons, Plasmonics 9(6), 1401 (2014)
https://doi.org/10.1007/s11468-014-9756-6
157 D. Podbiel, P. Kahl, and F. J. Meyer zu Heringdorf, Analysis of the contrast in normal-incidence surface plasmon photoemission microscopy in a pump–probe experiment with adjustable polarization, Appl. Phys. B 122(4), 1 (2016)
https://doi.org/10.1007/s00340-016-6363-6
158 M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, Attosecond nanoplasmonic-field microscope, Nat. Photonics 1(9), 539 (2007)
https://doi.org/10.1038/nphoton.2007.169
159 M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, Adaptive subwavelength control of nanooptical fields, Nature 446(7133), 301 (2007)
https://doi.org/10.1038/nature05595
160 M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P.Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, Coherent twodimensional nanoscopy, Science 333(6050), 1723 (2011)
https://doi.org/10.1126/science.1209206
161 M. Aeschlimann, T. Brixner, D. Differt, U. Heinzmann, M. Hensen, C. Kramer, F. Lükermann, P. Melchior, W. Pfeiffer, M. Piecuch, C. Schneider, H. Stiebig, C. Strüber, and P. Thielen, Perfect absorption in nanotextured thin films via Anderson-localized photon modes, Nat. Photonics 9(10), 663 (2015)
https://doi.org/10.1038/nphoton.2015.159
162 T. Brabec and F. Krausz, Intense few-cycle laser fields: Frontiers of nonlinear optics, Rev. Mod. Phys. 72(2), 545 (2000)
https://doi.org/10.1103/RevModPhys.72.545
163 P. Agostini and L. F. DiMauro, The physics of attosecond light pulses, Rep. Prog. Phys. 67(6), 813 (2004)
https://doi.org/10.1088/0034-4885/67/6/R01
164 E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, Direct measurement of light waves, Science 305(5688), 1267 (2004)
https://doi.org/10.1126/science.1100866
165 E. Skopalová, D. Y. Lei, T. Witting, C. Arrell, F. Frank, Y. Sonnefraud, S. A. Maier, J. W. G. Tisch, and J. P. Marangos, Numerical simulation of attosecond nanoplasmonic streaking, New J. Phys. 13(8), 083003 (2011)
https://doi.org/10.1088/1367-2630/13/8/083003
166 A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klünder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains, Rev. Sci. Instrum. 80(12), 123703 (2009)
https://doi.org/10.1063/1.3263759
167 S. H. Chew, F. Süßmann, C. Späth, A. Wirth, J. Schmidt, S. Zherebtsov, A. Guggenmos, A. Oelsner, N. Weber, J. Kapaldo, A. Gliserin, M. I. Stockman, M. F. Kling, and U. Kleineberg, Time-of-flight-photoelectron emission microscopy on plasmonic structures using attosecond extreme ultraviolet pulses, Appl. Phys. Lett. 100(5), 051904 (2012)
https://doi.org/10.1063/1.3670324
168 E. Mårsell, C. L. Arnold, E. Lorek, D. Guenot, T. Fordell, M. Miranda, J. Mauritsson, H. Xu, A. L’Huillier, and A. Mikkelsen, Secondary electron imaging of nanostructures using extreme ultra-violet attosecond pulse trains and infra-red femtosecond pulses, Ann. Phys. 525(1–2), 162 (2013)
https://doi.org/10.1002/andp.201200269
169 S. H. Chew, K. Pearce, C. Späth, A. Guggenmos, J. Schmidt, F. Süßmann, M. F. Kling, U. Kleineberg, E. Mårsell, C. L. Arnold, E. Lorek, P. Rudawski, C. Guo, M. Miranda, F. Ardana, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Imaging localized surface plasmons by femtosecond to attosecond time-resolved photoelectron emission microscopy- “ATTO-PEEM”, in: Attosecond Nanophysics, Wiley-VCH Verlag GmbH and Co. KGaA, 2014, pp 325–364
170 B. Förg, J. Schötz, F. Süßmann, M. Förster, M. Krüger, B. Ahn, W. A. Okell, K. Wintersperger, S. Zherebtsov, A. Guggenmos, V. Pervak, A. Kessel, S. A. Trushin, A. M. Azzeer, M. I. Stockman, D. Kim, F. Krausz, P. Hommelhoff, and M. F. Kling, Attosecond nanoscale nearfield sampling, Nat. Commun. 7, 11717 (2016)
https://doi.org/10.1038/ncomms11717
171 H. Boersch, J. Geiger, and W. Stickel, Interaction of 25-keV electrons with lattice vibrations in LiF. Experimental evidence for surface modes of lattice vibration, Phys. Rev. Lett. 17(7), 379 (1966)
https://doi.org/10.1103/PhysRevLett.17.379
