Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (5) : 137803    https://doi.org/10.1007/s11467-018-0779-x
RESEARCH ARTICLE
Wideband high-efficient linear polarization rotators
Zheng-Yong Song1(), Qiong-Qiong Chu1, Xiao-Peng Shen2(), Qing Huo Liu3
1. Institute of Electromagnetics and Acoustics, Department of Electronic Science, Xiamen University, Xiamen 361005, China
2. School of Physical Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
3. Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA
 Download: PDF(9604 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We demonstrate a wideband polarization rotator with characteristics of high efficiency and large-range incidence angle by using a very simple anisotropic reflective metasurface. The calculated results show that reflection coefficient of cross polarization is larger than 71% over an octave frequency bandwidth from ~4.9 GHz to ~10.4 GHz. The proposed metasurface can still work very well even at incidence angle of 60?. The experiment at microwave frequencies is carried out and its results agree well with the simulated ones.

Keywords polarization      metasurface     
Corresponding Author(s): Zheng-Yong Song,Xiao-Peng Shen   
Issue Date: 19 April 2018
 Cite this article:   
Zheng-Yong Song,Qiong-Qiong Chu,Xiao-Peng Shen, et al. Wideband high-efficient linear polarization rotators[J]. Front. Phys. , 2018, 13(5): 137803.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-018-0779-x
https://academic.hep.com.cn/fop/EN/Y2018/V13/I5/137803
1 M. Born and E. Wolf, Principles of Optics, Cambridge: Cambridge University Press, 1999
https://doi.org/10.1017/CBO9781139644181
2 J. A. Kong, Electromagnetic Wave Theory, Cambridge: EMW Publishing, 2005
3 C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures, Phys. Rev. B 85(19), 195131 (2012)
https://doi.org/10.1103/PhysRevB.85.195131
4 L. Feng, A. Mizrahi, S. Zamek, Z. Liu, V. Lomakin, and Y. Fainman, Metamaterials for enhanced polarization conversion in plasmonic excitation, ACS Nano 5(6), 5100 (2011)
https://doi.org/10.1021/nn201181p
5 R. Xia, X. Jing, X. Gui, Y. Tian, and Z. Hong, Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials, Opt. Mater. Express 7(3), 977 (2017)
https://doi.org/10.1364/OME.7.000977
6 L. Y. Guo, M. H. Li, X. J. Huang, and H. L. Yang, Electric toroidal metamaterial for resonant transparency and circular cross-polarization conversion, Appl. Phys. Lett. 105(3), 033507 (2014)
https://doi.org/10.1063/1.4891643
7 J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, A helical metamaterial for broadband circular polarization conversion, Adv. Opt. Mater. 3(10), 1411 (2015)
https://doi.org/10.1002/adom.201500194
8 Y. Cheng, R. Gong, and L. Wu, Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves, Plasmonics 12(4), 1113 (2017)
https://doi.org/10.1007/s11468-016-0365-4
9 Y. Li, J. Zhang, H. Ma, J. Wang, Y. Pang, D. Feng, Z. Xu, and S. Qu, Microwave birefringent metamaterials for polarization conversion based on spoof surface plasmon polariton modes, Sci. Rep. 6(1), 34518 (2016)
https://doi.org/10.1038/srep34518
10 M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling, Phys. Rev. Lett. 108(21), 213905 (2012)
https://doi.org/10.1103/PhysRevLett.108.213905
11 N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Light propagation with phase discontinuities: Generalized laws of reflection and refraction, Science 334(6054), 333 (2011)
https://doi.org/10.1126/science.1210713
12 J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, Nanostructured holograms for broadband manipulation of vector beams, Nano Lett. 13(9), 4269 (2013)
https://doi.org/10.1021/nl402039y
13 N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, A broadband, background-free quarterwave plate based on plasmonic metasurfaces, Nano Lett. 12(12), 6328 (2012)
https://doi.org/10.1021/nl303445u
14 J. M. Hao, Y. Yuan, L. X. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, Manipulating electromagnetic wave polarizations by anisotropic metamaterials, Phys. Rev. Lett. 99(6), 063908 (2007)
https://doi.org/10.1103/PhysRevLett.99.063908
15 Z. Y. Song, L. Zhang, and Q. H. Liu, High-efficiency broadband cross polarization converter for near-infrared light based on anisotropic plasmonic meta-surfaces, Plasmonics 11(1), 61 (2016)
https://doi.org/10.1007/s11468-015-0027-y
16 N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, Terahertz metamaterials for linear polarization conversion and anomalous refraction, Science 340(6138), 1304 (2013)
https://doi.org/10.1126/science.1235399
17 Z. Y. Song, X. Li, J. M. Hao, S. Y. Xiao, M. Qiu, Q. He, S. J. Ma, and L. Zhou, Tailor the surface-wave properties of a plasmonic metal by a metamaterial capping, Opt. Express 21(15), 18178 (2013)
https://doi.org/10.1364/OE.21.018178
18 Y. M. Yang, W. Y. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, Dielectric metareflectarray for broadband linear polarization conversion and optical vortex generation, Nano Lett. 14(3), 1394 (2014)
https://doi.org/10.1021/nl4044482
19 Z. Y. Song, and B. L. Zhang, Wide-angle polarizationinsensitive transparency of a continuous opaque metal film for near-infrared light, Opt. Express 22(6), 6519 (2014)
https://doi.org/10.1364/OE.22.006519
20 Z. Y. Song, J. Zhu, C. Zhu, Z. Yu, and Q. H. Liu, Broadband cross polarization converter with unity efficiency for terahertz waves based on anisotropic dielectric metareflect arrays, Mater. Lett. 159, 269 (2015)
https://doi.org/10.1016/j.matlet.2015.07.024
21 S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves, Nat. Mater. 11(5), 426 (2012)
https://doi.org/10.1038/nmat3292
22 P. C. Wu, W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, Versatile polarization generation with an aluminum plasmonic metasurface, Nano Lett. 17(1), 445 (2017)
https://doi.org/10.1021/acs.nanolett.6b04446
23 P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, W. Ser, D. P. Tsai, and A. Q. Liu, Broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface, Adv. Opt. Mater. 5(7), 1600938 (2017)
https://doi.org/10.1002/adom.201600938
24 P. C. Wu, J. W. Chen, C. W. Yin, Y. C. Lai, T. L. Chung, C. Y. Liao, B. H. Chen, K. W. Lee, C. J. Chuang, C. M. Wang, and D. P. Tsai, Visible metasurfaces for on-chip polarimetry, ACS Photonics, (2017) (published soon)
25 P. C. Wu, N. Papasimakis, and D. P. Tsai, Self-affine graphene metasurfaces for tunable broadband absorption, Phys. Rev. Appl. 6(4), 044019 (2016)
https://doi.org/10.1103/PhysRevApplied.6.044019
26 L. Cong, P. Pitchappa, C. Lee, and R. Singh, Active phase transition via loss engineering in a terahertz MEMS metamaterial, Adv. Mater. 29(26), 1700733 (2017)
https://doi.org/10.1002/adma.201700733
27 L. Cong, P. Pitchappa, Y. Wu, L. Ke, C. Lee, N. Singh, H. Yang, and R. Singh, Active multifunctional microelectromechanical system metadevices: Applications in polarization control, wavefront deflection, and holograms, Adv. Opt. Mater. 5(2), 1600716 (2017)
https://doi.org/10.1002/adom.201600716
28 L. Cong, Y. K. Srivastava, and R. Singh, Near-field inductive coupling induced polarization control in metasurfaces, Adv. Opt. Mater. 4(6), 848 (2016)
https://doi.org/10.1002/adom.201500681
29 L. Cong, Y. K. Srivastava, and R. Singh, Inter and intrametamolecular interaction enabled broadband highefficiency polarization control in metasurfaces, Appl. Phys. Lett. 108(1), 011110 (2016)
https://doi.org/10.1063/1.4939564
30 L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, A tunable dispersion-free terahertz metadevice with Pancharatnam-Berry-phase-enabled modulation and polarization control, Adv. Mater. 27(42), 6630 (2015)
https://doi.org/10.1002/adma.201502716
31 L. Cong, N. Xu, W. Zhang, and R. Singh, Polarization control in terahertz metasurfaces with the lowest order rotational symmetry, Adv. Opt. Mater. 3(9), 1176 (2015)
https://doi.org/10.1002/adom.201500100
32 L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, A perfect metamaterial polarization rotator, Appl. Phys. Lett. 103(17), 171107 (2013)
https://doi.org/10.1063/1.4826536
33 D. L. Markovich, A. Andryieuski, M. Zalkovskij, R. Malureanu, and A. V. Lavrinenko, Metamaterial polarization converter analysis: Limits of performance, Appl. Phys. B 112(2), 143 (2013)
https://doi.org/10.1007/s00340-013-5383-8
34 R. Malureanu, W. Sun, M. Zalkovskij, Q. He, L. Zhou, P. Uhd Jepsen, and A. Lavrinenko, Metamaterial-based design for a half-wavelength plate in the terahertz range, Appl. Phys. A Mater. Sci. Process. 119(2), 467 (2015)
https://doi.org/10.1007/s00339-015-9078-3
[1] Chang-Da Zhou, Zhen Mou, Rui Bao, Zhong Li, Shu-Yun Teng. Compound plasmonic vortex generation based on spiral nanoslits[J]. Front. Phys. , 2021, 16(3): 33503-.
[2] Yu-Fei Yan, Lan Zhou, Wei Zhong, Yu-Bo Sheng. Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon[J]. Front. Phys. , 2021, 16(1): 11501-.
[3] Ying Tian, Xufeng Jing, Haiyong Gan, Chenxia Li, Zhi Hong. Free control of far-field scattering angle of transmission terahertz wave using multilayer split-ring resonators’ metasurfaces[J]. Front. Phys. , 2020, 15(6): 62502-.
[4] Sen Jia, Xingyu Zhou, Chengping Shen. Experimental review of the ϒ(1S, 2S, 3S) physics at e+e colliders and the LHC[J]. Front. Phys. , 2020, 15(6): 64301-.
[5] X.-J. Hao, R.-Y. Yuan, J.-J. Jin, Y. Guo. Influence of the velocity barrier on the massive Dirac electron transport in a monolayer MoS2 quantum structure[J]. Front. Phys. , 2020, 15(3): 33603-.
[6] Guo-Feng Zhang, Chang-Gang Yang, Yong Ge, Yong-Gang Peng, Rui-Yun Chen, Cheng-Bing Qin, Yan Gao, Lei Zhang, Hai-Zheng Zhong, Yu-Jun Zheng, Lian-Tuan Xiao, Suo-Tang Jia. Influence of surface charges on the emission polarization properties of single CdSe/CdS dot-in-rods[J]. Front. Phys. , 2019, 14(6): 63601-.
[7] Guo-Feng Zhang, Yong-Gang Peng, Hai-Qing Xie, Bin Li, Zhi-Jie Li, Chang-Gang Yang, Wen-Li Guo, Cheng-Bing Qin, Rui-Yun Chen, Yan Gao, Yu-Jun Zheng, Lian-Tuan Xiao, Suo-Tang Jia. Linear dipole behavior of single quantum dots encased in metal oxide semiconductor nanoparticles films[J]. Front. Phys. , 2019, 14(2): 23605-.
[8] Pei Li, Zhao-Meng Gao, Xiu-Shi Huang, Long-Fei Wang, Wei-Feng Zhang, Hai-Zhong Guo. Ferroelectric polarization reversal tuned by magnetic field in a ferroelectric BiFeO3/Nb-doped SrTiO3 heterojunction[J]. Front. Phys. , 2018, 13(5): 136803-.
[9] Yu-Yu Jin, Sheng-Xian Qin, Hao Zu, Lan Zhou, Wei Zhong, Yu-Bo Sheng. Heralded amplification of single-photon entanglement with polarization feature[J]. Front. Phys. , 2018, 13(5): 130321-.
[10] Hong Wang, Bao-Cang Ren, Ai Hua Wang, Ahmed Alsaedi, Tasawar Hayat, Fu-Guo Deng. General hyperentanglement concentration for polarizationspatial- time-bin multi-photon systems with linear optics[J]. Front. Phys. , 2018, 13(5): 130315-.
[11] Xiang Liu, Wen-Bo Mi. Spontaneous ferroelectricity in strained low-temperature monoclinic Fe3O4: A first-principles study[J]. Front. Phys. , 2018, 13(2): 134204-.
[12] Cong Xiao,Dingping Li,Zhongshui Ma. Thermoelectric response of spin polarization in Rashba spintronic systems[J]. Front. Phys. , 2016, 11(3): 117201-.
[13] Qinghua Xu. Recent results on nucleon spin structure study at RHIC[J]. Front. Phys. , 2015, 10(6): 101402-.
[14] Jun Xu,Bao-An Li,Wen-Qing Shen,Yin Xia. Dynamical effects of spin-dependent interactions in low- and intermediate-energy heavy-ion reactions[J]. Front. Phys. , 2015, 10(6): 102501-.
[15] Krisztián Palotás, Gábor Mándi, Werner A. Hofer. Three-dimensional Wentzel–Kramers–Brillouin approach for the simulation of scanning tunneling microscopy and spectroscopy[J]. Front. Phys. , 2014, 9(6): 711-747.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed