Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2020, Vol. 15 Issue (6) : 62502    https://doi.org/10.1007/s11467-020-1013-1
RESEARCH ARTICLE
Free control of far-field scattering angle of transmission terahertz wave using multilayer split-ring resonators’ metasurfaces
Ying Tian1, Xufeng Jing1(), Haiyong Gan2(), Chenxia Li1, Zhi Hong1
1. Institute of Optoelectronic Technology, China Jiliang University, Hangzhou 310018, China
2. National Institute of Metrology, Beijing 102200, China
 Download: PDF(1528 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To enhance transmission efficiency of Pancharatnam–Berry (PB) phase metasurfaces, multilayer splitring resonators were proposed to develop encoding sequences. As per the generalized Snell’s law, the deflection angle of the PB phase encoding metasurfaces depends on the metasurface period’s size. Therefore, it is impossible to design an infinitesimal metasurface unit; consequently, the continuous transmission scattering angle cannot be obtained. In digital signal processing, this study introduces the Fourier convolution principle on encoding metasurface sequences to freely control the transmitted scattering angles. Both addition and subtraction operations between two different encoding sequences were then performed to achieve the continuous variation of the scattering angle. Furthermore, we established that the Fourier convolution principle can be applied to the checkerboard coded metasurfaces.

Keywords metamaterial      metasurface      scattering      Fourier convolution     
Corresponding Author(s): Xufeng Jing,Haiyong Gan   
Just Accepted Date: 29 September 2020   Issue Date: 03 November 2020
 Cite this article:   
Ying Tian,Xufeng Jing,Haiyong Gan, et al. Free control of far-field scattering angle of transmission terahertz wave using multilayer split-ring resonators’ metasurfaces[J]. Front. Phys. , 2020, 15(6): 62502.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-1013-1
https://academic.hep.com.cn/fop/EN/Y2020/V15/I6/62502
1 S. Teng, Q. Zhang, H. Wang, L. Liu, and H. Lv, Conversion between polarization states based on metasurface, Photon. Res. 7(3), 246 (2019)
https://doi.org/10.1364/PRJ.7.000246
2 X. Luo, Z. Tan, C. Wang, and J. Cao, A reflectingtype highly efficient terahertz cross-polarization converter based on metamaterials, Chin. Opt. Lett. 17(9), 093101 (2019)
https://doi.org/10.3788/COL201917.093101
3 L. Koirala, C. Park, S. Lee, and D. Choi, Angle tolerant transmissive color filters exploiting metasurface incorporating hydrogenated amorphous silicon nanopillars, Chin. Opt. Lett. 17(8), 082301 (2019)
https://doi.org/10.3788/COL201917.082301
4 T. Hou, Y. An, Q. Chang, P. Ma, J. Li, D. Zhi, L. Huang, R. Su, J. Wu, Y. Ma, and P. Zhou, Deep-learning-based phase control method for tiled aperture coherent beam combining systems, High Power Laser Science and Engineering 7(4), e59 (2019)
https://doi.org/10.1017/hpl.2019.46
5 H. Chen, J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances, J. Appl. Phys. 115(15), 154504 (2014)
https://doi.org/10.1063/1.4869917
6 H. Li, G. Wang, H. Xu, T. Cai, and J. Liang, X-band phase-gradient metasurface for high-gain lens antenna application, IEEE Trans. Antenn. Propag. 63(11), 5144 (2015)
https://doi.org/10.1109/TAP.2015.2475628
7 L. Huang, S. Zhang, and T. Zentgraf, Metasurface holography: from fundamentals to applications, Nanophotonics 7(6), 1169 (2018)
