|
|
Wideband high-efficient linear polarization rotators |
Zheng-Yong Song1( ), Qiong-Qiong Chu1, Xiao-Peng Shen2( ), Qing Huo Liu3 |
1. Institute of Electromagnetics and Acoustics, Department of Electronic Science, Xiamen University, Xiamen 361005, China 2. School of Physical Science and Technology, China University of Mining and Technology, Xuzhou 221116, China 3. Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA |
|
|
Abstract We demonstrate a wideband polarization rotator with characteristics of high efficiency and large-range incidence angle by using a very simple anisotropic reflective metasurface. The calculated results show that reflection coefficient of cross polarization is larger than 71% over an octave frequency bandwidth from ~4.9 GHz to ~10.4 GHz. The proposed metasurface can still work very well even at incidence angle of 60?. The experiment at microwave frequencies is carried out and its results agree well with the simulated ones.
|
Keywords
polarization
metasurface
|
Corresponding Author(s):
Zheng-Yong Song,Xiao-Peng Shen
|
Issue Date: 19 April 2018
|
|
1 |
M. Born and E. Wolf, Principles of Optics, Cambridge: Cambridge University Press, 1999
https://doi.org/10.1017/CBO9781139644181
|
2 |
J. A. Kong, Electromagnetic Wave Theory, Cambridge: EMW Publishing, 2005
|
3 |
C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures, Phys. Rev. B 85(19), 195131 (2012)
https://doi.org/10.1103/PhysRevB.85.195131
|
4 |
L. Feng, A. Mizrahi, S. Zamek, Z. Liu, V. Lomakin, and Y. Fainman, Metamaterials for enhanced polarization conversion in plasmonic excitation, ACS Nano 5(6), 5100 (2011)
https://doi.org/10.1021/nn201181p
|
5 |
R. Xia, X. Jing, X. Gui, Y. Tian, and Z. Hong, Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials, Opt. Mater. Express 7(3), 977 (2017)
https://doi.org/10.1364/OME.7.000977
|
6 |
L. Y. Guo, M. H. Li, X. J. Huang, and H. L. Yang, Electric toroidal metamaterial for resonant transparency and circular cross-polarization conversion, Appl. Phys. Lett. 105(3), 033507 (2014)
https://doi.org/10.1063/1.4891643
|
7 |
J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, A helical metamaterial for broadband circular polarization conversion, Adv. Opt. Mater. 3(10), 1411 (2015)
https://doi.org/10.1002/adom.201500194
|
8 |
Y. Cheng, R. Gong, and L. Wu, Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves, Plasmonics 12(4), 1113 (2017)
https://doi.org/10.1007/s11468-016-0365-4
|
9 |
Y. Li, J. Zhang, H. Ma, J. Wang, Y. Pang, D. Feng, Z. Xu, and S. Qu, Microwave birefringent metamaterials for polarization conversion based on spoof surface plasmon polariton modes, Sci. Rep. 6(1), 34518 (2016)
https://doi.org/10.1038/srep34518
|
10 |
M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling, Phys. Rev. Lett. 108(21), 213905 (2012)
https://doi.org/10.1103/PhysRevLett.108.213905
|
11 |
N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Light propagation with phase discontinuities: Generalized laws of reflection and refraction, Science 334(6054), 333 (2011)
https://doi.org/10.1126/science.1210713
|
12 |
J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, Nanostructured holograms for broadband manipulation of vector beams, Nano Lett. 13(9), 4269 (2013)
https://doi.org/10.1021/nl402039y
|
13 |
N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, A broadband, background-free quarterwave plate based on plasmonic metasurfaces, Nano Lett. 12(12), 6328 (2012)
https://doi.org/10.1021/nl303445u
|
14 |
J. M. Hao, Y. Yuan, L. X. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, Manipulating electromagnetic wave polarizations by anisotropic metamaterials, Phys. Rev. Lett. 99(6), 063908 (2007)
https://doi.org/10.1103/PhysRevLett.99.063908
|
15 |
Z. Y. Song, L. Zhang, and Q. H. Liu, High-efficiency broadband cross polarization converter for near-infrared light based on anisotropic plasmonic meta-surfaces, Plasmonics 11(1), 61 (2016)
https://doi.org/10.1007/s11468-015-0027-y
|
16 |
N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, Terahertz metamaterials for linear polarization conversion and anomalous refraction, Science 340(6138), 1304 (2013)
https://doi.org/10.1126/science.1235399
|
17 |
Z. Y. Song, X. Li, J. M. Hao, S. Y. Xiao, M. Qiu, Q. He, S. J. Ma, and L. Zhou, Tailor the surface-wave properties of a plasmonic metal by a metamaterial capping, Opt. Express 21(15), 18178 (2013)
https://doi.org/10.1364/OE.21.018178
|
18 |
Y. M. Yang, W. Y. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, Dielectric metareflectarray for broadband linear polarization conversion and optical vortex generation, Nano Lett. 14(3), 1394 (2014)
https://doi.org/10.1021/nl4044482
|
19 |
Z. Y. Song, and B. L. Zhang, Wide-angle polarizationinsensitive transparency of a continuous opaque metal film for near-infrared light, Opt. Express 22(6), 6519 (2014)
https://doi.org/10.1364/OE.22.006519
|
20 |
Z. Y. Song, J. Zhu, C. Zhu, Z. Yu, and Q. H. Liu, Broadband cross polarization converter with unity efficiency for terahertz waves based on anisotropic dielectric metareflect arrays, Mater. Lett. 159, 269 (2015)
https://doi.org/10.1016/j.matlet.2015.07.024
|
21 |
S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves, Nat. Mater. 11(5), 426 (2012)
https://doi.org/10.1038/nmat3292
|
22 |
P. C. Wu, W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, Versatile polarization generation with an aluminum plasmonic metasurface, Nano Lett. 17(1), 445 (2017)
https://doi.org/10.1021/acs.nanolett.6b04446
|
23 |
P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, W. Ser, D. P. Tsai, and A. Q. Liu, Broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface, Adv. Opt. Mater. 5(7), 1600938 (2017)
https://doi.org/10.1002/adom.201600938
|
24 |
P. C. Wu, J. W. Chen, C. W. Yin, Y. C. Lai, T. L. Chung, C. Y. Liao, B. H. Chen, K. W. Lee, C. J. Chuang, C. M. Wang, and D. P. Tsai, Visible metasurfaces for on-chip polarimetry, ACS Photonics, (2017) (published soon)
|
25 |
P. C. Wu, N. Papasimakis, and D. P. Tsai, Self-affine graphene metasurfaces for tunable broadband absorption, Phys. Rev. Appl. 6(4), 044019 (2016)
https://doi.org/10.1103/PhysRevApplied.6.044019
|
26 |
L. Cong, P. Pitchappa, C. Lee, and R. Singh, Active phase transition via loss engineering in a terahertz MEMS metamaterial, Adv. Mater. 29(26), 1700733 (2017)
https://doi.org/10.1002/adma.201700733
|
27 |
L. Cong, P. Pitchappa, Y. Wu, L. Ke, C. Lee, N. Singh, H. Yang, and R. Singh, Active multifunctional microelectromechanical system metadevices: Applications in polarization control, wavefront deflection, and holograms, Adv. Opt. Mater. 5(2), 1600716 (2017)
https://doi.org/10.1002/adom.201600716
|
28 |
L. Cong, Y. K. Srivastava, and R. Singh, Near-field inductive coupling induced polarization control in metasurfaces, Adv. Opt. Mater. 4(6), 848 (2016)
https://doi.org/10.1002/adom.201500681
|
29 |
L. Cong, Y. K. Srivastava, and R. Singh, Inter and intrametamolecular interaction enabled broadband highefficiency polarization control in metasurfaces, Appl. Phys. Lett. 108(1), 011110 (2016)
https://doi.org/10.1063/1.4939564
|
30 |
L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, A tunable dispersion-free terahertz metadevice with Pancharatnam-Berry-phase-enabled modulation and polarization control, Adv. Mater. 27(42), 6630 (2015)
https://doi.org/10.1002/adma.201502716
|
31 |
L. Cong, N. Xu, W. Zhang, and R. Singh, Polarization control in terahertz metasurfaces with the lowest order rotational symmetry, Adv. Opt. Mater. 3(9), 1176 (2015)
https://doi.org/10.1002/adom.201500100
|
32 |
L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, A perfect metamaterial polarization rotator, Appl. Phys. Lett. 103(17), 171107 (2013)
https://doi.org/10.1063/1.4826536
|
33 |
D. L. Markovich, A. Andryieuski, M. Zalkovskij, R. Malureanu, and A. V. Lavrinenko, Metamaterial polarization converter analysis: Limits of performance, Appl. Phys. B 112(2), 143 (2013)
https://doi.org/10.1007/s00340-013-5383-8
|
34 |
R. Malureanu, W. Sun, M. Zalkovskij, Q. He, L. Zhou, P. Uhd Jepsen, and A. Lavrinenko, Metamaterial-based design for a half-wavelength plate in the terahertz range, Appl. Phys. A Mater. Sci. Process. 119(2), 467 (2015)
https://doi.org/10.1007/s00339-015-9078-3
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|