172 A. Howie, Electrons and photons: Exploiting the connection, Inst. Phys. Conf. Ser. 161, 311 (1999)
173 A. Howie, Photon-assisted electron energy loss spectroscopy and ultrafast imaging, Microsc. Microanal. 15(4), 314 (2009)
https://doi.org/10.1017/S1431927609090254
174 A. Howie, Photon interactions for electron microscopy applications, Eur. Phys. J. Appl. Phys. 54, 33502 (2011)
https://doi.org/10.1051/epjap/2010100353
175 A. Howie, Stimulated excitation electron microscopy and spectroscopy, Ultramicroscopy 151, 116 (2015)
https://doi.org/10.1016/j.ultramic.2014.09.006
176 L. Piazza, T. T. Lummen, E. Quiñonez, Y. Murooka, B. W. Reed, B. Barwick, and F. Carbone, Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field, Nat. Commun. 6, 6407 (2015)
https://doi.org/10.1038/ncomms7407
177 D. J. Flannigan, B. Barwick, and A. H. Zewail, Biological imaging with 4D ultrafast electron microscopy, Proc. Natl. Acad. Sci. USA 107(22), 9933 (2010)
https://doi.org/10.1073/pnas.1005653107
178 F. J. García de Abajo, A. Asenjo-Garcia, and M. Kociak, Multiphoton absorption and emission by interaction of swift electrons with evanescent light fields, Nano Lett. 10(5), 1859 (2010)
https://doi.org/10.1021/nl100613s
179 A. Yurtsever and A. H. Zewail, Direct visualization of near-fields in nanoplasmonics and nanophotonics, Nano Lett. 12(6), 3334 (2012)
https://doi.org/10.1021/nl301643k
180 A. Yurtsever, J. S. Baskin, and A. H. Zewail, Entangled nanoparticles: Discovery by visualization in 4D electron microscopy, Nano Lett. 12(9), 5027 (2012)
https://doi.org/10.1021/nl302824f
181 L. Piazza, D. J. Masiel, T. LaGrange, B. W. Reed, B. Barwick, and F. Carbone, Design and implementation of a fs-resolved transmission electron microscope based on thermionic gun technology, Chem. Phys. 423, 79 (2013)
https://doi.org/10.1016/j.chemphys.2013.06.026
182 M. T. Hassan, H. Liu, J. S. Baskin, and A. H. Zewail, Photon gating in four-dimensional ultrafast electron microscopy, Proc. Natl. Acad. Sci. USA 112(42), 12944 (2015)
https://doi.org/10.1073/pnas.1517942112
183 T. T. A. Lummen, R. J. Lamb, G. Berruto, T. Lagrange, L. Dal Negro, F. J. García de Abajo, D. McGrouther, B. Barwick, and F. Carbone, Shaping, imaging and controlling plasmonic interference fields at buried interfaces, arXiv: 1604.01232 (2016)
184 A. Yurtsever, R. M. van der Veen, and A. H. Zewail, Subparticle ultrafast spectrum imaging in 4D electron microscopy, Science 335(6064), 59 (2012)
https://doi.org/10.1126/science.1213504
185 A. Feist, K. E. Echternkamp, J. Schauss, S. V. Yalunin, S. Schäfer, and C. Ropers, Quantum coherent optical phase modulation in an ultrafast transmission electron microscope, Nature 521(7551), 200 (2015)
https://doi.org/10.1038/nature14463
186 S. T. Park, M. Lin, and A. H. Zewail, Photon-induced near-field electron microscopy (PINEM): Theoretical and experimental, New J. Phys. 12(12), 123028 (2010)
https://doi.org/10.1088/1367-2630/12/12/123028
187 D. A. Plemmons, S. Tae Park, A. H. Zewail, and D. J. Flannigan, Characterization of fast photoelectron packets in weak and strong laser fields in ultrafast electron microscopy, Ultramicroscopy 146, 97 (2014)
https://doi.org/10.1016/j.ultramic.2014.08.001
188 B. Shore and J. Eberly, Analytic approximations in multi-level excitation theory, Opt. Commun. 24(1), 83 (1978)
https://doi.org/10.1016/0030-4018(78)90272-9
189 F. J. García de Abajo, B. Barwick, and F. Carbone, Electron diffraction by plasmon waves, arXiv: 1603.07551 (2016)
190 N. Talebi, W. Sigle, R. Vogelgesang, and P. van Aken, Numerical simulations of interference effects in photonassisted electron energy-loss spectroscopy, New J. Phys. 15(5), 053013 (2013)
https://doi.org/10.1088/1367-2630/15/5/053013
191 H. S. Park, J. S. Baskin, O. H. Kwon, and A. H. Zewail, Atomic-scale imaging in real and energy space developed in ultrafast electron microscopy, Nano Lett. 7(9), 2545 (2007)
https://doi.org/10.1021/nl071369q
192 C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, G. Laurent, L. Douillard, and F. Charra, Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars, Nano Lett. 11(2), 402 (2011)
https://doi.org/10.1021/nl103007m
193 H. Liu, J. S. Baskin, and A. H. Zewail, Infrared PINEM developed by diffraction in 4D UEM, Proc. Natl. Acad. Sci. USA 113(8), 2041 (2016)
https://doi.org/10.1073/pnas.1600317113
194 B. Barwick and A. H. Zewail, Photonics and plasmonics in 4D ultrafast electron microscopy, ACS Photonics 2(10), 1391 (2015)
https://doi.org/10.1021/acsphotonics.5b00427
195 A. Gliserin, M. Walbran, F. Krausz, and P. Baum, Subphonon- period compression of electron pulses for atomic diffraction, Nat. Commun. 6, 8723 (2015)
https://doi.org/10.1038/ncomms9723
196 E. Fill, L. Veisz, A. Apolonski, and F. Krausz, Sub-fs electron pulses for ultrafast electron diffraction, New J. Phys. 8(11), 272 (2006)
https://doi.org/10.1088/1367-2630/8/11/272
197 G. F. Mancini, B. Mansart, S. Pagano, B. van der Geer, M. de Loos, and F. Carbone, Design and implementation of a flexible beamline for fs electron diffraction experiments, Nucl. Instrum. Methods Phys. Res. Sect. A 691, 113 (2012)
https://doi.org/10.1016/j.nima.2012.06.057
198 P. Baum and A. H. Zewail, Attosecond electron pulses for 4D diffraction and microscopy, Proc. Natl. Acad. Sci. USA 104(47), 18409 (2007)
https://doi.org/10.1073/pnas.0709019104
199 S. A. Hilbert, C. Uiterwaal, B. Barwick, H. Batelaan, and A. H. Zewail, Temporal lenses for attosecond and femtosecond electron pulses, Proc. Natl. Acad. Sci. USA 106(26), 10558 (2009)
https://doi.org/10.1073/pnas.0904912106
200 P. Rudawski, A. Harth, C. Guo, E. Lorek, M. Miranda, C. M. Heyl, E. W. Larsen, J. Ahrens, O. Prochnow, T. Binhammer, U. Morgner, J. Mauritsson, A. L’ Huillier, and C. L. Arnold, Carrier-envelope phase dependent high-order harmonic generation with a high-repetition rate OPCPA-system, Eur. Phys. J. D 69, 70 (2015)
https://doi.org/10.1140/epjd/e2015-50568-y
201 V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodríguez-Fernández, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzán, N. I. Zheludev, M. Kociak, and F. J. García de Abajo, Plasmon spectroscopy and imaging of individual gold nanodecahedra: A combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study, Nano Lett. 12(8), 4172 (2012)
https://doi.org/10.1021/nl301742h
202 P. Melchior, D. Kilbane, E. J. Vesseur, A. Polman, and M. Aeschlimann, Photoelectron imaging of modal interference in plasmonic whispering gallery cavities, Opt. Express 23(25), 31619 (2015)
https://doi.org/10.1364/OE.23.031619
203 E. Ringe, C. J. DeSantis, S. M. Collins, M. Duchamp, R. E. Dunin-Borkowski, S. E. Skrabalak, and P. A. Midgley, Resonances of nanoparticles with poor plasmonic metal tips, Sci. Rep. 5, 17431 (2015)
https://doi.org/10.1038/srep17431
204 M. Zhao, M. Bosman, M. Danesh, M. Zeng, P. Song, Y. Darma, A. Rusydi, H. Lin, C. W. Qiu, and K. P. Loh, Visible surface plasmon modes in single Bi2Te3 nanoplate, Nano Lett. 15(12), 8331 (2015)
https://doi.org/10.1021/acs.nanolett.5b03966
205 J. A. Hachtel, C. Marvinney, A. Mouti, D. Mayo, R. Mu, S. J. Pennycook, A. R. Lupini, M. F. Chisholm, R. F. Haglund, and S. T. Pantelides, Probing plasmons in three dimensions by combining complementary spectroscopies in a scanning transmission electron microscope, Nanotechnology 27(15), 155202 (2016)
https://doi.org/10.1088/0957-4484/27/15/155202
206 T. Coenen, D. T. Schoen, B. J. M. Brenny, A. Polman, and M. L. Brongersma, Combined electron energyloss and cathodoluminescence spectroscopy on individual and composite plasmonic nanostructures, Phys. Rev. B 93(19), 195429 (2016)
https://doi.org/10.1103/PhysRevB.93.195429
[1] Hangwen Guo, Mohammad Saghayezhian, Zhen Wang, Yimei Zhu, Jiandi Zhang, Ward Plummer. Visualizing quantum phenomena at complex oxide interfaces: An atomic view from scanning transmission electron microscopy[J]. Front. Phys. , 2020, 15(1): 13401-.