https://doi.org/10.1515/nanoph-2017-0118
8 A. Minovich, A. Miroshnichenko, A. Bykov, T. Murzina, D. Neshev, and Y. Kivshar, Functional and nonlinear optical metasurfaces, Laser Photonics Rev. 9(2), 195 (2015)
https://doi.org/10.1002/lpor.201400402
9 H. Wang, J. Zheng, Y. Fu, C. Wang, X. Huang, Z. Ye, and ian, Multichannel high extinction ratio polarized beam splitters based on metasurfaces, Chin. Opt. Lett. 17(5), 052303 (2019)
https://doi.org/10.3788/COL201917.052303
10 M. Huault, D. De Luis, J. Apinaniz, M. De Marco, C. Salgado, N. Gordillo, C. Gutiérrez Neira, J. A. Perez-Hernandez, R. Fedosejevs, G. Gatti, L. Roso, and L. Volpe, A 2D scintillator-based proton detector for high repetition rate experiments, High Power Laser Science and Engineering. 7(4), e60 (2019)
https://doi.org/10.1017/hpl.2019.43
11 M. Akram, M. Mehmood, X. Bai, R. Jin, M. Premaratne, and W. Zhu, High efficiency ultrathin transmissive metasurfaces, Adv. Opt. Mater. 7(11), 1801628 (2019)
https://doi.org/10.1002/adom.201801628
12 M. Akram, G. Ding, K. Chen, Y. Feng, and W. Zhu, Ultrathin single layer metasurfaces with ultra-wideband operation for both transmission and reflection, Adv. Mater. 32(12), 1907308 (2020)
https://doi.org/10.1002/adma.201907308
13 M. Akram, X. Bai, R. Jin, G. Vandenbosch, M. Premaratne, and W. Zhu, Photon spin Hall effect-based ultrathin transmissive metasurface for efficient generation of OAM waves, IEEE Trans. Antenn. Propag. 67(7), 4650 (2019)
https://doi.org/10.1109/TAP.2019.2905777
14 X. Bie, X. Jing, Z. Hong, and C. Li, Flexible control of transmitting terahertz beams based on multilayer encoding metasurfaces, Appl. Opt. 57(30), 9070 (2018)
https://doi.org/10.1364/AO.57.009070
15 Z. Ma, S. Hanham, P. Albella, B. Ng, H. Lu, Y. Gong, S. Maier, and M. Hong, Terahertz all-dielectric magnetic mirror metasurfaces, ACS Photonics 3(6), 1010 (2016)
https://doi.org/10.1021/acsphotonics.6b00096
16 T. Cui, M. Qi, X. Wan, J. Zhao, and Q. Cheng, Coding metamaterials, digital metamaterials and programmable metamaterials, Light Sci. Appl. 3(10), e218 (2014)
https://doi.org/10.1038/lsa.2014.99
17 F. Aieta, P. Genevet, M. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, Aberration-free ultrathin flat lenses and axicons at tele-com wavelengths based on plasmonic metasurfaces,Nano Lett. 12(9), 4932 (2012)
https://doi.org/10.1021/nl302516v
18 X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, and S. Zhuang, Manipulating terahertz plasmonic vortex based on geometric and dynamic phase, Adv. Opt. Mater. 7(3), 1801328 (2019)
https://doi.org/10.1002/adom.201801328
19 Q. T. Li, F. Dong, B. Wang, F. Gan, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, Polarization independent and high-efficiency dielectric metasurfaces for visible light, Opt. Express 24(15), 16309 (2016)
https://doi.org/10.1364/OE.24.016309
20 A. Arbabi and A. Faraon, Fundamental limits of ultrathin metasurfaces, Sci. Rep. 7(1), 43722 (2017)
https://doi.org/10.1038/srep43722
21 A. Forouzmand, S. Tao, S. Jafar-Zanjani, J. Cheng, M. M. Salary, and H. Mosallaei, Double split-loop resonators as building blocks of metasurfaces for light manipulation: Bnding, focusing, and flat-top generation, J. Opt. Soc. Am. B 33(7), 1411 (2016)
https://doi.org/10.1364/JOSAB.33.001411
22 D. Zhang, X. Yang, P. Su, J. Luo, H. Chen, J. Yuan, and L. Li, Design of single-layer high-efficiency transmitting phase-gradient metasurface and high gain antenna, J. Phys. D Appl. Phys. 50(49), 495104 (2017)
https://doi.org/10.1088/1361-6463/aa9549
23 M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, Thin AMC structure for radar cross-section reduction, IEEE Trans. Antenn. Propag. 55(12), 3630 (2007)
https://doi.org/10.1109/TAP.2007.910306
24 C. E. Garcia-Ortiz, R. Cortes, J. E. Gómez-Correa, E. Pisano, J. Fiutowski, D. A. Garcia-Ortiz, V. Ruiz-Cortes, H. G. Rubahn, and V. Coello, Plasmonic metasurface Luneburg lens, Photon. Res. 7(10), 1112 (2019)
https://doi.org/10.1364/PRJ.7.001112
25 C. Sitawarin, W. Jin, Z. Lin, and A. W. Rodriguez, Inverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion, Photon. Res. 6(5), B82 (2018)
https://doi.org/10.1364/PRJ.6.000B82
26 B. Du, H. B. Cai, W. S. Zhang, S. Y. Zou, J. Chen, and S. P. Zhu, A demonstration of extracting the strength and wavelength of the magnetic field generated by the Weibel instability from proton radiography, High Power Laser Science and Engineering 7(3), e40 (2019)
https://doi.org/10.1017/hpl.2019.30
27 S. Rubin and Y. Fainman, Nonlinear, tunable, and active optical metasurface with liquid film, Advanced Photonics 1(06), 066003 (2019)
https://doi.org/10.1117/1.AP.1.6.066003
28 X. He, F. Lin, F. Liu, and H. Zhang, Investigation of phonon scattering on the tunable mechanisms of terahertz graphene metamaterials, Nanomaterials 10(1), 39 (2019)
https://doi.org/10.3390/nano10010039
29 X. He, F. Lin, F. Liu, and W. Shi, Tunable strontium titanate terahertz all-dielectric metamaterials, J. Phys. D Appl. Phys. 53(15), 155105 (2020)
https://doi.org/10.1088/1361-6463/ab6ccc
30 J. Peng, X. He, C. Shi, J. Leng, F. Lin, F. Liu, H. Zhang, and W. Shi, Investigation of graphene supported terahertz elliptical metamaterials, Physica E 124, 114309 (2020)
https://doi.org/10.1016/j.physe.2020.114309
31 H. Wang, L. Liu, C. Zhou, J. Xu, M. Zhang, S. Teng, and Y. Cai, Vortex beam generation with variable topological charge based on a spiral slit, Nanophotonics 8(2), 317 (2019)
https://doi.org/10.1515/nanoph-2018-0214
32 Q. Zhang, H. Wang, L. Liu, and S. Teng, Generation of vector beams using spatial variation nanoslits with linearly polarized light illumination, Opt. Express 26(18), 24145 (2018)
https://doi.org/10.1364/OE.26.024145
33 H. Wang, L. Liu, C. Liu, X. Li, S. Wang, Q. Xu, and S. Teng, Plasmonic vortex generator without polarization dependence, New J. Phys. 20(3), 033024 (2018)
https://doi.org/10.1088/1367-2630/aaafbb
34 L. Liu, H. Wang, Y. Han, X. Lu, H. Lv, and S. Teng, Color filtering and displaying based on hole array, Opt. Commun. 436, 96 (2019)
https://doi.org/10.1016/j.optcom.2018.12.007
35 M. King, N. M. H. Butler, R. Wilson, R. Capdessus, R. J. Gray, H. W. Powell, R. J. Dance, H. Padda, B. Gonzalez-Izquierdo, D. R. Rusby, N. P. Dover, G. S. Hicks, O. C. Ettlinger, C. Scullion, D. C. Carroll, Z. Najmudin, M. Borghesi, D. Neely, and P. McKenna, Role of magnetic field evolution on filamentary structure formation in intense laser–foil interactions, High Power Laser Science and Engineering 7(1), e14 (2019)
https://doi.org/10.1017/hpl.2018.75
[1] Chang-Da Zhou, Zhen Mou, Rui Bao, Zhong Li, Shu-Yun Teng. Compound plasmonic vortex generation based on spiral nanoslits[J]. Front. Phys. , 2021, 16(3): 33503-.
[2] Zhao-Yang Shen, He-Lin Yang, Xuan Liu, Xiao-Jun Huang, Tian-Yu Xiang, Jiong Wu, Wei Chen. Electromagnetically induced transparency in novel dual-band metamaterial excited by toroidal dipolar response[J]. Front. Phys. , 2020, 15(1): 12601-.
[3] O. de los Santos-Sánchez. Probing intensity-field correlations of single-molecule surface-enhanced Raman-scattered light[J]. Front. Phys. , 2019, 14(6): 61601-.
[4] V. De Michele, G. Romanelli, A. Cupane. Reply to “Comment to ‘Dynamics of supercooled confined water measured by deep inelastic neutron scattering’ by Y. Finkelstein and R. Moreh”[J]. Front. Phys. , 2019, 14(5): 53606-.
[5] Y. Finkelstein, R. Moreh. Comment to “Dynamics of supercooled confined water measured by deep inelastic neutron scattering”[J]. Front. Phys. , 2019, 14(5): 53605-.
[6] Junjie Qi, Haiwen Liu, Hua Jiang, X. C. Xie. Dephasing effects in topological insulators[J]. Front. Phys. , 2019, 14(4): 43403-.
[7] Zhi-Ming Yu, Ying Liu, Shengyuan A. Yang. Anomalous spatial shifts in interface electronic scattering[J]. Front. Phys. , 2019, 14(3): 33402-.
[8] Yu-Fei Wang, De-Liang Yao, Han-Qing Zheng. On the existence of N*(890) resonance in S11 channel of πN scatterings[J]. Front. Phys. , 2019, 14(2): 24501-.
[9] T. Chatterji, S. Rols, U. D. Wdowik. Dynamics of the phase-change material GeTe across the structural phase transition[J]. Front. Phys. , 2019, 14(2): 23601-.
[10] Zheng-Yong Song, Qiong-Qiong Chu, Xiao-Peng Shen, Qing Huo Liu. Wideband high-efficient linear polarization rotators[J]. Front. Phys. , 2018, 13(5): 137803-.
[11] Meng-Yin Zhou, Lin Xu, Lu-Chan Zhang, Jiang Wu, Yan-Bo Li, Huan-Yang Chen. Perfect invisibility concentrator with simplified material parameters[J]. Front. Phys. , 2018, 13(5): 134101-.
[12] Yang-Yang Fu, Ya-Dong Xu, Huan-Yang Chen. Negative refraction based on purely imaginary metamaterials[J]. Front. Phys. , 2018, 13(4): 134206-.
[13] Wen-Yuan Du, Peng-Fei Zhang, Bing-Hong Wang. New phenomena in laser-assisted scattering of an electron by a muon[J]. Front. Phys. , 2018, 13(4): 133401-.
[14] Irina Piazza, Antonio Cupane, Emmanuel L. Barbier, Claire Rome, Nora Collomb, Jacques Ollivier, Miguel A. Gonzalez, Francesca Natali. Dynamical properties of water in living cells[J]. Front. Phys. , 2018, 13(1): 138301-.
[15] Fuming Xu,Zhizhou Yu,Zhirui Gong,Hao Jin. First-principles study on the electronic and transport properties of periodically nitrogen-doped graphene and carbon nanotube superlattices[J]. Front. Phys. , 2017, 12(4): 127306-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed