|
|
Free control of far-field scattering angle of transmission terahertz wave using multilayer split-ring resonators’ metasurfaces |
Ying Tian1, Xufeng Jing1( ), Haiyong Gan2( ), Chenxia Li1, Zhi Hong1 |
1. Institute of Optoelectronic Technology, China Jiliang University, Hangzhou 310018, China 2. National Institute of Metrology, Beijing 102200, China |
|
|
Abstract To enhance transmission efficiency of Pancharatnam–Berry (PB) phase metasurfaces, multilayer splitring resonators were proposed to develop encoding sequences. As per the generalized Snell’s law, the deflection angle of the PB phase encoding metasurfaces depends on the metasurface period’s size. Therefore, it is impossible to design an infinitesimal metasurface unit; consequently, the continuous transmission scattering angle cannot be obtained. In digital signal processing, this study introduces the Fourier convolution principle on encoding metasurface sequences to freely control the transmitted scattering angles. Both addition and subtraction operations between two different encoding sequences were then performed to achieve the continuous variation of the scattering angle. Furthermore, we established that the Fourier convolution principle can be applied to the checkerboard coded metasurfaces.
|
Keywords
metamaterial
metasurface
scattering
Fourier convolution
|
Corresponding Author(s):
Xufeng Jing,Haiyong Gan
|
Just Accepted Date: 29 September 2020
Issue Date: 03 November 2020
|
|
1 |
S. Teng, Q. Zhang, H. Wang, L. Liu, and H. Lv, Conversion between polarization states based on metasurface, Photon. Res. 7(3), 246 (2019)
https://doi.org/10.1364/PRJ.7.000246
|
2 |
X. Luo, Z. Tan, C. Wang, and J. Cao, A reflectingtype highly efficient terahertz cross-polarization converter based on metamaterials, Chin. Opt. Lett. 17(9), 093101 (2019)
https://doi.org/10.3788/COL201917.093101
|
3 |
L. Koirala, C. Park, S. Lee, and D. Choi, Angle tolerant transmissive color filters exploiting metasurface incorporating hydrogenated amorphous silicon nanopillars, Chin. Opt. Lett. 17(8), 082301 (2019)
https://doi.org/10.3788/COL201917.082301
|
4 |
T. Hou, Y. An, Q. Chang, P. Ma, J. Li, D. Zhi, L. Huang, R. Su, J. Wu, Y. Ma, and P. Zhou, Deep-learning-based phase control method for tiled aperture coherent beam combining systems, High Power Laser Science and Engineering 7(4), e59 (2019)
https://doi.org/10.1017/hpl.2019.46
|
5 |
H. Chen, J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances, J. Appl. Phys. 115(15), 154504 (2014)
https://doi.org/10.1063/1.4869917
|
6 |
H. Li, G. Wang, H. Xu, T. Cai, and J. Liang, X-band phase-gradient metasurface for high-gain lens antenna application, IEEE Trans. Antenn. Propag. 63(11), 5144 (2015)
https://doi.org/10.1109/TAP.2015.2475628
|
7 |
L. Huang, S. Zhang, and T. Zentgraf, Metasurface holography: from fundamentals to applications, Nanophotonics 7(6), 1169 (2018)
https://doi.org/10.1515/nanoph-2017-0118
|
8 |
A. Minovich, A. Miroshnichenko, A. Bykov, T. Murzina, D. Neshev, and Y. Kivshar, Functional and nonlinear optical metasurfaces, Laser Photonics Rev. 9(2), 195 (2015)
https://doi.org/10.1002/lpor.201400402
|
9 |
H. Wang, J. Zheng, Y. Fu, C. Wang, X. Huang, Z. Ye, and ian, Multichannel high extinction ratio polarized beam splitters based on metasurfaces, Chin. Opt. Lett. 17(5), 052303 (2019)
https://doi.org/10.3788/COL201917.052303
|
10 |
M. Huault, D. De Luis, J. Apinaniz, M. De Marco, C. Salgado, N. Gordillo, C. Gutiérrez Neira, J. A. Perez-Hernandez, R. Fedosejevs, G. Gatti, L. Roso, and L. Volpe, A 2D scintillator-based proton detector for high repetition rate experiments, High Power Laser Science and Engineering. 7(4), e60 (2019)
https://doi.org/10.1017/hpl.2019.43
|
11 |
M. Akram, M. Mehmood, X. Bai, R. Jin, M. Premaratne, and W. Zhu, High efficiency ultrathin transmissive metasurfaces, Adv. Opt. Mater. 7(11), 1801628 (2019)
https://doi.org/10.1002/adom.201801628
|
12 |
M. Akram, G. Ding, K. Chen, Y. Feng, and W. Zhu, Ultrathin single layer metasurfaces with ultra-wideband operation for both transmission and reflection, Adv. Mater. 32(12), 1907308 (2020)
https://doi.org/10.1002/adma.201907308
|
13 |
M. Akram, X. Bai, R. Jin, G. Vandenbosch, M. Premaratne, and W. Zhu, Photon spin Hall effect-based ultrathin transmissive metasurface for efficient generation of OAM waves, IEEE Trans. Antenn. Propag. 67(7), 4650 (2019)
https://doi.org/10.1109/TAP.2019.2905777
|
14 |
X. Bie, X. Jing, Z. Hong, and C. Li, Flexible control of transmitting terahertz beams based on multilayer encoding metasurfaces, Appl. Opt. 57(30), 9070 (2018)
https://doi.org/10.1364/AO.57.009070
|
15 |
Z. Ma, S. Hanham, P. Albella, B. Ng, H. Lu, Y. Gong, S. Maier, and M. Hong, Terahertz all-dielectric magnetic mirror metasurfaces, ACS Photonics 3(6), 1010 (2016)
https://doi.org/10.1021/acsphotonics.6b00096
|
16 |
T. Cui, M. Qi, X. Wan, J. Zhao, and Q. Cheng, Coding metamaterials, digital metamaterials and programmable metamaterials, Light Sci. Appl. 3(10), e218 (2014)
https://doi.org/10.1038/lsa.2014.99
|
17 |
F. Aieta, P. Genevet, M. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, Aberration-free ultrathin flat lenses and axicons at tele-com wavelengths based on plasmonic metasurfaces,Nano Lett. 12(9), 4932 (2012)
https://doi.org/10.1021/nl302516v
|
18 |
X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, and S. Zhuang, Manipulating terahertz plasmonic vortex based on geometric and dynamic phase, Adv. Opt. Mater. 7(3), 1801328 (2019)
https://doi.org/10.1002/adom.201801328
|
19 |
Q. T. Li, F. Dong, B. Wang, F. Gan, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, Polarization independent and high-efficiency dielectric metasurfaces for visible light, Opt. Express 24(15), 16309 (2016)
https://doi.org/10.1364/OE.24.016309
|
20 |
A. Arbabi and A. Faraon, Fundamental limits of ultrathin metasurfaces, Sci. Rep. 7(1), 43722 (2017)
https://doi.org/10.1038/srep43722
|
21 |
A. Forouzmand, S. Tao, S. Jafar-Zanjani, J. Cheng, M. M. Salary, and H. Mosallaei, Double split-loop resonators as building blocks of metasurfaces for light manipulation: Bnding, focusing, and flat-top generation, J. Opt. Soc. Am. B 33(7), 1411 (2016)
https://doi.org/10.1364/JOSAB.33.001411
|
22 |
D. Zhang, X. Yang, P. Su, J. Luo, H. Chen, J. Yuan, and L. Li, Design of single-layer high-efficiency transmitting phase-gradient metasurface and high gain antenna, J. Phys. D Appl. Phys. 50(49), 495104 (2017)
https://doi.org/10.1088/1361-6463/aa9549
|
23 |
M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, Thin AMC structure for radar cross-section reduction, IEEE Trans. Antenn. Propag. 55(12), 3630 (2007)
https://doi.org/10.1109/TAP.2007.910306
|
24 |
C. E. Garcia-Ortiz, R. Cortes, J. E. Gómez-Correa, E. Pisano, J. Fiutowski, D. A. Garcia-Ortiz, V. Ruiz-Cortes, H. G. Rubahn, and V. Coello, Plasmonic metasurface Luneburg lens, Photon. Res. 7(10), 1112 (2019)
https://doi.org/10.1364/PRJ.7.001112
|
25 |
C. Sitawarin, W. Jin, Z. Lin, and A. W. Rodriguez, Inverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion, Photon. Res. 6(5), B82 (2018)
https://doi.org/10.1364/PRJ.6.000B82
|
26 |
B. Du, H. B. Cai, W. S. Zhang, S. Y. Zou, J. Chen, and S. P. Zhu, A demonstration of extracting the strength and wavelength of the magnetic field generated by the Weibel instability from proton radiography, High Power Laser Science and Engineering 7(3), e40 (2019)
https://doi.org/10.1017/hpl.2019.30
|
27 |
S. Rubin and Y. Fainman, Nonlinear, tunable, and active optical metasurface with liquid film, Advanced Photonics 1(06), 066003 (2019)
https://doi.org/10.1117/1.AP.1.6.066003
|
28 |
X. He, F. Lin, F. Liu, and H. Zhang, Investigation of phonon scattering on the tunable mechanisms of terahertz graphene metamaterials, Nanomaterials 10(1), 39 (2019)
https://doi.org/10.3390/nano10010039
|
29 |
X. He, F. Lin, F. Liu, and W. Shi, Tunable strontium titanate terahertz all-dielectric metamaterials, J. Phys. D Appl. Phys. 53(15), 155105 (2020)
https://doi.org/10.1088/1361-6463/ab6ccc
|
30 |
J. Peng, X. He, C. Shi, J. Leng, F. Lin, F. Liu, H. Zhang, and W. Shi, Investigation of graphene supported terahertz elliptical metamaterials, Physica E 124, 114309 (2020)
https://doi.org/10.1016/j.physe.2020.114309
|
31 |
H. Wang, L. Liu, C. Zhou, J. Xu, M. Zhang, S. Teng, and Y. Cai, Vortex beam generation with variable topological charge based on a spiral slit, Nanophotonics 8(2), 317 (2019)
https://doi.org/10.1515/nanoph-2018-0214
|
32 |
Q. Zhang, H. Wang, L. Liu, and S. Teng, Generation of vector beams using spatial variation nanoslits with linearly polarized light illumination, Opt. Express 26(18), 24145 (2018)
https://doi.org/10.1364/OE.26.024145
|
33 |
H. Wang, L. Liu, C. Liu, X. Li, S. Wang, Q. Xu, and S. Teng, Plasmonic vortex generator without polarization dependence, New J. Phys. 20(3), 033024 (2018)
https://doi.org/10.1088/1367-2630/aaafbb
|
34 |
L. Liu, H. Wang, Y. Han, X. Lu, H. Lv, and S. Teng, Color filtering and displaying based on hole array, Opt. Commun. 436, 96 (2019)
https://doi.org/10.1016/j.optcom.2018.12.007
|
35 |
M. King, N. M. H. Butler, R. Wilson, R. Capdessus, R. J. Gray, H. W. Powell, R. J. Dance, H. Padda, B. Gonzalez-Izquierdo, D. R. Rusby, N. P. Dover, G. S. Hicks, O. C. Ettlinger, C. Scullion, D. C. Carroll, Z. Najmudin, M. Borghesi, D. Neely, and P. McKenna, Role of magnetic field evolution on filamentary structure formation in intense laser–foil interactions, High Power Laser Science and Engineering 7(1), e14 (2019)
https://doi.org/10.1017/hpl.2018.75
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|