[2] O. de los Santos-Sánchez. Probing intensity-field correlations of single-molecule surface-enhanced Raman-scattered light[J]. Front. Phys. , 2019, 14(6): 61601-.
[3] Tataiana Latychevskaia, Seok-Kyun Son, Yaping Yang, Dale Chancellor, Michael Brown, Servet Ozdemir, Ivan Madan, Gabriele Berruto, Fabrizio Carbone, Artem Mishchenko, Kostya S. Novoselov. Stacking transition in rhombohedral graphite[J]. Front. Phys. , 2019, 14(1): 13608-.
[4] Wen-Cheng Yue, Pei-Jun Yao, Li-Xin Xu, Hai Ming. All-dielectric bowtie waveguide with deep subwavelength mode confinement[J]. Front. Phys. , 2018, 13(4): 134207-.
[5] P. James Schuck,Wei Bao,Nicholas J. Borys. A polarizing situation: Taking an in-plane perspective for next-generation near-field studies[J]. Front. Phys. , 2016, 11(2): 117804-.
[6] Hong-Yan Liang,Hong Wei,Hong-Xing Xu. Deviating from the nanorod shape: Shape-dependent plasmonic properties of silver nanorice and nanocarrot structures[J]. Front. Phys. , 2016, 11(2): 117301-.
[7] Sanshui Xiao,Xiaolong Zhu,Bo-Hong Li,N. Asger Mortensen. Graphene-plasmon polaritons: From fundamental properties to potential applications[J]. Front. Phys. , 2016, 11(2): 117801-.
[8] Ondrej Stranik, Jacqueline Jatschka, Andrea Csáki, Wolfgang Fritzsche. Development of new classes of plasmon active nano-structures and their application in bio-sensing and energy guiding[J]. Front. Phys. , 2014, 9(5): 652-664.
[9] Yu-Liang Zhao, Yan-Lin Song, Wei-Guo Song, Wei Liang, Xing-Yu Jiang, Zhi-Yong Tang, Hong-Xing Xu, Zhi-Xiang Wei, Yun-Qi Liu, Ming-Hua Liu, Lei Jiang, Xin-He Bao, Li-Jun Wan, Chun-Li Bai. Progress of nanoscience in China[J]. Front. Phys. , 2014, 9(3): 257-288.
[10] Zee Hwan Kim. Single-molecule surface-enhanced Raman scattering: Current status and future perspective[J]. Front. Phys. , 2014, 9(1): 25-30.
[11] Yizhuo He, Junxue Fu, Yiping Zhao. Oblique angle deposition and its applications in plasmonics[J]. Front. Phys. , 2014, 9(1): 47-59.
[12] Yuko S. Yamamoto, Mitsuru Ishikawa, Yukihiro Ozaki, Tamitake Itoh. Fundamental studies on enhancement and blinking mechanism of surface-enhanced Raman scattering (SERS) and basic applications of SERS biological sensing[J]. Front. Phys. , 2014, 9(1): 31-46.
[13] Zhi-Yuan Li. Nanophotonics in China: Overviews and highlights[J]. Front. Phys. , 2012, 7(6): 601-631.
[14] Guang-cun SHAN (单光存), Shu-ying BAO (包术颖), Kang ZHANG (张康), Wei HUANG (黄维). Theoretical study of photon emission from single quantum dot emitter coupled to surface plasmons[J]. Front. Phys. , 2011, 6(3): 313-319.
[15] Min GAO (高旻), Cheng-yao LI (李成垚), Wen-liang LI (李文亮), Xiao-xian ZHANG (张小娴), Lian-mao PENG (彭练矛). In situ characterization of optoelectronic nanostructures and nanodevices[J]. Front Phys Chin, 2010, 5(4): 405-413.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed