ϒ(1S, 2S, 3S),hadronic decay,radiative decay,exotic states,new physics,cross section,polarization,quark–gluon plasma," /> ϒ(1S, 2S, 3S) physics at e+e colliders and the LHC" /> ϒ(1S, 2S, 3S) physics at e+e colliders and the LHC" /> ϒ(1S, 2S, 3S),hadronic decay,radiative decay,exotic states,new physics,cross section,polarization,quark–gluon plasma,"/> ϒ(1S, 2S, 3S) physics at e+e colliders and the LHC" /> ϒ(1S, 2S, 3S),hadronic decay,radiative decay,exotic states,new physics,cross section,polarization,quark–gluon plasma,"/>
Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2020, Vol. 15 Issue (6) : 64301    https://doi.org/10.1007/s11467-020-0978-0
REVIEW ARTICLE
Experimental review of the ϒ(1S, 2S, 3S) physics at e+e colliders and the LHC
Sen Jia1, Xingyu Zhou2, Chengping Shen1()
1. Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443, China
2. School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China
 Download: PDF(8237 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The three lowest-lying ϒ states, i.e., ϒ(1S), ϒ(2S), and ϒ(3S), composed of bb¯ pairs and below the BB ¯ threshold, provide a good platform for the researches of hadronic physics and physics beyond the Standard Model. They can be produced directly in e+e colliding experiments, such as CLEO, Babar, and Belle, with low continuum backgrounds. In these experiments, many measurements of the exclusive ϒ(1S) and ϒ(2S) decays into light hadrons, which shed light on the “80% rule” for the Okubo–Zweig–Iizuka suppressed decays in the bottomonium sector, were carried out. Meanwhile, many studies of the charmonium and bottomonium productions in ϒ(1S, 2S, 3S) decays were performed, to distinguish different Quantum Chromodynamics (QCD) models. Besides, exotic states and new physics were also extensively explored in ϒ(1S, 2S, 3S) decays at CLEO, BaBar, and Belle. The ϒ(1S, 2S, 3S) states can also be produced in pp collisions and in collisions involving heavy ions. The precision measurements of their cross sections and polarizations at the large hadron collider (LHC), especially in the CMS, ATLAS, and LHCb experiments, help to understandΥproduction mechanisms in pp collisions. The observation of the sequentialΥsuppression in heavy ion collisions at CMS, LHCb, and ALICE is of great importance for verifying the quark–gluon plasma predicted by QCD. In this article, we review the experimental results on ϒ(1S, 2S, 3S) at e+e colliders and the LHC, and summarize their prospects at Belle II and the LHC.

Keywords ϒ(1S, 2S, 3S)')" href="#">ϒ(1S, 2S, 3S)      hadronic decay      radiative decay      exotic states      new physics      cross section      polarization      quark–gluon plasma     
Corresponding Author(s): Chengping Shen   
Issue Date: 17 August 2020
 Cite this article:   
Sen Jia,Xingyu Zhou,Chengping Shen. Experimental review of the ϒ(1S, 2S, 3S) physics at e+e colliders and the LHC[J]. Front. Phys. , 2020, 15(6): 64301.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-0978-0
https://academic.hep.com.cn/fop/EN/Y2020/V15/I6/64301
1 S. W. Herb, et al., Observation of a dimuon resonance at 9.5 GeV in 400 GeV proton–nucleus collisions, Phys. Rev. Lett. 39, 252 (1977)
https://doi.org/10.1103/PhysRevLett.39.252
2 W. R. Innes, et al., Observation of structure in the ϒ region, Phys. Rev. Lett. 39, 1240 (1977)
3 C. Berger, et al., Observation of a narrow resonance formed in e+e− annihilation at 9.46 GeV, Phys. Lett. B 76, 243 (1978)
4 C. W. Darden, et al., Observation of a narrow resonance at 9.46 GeV in electron–positron annihilations, Phys. Lett. B 76, 246 (1978)
https://doi.org/10.1016/0370-2693(78)90288-5
5 J. K. Bienlein, et al., Observation of a narrow resonance at 10.02 GeV in e+e− annihilations, Phys. Lett. B 78, 360 (1978)
https://doi.org/10.1016/0370-2693(78)90040-0
6 P. A. Zyla, et al. (Particle Data Group), Review of particle physics, Prog. Theor. Exp. Phys. 2020, 083C01 (2020) (to be published)
7 S. Okubo, ϕ meson and unitary symmetry model, Phys. Lett. 5, 165 (1963)
https://doi.org/10.1016/S0375-9601(63)92548-9
8 G. Zweig, CERN Report Nos. Th 401 and 412, 1964
9 K. Okada and O. Shito, Systematics and phenomenology of boson mass levels (3), Prog. Theor. Phys. 35, 1061 (1966)
https://doi.org/10.1143/PTP.35.1061
10 J. Iizuka, Systematics and phenomenology of meson family, Prog. Theor. Phys. Suppl. 37, 21 (1966)
https://doi.org/10.1143/PTPS.37.21
11 E. Eichten, et al., The Spectrum of Charmonium, Phys. Rev. Lett. 34, 369 (1975)
https://doi.org/10.1103/PhysRevLett.34.369
12 W. Buchmüller and S. H. H. Tye, Quarkonia and quantum chromodynamics, Phys. Rev. D 24, 132 (1981)
https://doi.org/10.1103/PhysRevD.24.132
13 S. N. Gupta, S. F. Radford, and W. W. Repko, Semirelativistic potential model for heavy quarkonia, Phys. Rev. D 34, 201 (1986)
https://doi.org/10.1103/PhysRevD.34.201
14 T. Liu, Z. Chen, and T. Huang, A study of a possible unified potential model, Z. Phys. C 46, 133 (1990)
https://doi.org/10.1007/BF02440843
15 T. Barnes, S. Godfrey, and E. S. Swanson, Higher charmonia, Phys. Rev. D 72, 054026 (2005)
https://doi.org/10.1103/PhysRevD.72.054026
16 S. F. Radford and W. W. Repko, Potential model calculations and predictions for heavy quarkonium, Phys. Rev. D 75, 074031 (2007)
https://doi.org/10.1103/PhysRevD.75.074031
17 N. Brambilla, et al., Effective field theories for heavy quarkonium, Rev. Mod. Phys. 77, 1423 (2005)
https://doi.org/10.1103/RevModPhys.77.1423
18 G. T. Bodwin, E. Braaten, and G. P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51, 1125 (1995)
https://doi.org/10.1103/PhysRevD.51.1125
19 M. Okamoto, et al. (CP-PACS Collaboration), Charmonium spectrum from quenched anisotropic lattice QCD, Phys. Rev. D 65, 094508 (2002)
https://doi.org/10.1103/PhysRevD.65.094508
20 W. M. Serenone, Heavy-quarkonium potential with input from lattice gauge theory, arXiv: 1408.3003 (2014)
21 L. N. Chang, O. Lebedev, and J. N. Ng, On the invisible decays of the ϒ and J/ψ resonances, Phys. Lett. B 441, 419 (1998)
https://doi.org/10.1016/S0370-2693(98)01147-2
22 B. McElrath, Invisible quarkonium decays as a sensitive probe of dark matter, Phys. Rev. D 72, 103508 (2005)
https://doi.org/10.1103/PhysRevD.72.103508
23 U. Ellwanger, C. Hugonie, and A. M. Teixeira, The nextto- minimal supersymmetric standard model, Phys. Rep. 496, 1 (2010)
https://doi.org/10.1016/j.physrep.2010.07.001
24 P. Artoisenet, et al., ϒ production at Fermilab tevatron and LHC energies, Phys. Rev. Lett. 101, 152001 (2008).
https://doi.org/10.1103/PhysRevLett.101.152001
25 J. P. Lansberg, J/ψ production at s= 1.96 and 7 TeV: Color-singlet model, NNLO∗ and polarisation, J. Phys. G 38, 124110 (2011)
https://doi.org/10.1088/0954-3899/38/12/124110
26 K. Wang, Y. Q. Ma, and K. T. Chao, ϒ(1S) prompt production at the Tevatron and LHC in nonrelativistic QCD, Phys. Rev. D 85, 114003 (2012)
https://doi.org/10.1103/PhysRevD.85.114003
27 A. D. Frawley, T. Ullrich, and R. Vogt, Heavy flavor in heavy-ion collisions at RHIC and RHIC II, Phys. Rep. 462, 125 (2008)
https://doi.org/10.1016/j.physrep.2008.04.002
28 T. Matsui and H. Satz, J/ψ Suppression by quark–gluon plasma formation, Phys. Lett. B 178, 416 (1986)
https://doi.org/10.1016/0370-2693(86)91404-8
29 S. Digal, P. Petreczky, and H. Satz, Quarkonium feed down and sequential suppression, Phys. Rev. D 64, 094015 (2001)
https://doi.org/10.1103/PhysRevD.64.094015
30 E. Kou, et al. (Belle II Collaboration), The Belle II physics book, Prog. Theor. Exp. Phys. 2019, 123C01 (2019)
31 S. J. Brodsky, G. P. Lepage, and P. B. Mackenzie, On the elimination of scale ambiguities in perturbative quantum chromodynamics, Phys. Rev. D 28, 228 (1983)
https://doi.org/10.1103/PhysRevD.28.228
32 S. E. Csorna, et al. (CLEO Collaboration), A measurement of the direct photon spectrum from the ϒ(1S), Phys. Rev. Lett. 56, 1222 (1986)
33 B. Nemati, et al. (CLEO Collaboration), Measurement of the direct photon spectrum in ϒ(1S) decays, Phys. Rev. D 55, 5273 (1997)
34 D. Besson, et al. (CLEO Collaboration), Measurement of the direct photon momentum spectrum in ϒ(1S), ϒ(2S), and ϒ(3S) decays, Phys. Rev. D 74, 012003 (2006)
35 H. Albrecht, et al. (ARGUS Collaboration), Determination of α−s from a measurement of the direct photon spectrum in ϒ(1S) decays, Phys. Lett. B 199, 291 (1987)
36 A. Bizzeti, et al. (Crystal Ball Collaboration), Measurement of the direct photon spectrum from ϒ(1S) decays, Phys. Lett. B 267, 286 (1991)
37 T. Sjöstrand, PYTHIA 5.7 and JETSET 7.4: Physics and manual, arXiv: hep-ph/9508391 (1994)
38 X. Garcia i Tormo and J. Soto, Soft, collinear and nonrelativistic modes in radiative decays of very heavy quarkonium, Phys. Rev. D 69, 114006 (2004)
https://doi.org/10.1103/PhysRevD.69.114006
39 X. Garcia i Tormo and J. Soto, Semi-inclusive radiative decays of ϒ(1S), Phys. Rev. D 72, 054014 (2005)
https://doi.org/10.1103/PhysRevD.72.054014
40 X. Garcia i Tormo and J. Soto, Radiative decays and the nature of heavy quarkonia, Phys. Rev. Lett. 96, 111801 (2006)
https://doi.org/10.1103/PhysRevLett.96.111801
41 R. D. Field, Radiative decays and the nature of heavy quarkonia, Phys. Lett. B 133, 248 (1983)
42 T. Appelquist and H. D. Politzer, Orthocharmonium and e+e− Annihilation, Phys. Rev. Lett. 34, 43 (1975)
https://doi.org/10.1103/PhysRevLett.34.43
43 A. De Rújula and S. L. Glashow, Orthocharmonium and e+e− annihilation, Phys. Rev. Lett. 34, 46 (1975)
https://doi.org/10.1103/PhysRevLett.34.46
44 M. E. B. Franklin, et al., Measurement of ψ(3097) and ψ′(3686) decays into selected hadronic modes, Phys. Rev. Lett. 51, 963 (1983)
45 J. Z. Bai, et al. (BES Collaboration), Measurements of ψ(2S) decays into vector tensor final states, Phys. Rev. D 69, 072001 (2004)
46 N. Brambilla, et al., Heavy quarkonium: Progress, puzzles, and opportunities, Eur. Phys. J. C 71, 1534 (2011)
47 N. Brambilla, et al., QCD and strongly coupled gauge theories: Challenges and perspectives, Eur. Phys. J. C 74, 2981 (2014)
48 Y. F. Gu and X. H. Li, Ratio of hadronic decay rates of J/ψand ψ(2S) and ρπ puzzle, Phys. Rev. D 63, 114019 (2001)
https://doi.org/10.1103/PhysRevD.63.114019
49 C. P. Shen, et al. (Belle Collaboration), First observation of exclusive ϒ(1S) and ϒ(2S) decays into light hadrons, Phys. Rev. D 86, 031102 (2012)
50 C. P. Shen, et al. (Belle Collaboration), Measurement of exclusive ϒ(1S) and ϒ(2S) decays into Vector- Pseudoscalar final states, Phys. Rev. D 88, 011102 (2013)
51 S. Dobbs, Z. Metreveli, A. Tomaradze, T. Xiao, and K. K. Seth, First measurements of exclusive hadronic decays of ϒ(1S) and ϒ(2S), Phys. Rev. D 86, 052003 (2012)
https://doi.org/10.1103/PhysRevD.86.052003
52 S. Li, Q. Xie, and Q. Wang, Contribution of color singlet process ϒ→ J/ ψ+ c¯cg and ϒ(1S) → J/ψ+ X, Phys. Lett. B 482, 65 (2000)
https://doi.org/10.1016/S0370-2693(00)00439-1
53 K. Cheung, W. Keung, and T. Yuan, Color octet J/ψproduction in the ϒ decay, Phys. Rev. D 54, 929 (1996)
https://doi.org/10.1103/PhysRevD.54.929
54 M. Napsuciale, Inclusive J/ψproduction in ϒ decay via color octet mechanisms, Phys. Rev. D 57, 5711 (1998)
https://doi.org/10.1103/PhysRevD.57.5711
55 H. Trottier, ϒ decay into charmonium and the color octet mechanism, Phys. Lett. B 320, 145 (1994)
https://doi.org/10.1016/0370-2693(94)90838-9
56 R. A. Briere, et al. (CLEO Collaboration), New measurements of ϒ(1S) decays to charmonium final states, Phys. Rev. D 70, 072001 (2004)
57 C. P. Shen, et al. (Belle Collaboration), Search for XYZstates in ϒ(1S) inclusive decays, Phys. Rev. D 93, 112013 (2016)
58 S. Jia, et al. (Belle Collaboration), Search for the 0−− glueball in ϒ(1S) and ϒ(2S) decays, Phys. Rev. D 95, 012001 (2017)
59 K. Abe, et al. (Belle Collaboration), Observation of double c production in e+e− annihilation at s approximately 10.6 GeV, Phys. Rev. Lett. 89, 142001 (2002)
60 K. Abe, et al. (Belle Collaboration), Study of double charmonium production in e+e− annihilation at s ~ 10.6 GeV, Phys. Rev. D 70, 071102 (2004)
61 B. Aubert, et al. (BaBar Collaboration), Measurement of double charmonium production in e+e− annihilations at s= 10.6 GeV, Phys. Rev. D 72, 031101 (2005)
62 E. Braaten and J. Lee, Exclusive double charmonium production from e+e− annihilation into a virtual photon, Phys. Rev. D 67, 054007 (2003); Phys. Rev. D 72, 099901(E) (2005)
https://doi.org/10.1103/PhysRevD.67.054007
63 K. Y. Liu, Z. G. He, and K. T. Chao, Problems of double charm production in e+e− annihilation at s= 10.6 GeV, Phys. Lett. B 557, 45 (2003)
https://doi.org/10.1016/S0370-2693(03)00176-X
64 J. P. Ma and Z. G. Si, Predictions for e+e− → J/ψηcwith light-cone wave-functions, Phys. Rev. D 70, 074007 (2004)
https://doi.org/10.1103/PhysRevD.70.074007
65 K. Y. Liu, Z. G. He, and K. T. Chao, Inclusive charmonium production via double c¯c in e+e− annihilation, Phys. Rev. D 69, 094027 (2004)
https://doi.org/10.1103/PhysRevD.69.094027
66 A. E. Bondar and V. L. Chernyak, Is the BELLE result for the cross section σ(e+e− → J/ψηc) a real difficulty for QCD? Phys. Lett. B 612, 215 (2005)
67 K. Y. Liu, Z. G. He, and K. T. Chao, Search for excited charmonium states in e+e− annihilation at s= 10.6 GeV, Phys. Rev. D 77, 014002 (2008)
https://doi.org/10.1103/PhysRevD.77.014002
68 Y. J. Zhang, Y. J. Gao, and K. T. Chao, Next-to-leading order QCD correction to e+e− → J/ψηcat s= 10.6 GeV, Phys. Rev. Lett. 96, 092001 (2006)
https://doi.org/10.1103/PhysRevLett.96.092001
69 Y. J. Zhang and K. T. Chao, Double charm production e+e− → J/ψcc¯ at Bfactories with next-to-leading order QCD correction, Phys. Rev. Lett. 98, 092003 (2007)
https://doi.org/10.1103/PhysRevLett.98.092003
70 Y. Jia, Exclusive double charmonium production from ϒ decay, Phys. Rev. D 76, 074007 (2007)
https://doi.org/10.1103/PhysRevD.76.074007
71 J. Xu, H. R. Dong, F. Feng, Y. J. Gao, and Y. Jia, Exclusive decay of ϒ into J/ψ+ χc0,1,2, Phys. Rev. D 87, 094004 (2013)
https://doi.org/10.1103/PhysRevD.87.094004
72 S. D. Yang, et al. (Belle Collaboration), Evidence of ϒ(1S)→ J/ψ+ χc1 and search for double-charmonium production in ϒ(1S) and ϒ(2S) decays, Phys. Rev. D 90, 112008 (2014)
73 C. P. Shen, et al. (Belle Collaboration), Search for charmonium and charmonium-like states in ϒ(1S) radiative decays, Phys. Rev. D 82, 051504 (2010).
74 X. L. Wang, et al. (Belle Collaboration), Search for charmon ium and charmonium-like states in ϒ(2S) radiative decays, Phys. Rev. D 84, 071107 (2011)
75 Y. J. Gao, Y. J. Zhang, and K. T. Chao, Radiative decays of bottomonia into charmonia and light mesons, arXiv: hep-ph/0701009 (2007)
76 P. Katrenkoet al. (Belle Collaboration), Observation of the radiative decays of ϒ(1S) to χc1, Phys. Rev. Lett. 124, 122001 (2020)
77 S. Jia, et al. (Belle Collaboration), Observation of e+e−→ γχc1 and search for e+e−→ γχc0, γχc2, and γηcat s near 10.6 GeV at Belle, Phys. Rev. D 98, 092015 (2018)
78 C. T. H. Davies, et al., High precision lattice QCD confronts experiment, Phys. Rev. Lett. 92, 022001 (2004)
79 D. Besson and T. Skwarnicki, ϒ spectroscopy, Annu. Rev. Nucl. Part. Sci. 43, 333 (1993)
https://doi.org/10.1146/annurev.ns.43.120193.002001
80 E. J. Eichten and C. Quigg, Mesons with beauty and charm: Spectroscopy, Phys. Rev. D 49, 5845 (1994)
https://doi.org/10.1103/PhysRevD.49.5845
81 H. Mutuk, S-wave heavy quarkonium spectra: Mass, decays and transitions, Adv. High Energy Phys. 2018, 5961031 (2018)
https://doi.org/10.1155/2018/5961031
82 N. Brambilla, P. Pietrulewicz, and A. Vairo, Modelindependent study of electric dipole transitions in quarkonium, Phys. Rev. D 85, 094005 (2012)
https://doi.org/10.1103/PhysRevD.85.094005
83 A. Pineda and J. Segovia, Improved determination of heavy quarkonium magnetic dipole transitions in potential nonrelativistic QCD, Phys. Rev. D 87, 074024 (2013)
https://doi.org/10.1103/PhysRevD.87.074024
84 N. Brambilla, Y. Jia, and A. Vairo, Model-independent study of magnetic dipole transitions in quarkonium, Phys. Rev. D 73, 054005 (2016)
https://doi.org/10.1103/PhysRevD.73.054005
85 J. Segovia, S. Steinbeißer, and A. Vairo, Electric dipole transitions of 1Pbottomonia, Phys. Rev. D 99, 074011 (2019)
https://doi.org/10.1103/PhysRevD.99.074011
86 M. Artuso, et al. (CLEO Collaboration), Photon transitions in ϒ(2S) and ϒ(3S) decays, Phys. Rev. Lett. 94, 032001 (2005)
87 K. Han, et al. (CUSB Collaboration), Observation of P-wave bb¯ bound states, Phys. Rev. Lett. 49, 1612 (1982)
88 C. Klopfenstein, et al. (CUSB Collaboration), Observation of the lowest P-wave bb¯ bound states, Phys. Rev. Lett. 51, 160 (1983)
https://doi.org/10.1103/PhysRevLett.51.160
89 U. Heintz, et al. (CUSB Collaboration), b¯b spectroscopy from the ϒ(3S) state, Phys. Rev. D 46, 1928 (1992)
https://doi.org/10.1103/PhysRevD.46.1928
90 R. Nernst, et al. (Crystal Ball Collaboration), Observation of three P states in the radiative decay of ϒ(2S), Phys. Rev. Lett. 54, 2195 (1985)
91 H. Albrecht, et al. (ARGUS Collaboration), Radiative decays of the ϒ(2S) into the three χb states, Phys. Lett. B 160, 331 (1985)
92 P. Haas, et al. (CLEO Collaboration), Observation of radiative decays of the ϒ(2S), Phys. Rev. Lett. 52, 799 (1984)
93 R. Morrison, et al. (CLEO Collaboration), Inclusive χ2P production in ϒ(3S) decay, Phys. Rev. Lett. 67, 1696 (1991)
94 K. W. Edwards, et al. (CLEO Collaboration), Measurement of the mass splittings between the b¯b χbJ(1P) states, Phys. Rev. D 59, 032003 (1999).
95 M. Kornicer, et al. (CLEO Collaboration), Measurements of branching fractions for electromagnetic transitions involving the χbJ(1P) states, Phys. Rev. D 83, 054003 (2011)
96 J. P. Lees, et al. (BaBar Collaboration), Study of radiative bottomonium transitions using converted photons, Phys. Rev. D 84, 072002 (2011)
97 D. M. Asner, et al. (CLEO Collaboration), Observation of χbJ(1P, 2P) decays to light hadrons, Phys. Rev. D 78, 091103 (2008)
98 A. Abdesselam, et al. (Belle Collaboration), Study of χbJ(1P) properties in the radiative ϒ(2S) decays, arXiv: 1606.01276 (2016)
99 C. P. Shen, et al. (Belle Collaboration), Search for double charmonium decays of the P-wave spin-triplet bottomonium states, Phys. Rev. D 85, 071102 (2012)
100 V. V. Braguta, A. K. Likhoded, and A. V. Luchinsky, Double charmonium production in exclusive bottomonia decays, Phys. Rev. D 80, 094008 (2009)
https://doi.org/10.1103/PhysRevD.80.094008
101 V. V. Braguta, A. K. Likhoded, and A. V. Luchinsky, Double charmonium production in exclusive bottomonium decays,Phys. At. Nucl. 73, 1054 (2010)
https://doi.org/10.1134/S1063778810060207
102 V. V. Braguta, A. K. Likhoded, and A. V. Luchinsky, Observation potential for χbJat the Tevatron and CERN LHC, Phys. Rev. D 72, 094018 (2005)
https://doi.org/10.1103/PhysRevD.72.094018
103 J. Zhang, H. R. Dong, and F. Feng, Exclusive decay of P-wave bottomonium into double J/ψ, Phys. Rev. D 84, 094031 (2011)
https://doi.org/10.1103/PhysRevD.84.094031
104 W. L. Sang, R. Rashidin, U. Kim, and J. Lee, Relativistic corrections to the exclusive decays of C-even Bottomonia into S-wave charmonium pairs, Phys. Rev. D 84, 074026 (2011)
https://doi.org/10.1103/PhysRevD.84.074026
105 B. Aubert, et al. (BaBar Collaboration), Observation of the bottomonium ground state in the decay ϒ(3S)→ γηb, Phys. Rev. Lett. 101, 071801 (2008)
106 B. Aubert, et al. (BaBar Collaboration), Evidence for the ηb(1S) meson in radiative ϒ(2S) decay, Phys. Rev. Lett. 103, 161801 (2009)
107 B. G. Fulsom, et al. (Belle Collaboration), Observation of ϒ(2S)→ γηb(1S) decay, Phys. Rev. Lett. 121, 232001 (2018)
108 C. Hughes, R. J. Dowdall, C. T. H. Davies, R. R. Horgan, G. V. Hippel, and M. Wingate (HPQCD Collaboration), Hindered M1 radiative decay of ϒ(2S) from lattice NRQCD, Phys. Rev. D 92, 094501 (2015)
https://doi.org/10.1103/PhysRevD.92.094501
109 S. Dobbs, Z. Metreveli, A. Tomaradze, T. Xiao, and K. K. Seth, Observation of ηb(2S) in ϒ(2S) → γηb(2S), ηb(2S)→ hadrons, and confirmation of ηb(1S), Phys. Rev. Lett. 109, 082001 (2013)
https://doi.org/10.1063/1.4826804
110 S. Sandilya, et al. (Belle Collaboration), Search for bottomonium states in exclusive radiative ϒ(2S) decays, Phys. Rev. Lett. 111, 112001 (2013)
111 R. Mizuk, et al. (Belle Collaboration), Evidence for the ηb(2S) and observation of hb(1P)→ ηb(1S)γ and hb(2P)→ ηb(1S)γ), Phys. Rev. Lett. 109, 232002 (2012)
112 S. H. Lee, M. Nielsen, and U. Wiedner, DsD∗ molecule as an axial meson, J. Korean Phys. Soc. 55, 424 (2009)
https://doi.org/10.3938/jkps.55.424
113 J. M. Dias, X. Liu, and M. Nielsen, Predicition for the decay width of a charged state near the Ds D ¯ /D ¯ s D ¯ threshold, Phys. Rev. D 88, 096014 (2013)
https://doi.org/10.1103/PhysRevD.88.096014
114 A. Esposito, A. L. Guerrieri, F. Piccinini, A. Pilloni, and A. D. Polosa, Four-quark hadrons: An updated review, Int. J. Mod. Phys. A 30, 1530002 (2015)
https://doi.org/10.1142/S0217751X15300021
115 H. X. Chen, W. Chen, X. Liu, and S. L. Zhu, The hiddencharm pentaquark and tetraquark states, Phys. Rep. 639, 1 (2016)
https://doi.org/10.1016/j.physrep.2016.05.004
116 F. K. Guo, C. Hanhart, U. G. Meiβner, Q. Wang, Q. Zhao, and B. S. Zou, Hadronic molecules, Rev. Mod. Phys. 90, 015004 (2018)
https://doi.org/10.1103/RevModPhys.90.015004
117 N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C. P. Shen, C. E. Thomas, A. Vairo, and C. Z. Yuan, The XYZ states: Experimental and theoretical status and perspectives, arXiv: 1907.07583 (2019)
https://doi.org/10.1016/j.physrep.2020.05.001
118 S. J. Brodsky, R. F. Lebed, and V. E. Lyubovitskij, QCD compositeness as revealed in exclusive vector boson reactions through double-photon annihilation: e+e− → γγ∗ → γV0 and e+e− → γγ∗ → V0V0, Phys. Lett. B 764, 174 (2017)
https://doi.org/10.1016/j.physletb.2016.11.009
119 S. J. Brodsky, R. F. Lebed, and V. E. Lyubovitskij, QCD dynamics of tetraquark production, Phys. Rev. D 91, 114025 (2015)
https://doi.org/10.1103/PhysRevD.91.114025
120 S. Jia, et al. (Belle Collaboration), Search for ϒ(1S, 2S) → Zc+Zc(′)− and e+e−→ Zc+Zc(′)− at s= 10.52, 10.58, and 10.867 GeV, Phys. Rev. D 97, 112004 (2018)
121 R. L. Jaffe and K. Johnson, Unconventional states of confined quarks and gluons, Phys. Lett. B 60, 201 (1976)
https://doi.org/10.1016/0370-2693(76)90423-8
122 C. F. Qiao and L. Tang, Finding the 0−− glueball, Phys. Rev. Lett. 113, 221601 (2014)
https://doi.org/10.1103/PhysRevLett.113.221601
123 Y. Chen and M. Huang, Two-gluon and trigluon glueballs from dynamical holography QCD, Chin. Phys. C 40, 123101 (2016)
https://doi.org/10.1088/1674-1137/40/12/123101
124 S. Jia, et al. (Belle Collaboration), Search for light tetraquark states in ϒ(1S) and ϒ(2S) decays, Phys. Rev. D 96, 112002 (2017)
125 Z. R. Huang, W. Chen, T. G. Steele, Z. F. Zhang, and H. Y. Jin, Investigation of the light four-quark states with exotic JPC= 0−−, Phys. Rev. D 95, 076017 (2017)
https://doi.org/10.1103/PhysRevD.95.076017
126 J. Preskill, Subgroup alignment in hypercolor theories, Nucl. Phys. B 177, 21 (1981)
https://doi.org/10.1016/0550-3213(81)90265-0
127 R. L. Jaffe, Perhaps a stable dihyperon, Phys. Rev. Lett. 38, 195 (1977)
https://doi.org/10.1103/PhysRevLett.38.195
128 S. R. Beane, et al. (NPLQCD Collaboration), Evidence for a bound H-dibaryon from lattice QCD, Phys. Rev. Lett. 106, 162001 (2011)
https://doi.org/10.1103/PhysRevLett.106.162001
129 S. R. Beane, et al. (NPLQCD Collaboration), Present constraints on the H-dibaryon at the physical point from lattice QCD, Mod. Phys. Lett. A 26, 2587 (2011)
https://doi.org/10.1142/S0217732311036978
130 T. Inoue, N. Ishii, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, K. Murano, H. Nemura, and K. Sasaki (HALQCD Collaboration), Bound H-dibaryon in flavor SU(3) limit of lattice QCD, Phys. Rev. Lett. 106, 162002 (2011)
https://doi.org/10.1103/PhysRevLett.106.162002
131 T. F. Carames and A. Valcarce, Examination of the H dibaryon within a chiral constituent quark model, Phys. Rev. C 85, 045202 (2012)
https://doi.org/10.1103/PhysRevC.85.045202
132 E. Braaten and H. W. Hammer, Universality in few- body systems with large scattering length, Phys. Rep. 428, 259 (2006)
https://doi.org/10.1016/j.physrep.2006.03.001
133 B. H. Kim, et al. (Belle Collaboration), Search for an Hdibaryon with mass near 2mΛ in ϒ(1S) and ϒ(2S) decays, Phys. Rev. Lett. 110, 222002 (2013)
134 G. R. Farrar, Stable sexaquark, arXiv: 1708.08951 (2017)
135 J. P. Lees, et al. (BaBar Collaboration), Search for a stable six-quark state at BABAR, Phys. Rev. Lett. 122, 072002 (2019)
136 O. Tajima, et al. (Belle Collaboration), Search for invisible decay of the ϒ(1S), Phys. Rev. Lett. 98, 132001 (2007)
137 R. Rubin, et al. (CLEO Collaboration), Search for invisible decays of the ϒ(1S) resonance, Phys. Rev. D 75, 031104 (2007)
138 B. Aubert, et al. (BaBar Collaboration), A search for invisible decays of the ϒ(1S), Phys. Rev. Lett. 103, 251801 (2009)
139 J. F. Gunion, D. Hooper, and B. McElrath, Light neutralino dark matter in the NMSSM, Phys. Rev. D 73, 015011 (2006)
https://doi.org/10.1103/PhysRevD.73.015011
140 K. Petraki and R. R. Volkas, Review of asymmetric dark matter, Int. J. Mod. Phys. A 28, 1330028 (2013)
https://doi.org/10.1142/S0217751X13300287
141 R. Dermisek, J. F. Gunion, and B. McElrath, Probing NMSSM scenarios with minimal fine-tuning by searching for decays of the ϒ to a light CP-odd Higgs boson, Phys. Rev. D 76, 051105 (2007)
https://doi.org/10.1103/PhysRevD.76.051105
142 R. Dermisek and J. F. Gunion, New constraints on a light CP-odd Higgs boson and related NMSSM ideal Higgs scenarios, Phys. Rev. D 81, 075003 (2010)
https://doi.org/10.1103/PhysRevD.81.075003
143 G. K. Yeghiyan, ϒ(1S) Decays into light scalar dark matter, Phys. Rev. D 80, 115019 (2009)
https://doi.org/10.1103/PhysRevD.80.115019
144 I. S. Seong, et al. (Belle Collaboration), Search for a light CP-odd Higgs boson and low-mass dark matter at the Belle experiment, Phys. Rev. Lett. 122, 011801 (2019)
145 P. del Amo Sanchez, et al. (BaBar Collaboration), Search for production of invisible final states in single-photon decays of ϒ(1S), Phys. Rev. Lett. 107, 021804 (2011)
146 W. Love, et al. (CLEO Collaboration), Search for very light CP-odd Higgs boson in radiative decays of ϒ(1S), Phys. Rev. Lett. 101, 151802 (2008)
147 B. Aubert, et al. (BaBar Collaboration), Search for dimuon decays of a light scalar boson in radiative transitions ϒ → γA0, Phys. Rev. Lett. 103, 081803 (2009)
148 J. P. Lees, et al. (BaBar Collaboration), Search for dimuon decays of a low-mass Higgs boson in radiative decays of the ϒ(1S), Phys. Rev. D 87, 031102 (2013)
149 B. Aubert, et al. (BaBar Collaboration), Search for a low-mass Higgs boson in ϒ(3S) → γA0, A0→ τ+τ− at BABAR, Phys. Rev. Lett. 103, 181801 (2009)
150 J. P. Lees, et al. (BaBar Collaboration), Search for a lowmass scalar Higgs boson decaying to a tau pair in singlephoton decays of ϒ(1S), Phys. Rev. D 88, 071102 (2013)
151 J. P. Lees, et al. (BaBar Collaboration), Search for hadronic decays of a light Higgs boson in the radiative decay ϒ → γA0, Phys. Rev. Lett. 107, 221803 (2011)
152 J. P. Lees, et al. (BaBar Collaboration), Search for a light Higgs boson decaying to two gluons or ss¯ in the radiative decays of ϒ(1S), Phys. Rev. D 88, 031701 (2013)
153 D. Besson, et al. (CLEO Collaboration), First observation of ϒ(3S)→ τ+τ− and tests of lepton universality in ϒ decays, Phys. Rev. Lett. 98, 052002 (2007)
154 J. P. Lees, et al. (BaBar Collaboration), Precision measurement of the B(ϒ(3S)→ τ+τ−)/B(ϒ(3S)→ μ+μ−), arXiv: 2005.01230 (2020)
155 P. del Amo Sanchez, et al. (BaBar Collaboration), Test of lepton universality in ϒ(1S) decays at BaBar, Phys. Rev. Lett. 104, 191801 (2010)
156 W. Love, et al. (CLEO Collaboration), Search for lepton flavor violation in ϒ decays, Phys. Rev. Lett. 101, 201601 (2008).
157 J. P. Lees, et al. (BaBar Collaboration), Search for charged lepton flavor violation in narrow ϒ decays, Phys. Rev. Lett. 104, 151802 (2010)
158 Z. K. Silagadze, Lepton flavor violating decays as probes of quantum gravity? Phys. Scr. 64, 128 (2001)
https://doi.org/10.1238/Physica.Regular.064a00128
159 D. Black, T. Han, H. J. He, and M. Sher, τ -μflavor violation as a probe of the scale of new physics, Phys. Rev. D 66, 053002 (2002)
https://doi.org/10.1103/PhysRevD.66.053002
160 Y. P. Kuang, QCD multipole expansion and hadronic transitions in heavy quarkonium systems, Front. Phys. China 1, 19 (2006), and references therein
https://doi.org/10.1007/s11467-005-0012-6
161 H. Mendez, et al. (CLEO Collaboration), Branching fractions for transitions of ψ(2S) to J/ψ, Phys. Rev. D 78, 011102 (2008)
162 M. B. Voloshin, Charmonium, Prog. Part. Nucl. Phys. 61, 455 (2008)
https://doi.org/10.1016/j.ppnp.2008.02.001
163 Y. A. Simonov and A. I. Veselov, Single ηproduction in heavy quarkonia: Breakdown of multipole expansion, Phys. Lett. B 673, 211 (2009)
https://doi.org/10.1016/j.physletb.2009.02.025
164 Q. He, et al. (CLEO Collaboration), Observation of ϒ(2S) → ηϒ(1S) and search for related transitions, Phys. Rev. Lett. 101, 192001 (2008)
165 J. P. Lees, et al. (BaBar Collaboration), Study of ϒ(2S, 3S) → ηϒ(1S) and ϒ(2S, 3S) → π+π− Υ(1S), Phys. Rev. D 84, 092003 (2011)
166 U. Tamponi, et al. (Belle Collaboration), Study of the hadronic transitions ϒ(2S) →(η, π0)ϒ(1S) at Belle, Phys. Rev. D 87, 011104 (2013)
167 B. Aubertet al. (BaBar Collaboration), Study of hadronic transitions between ϒ states and observation of ϒ(4S)→ ηϒ(1S) decay, Phys. Rev. D 78, 112002 (2008)
168 E. Guido, et al. (Belle Collaboration), Study of ηand dipion transitions in ϒ(4S) decays to lower bottomonia, Phys. Rev. D 96, 052005 (2017)
169 M. B. Voloshin, Hadronic transitions from ϒ(4S) as a probe of four-quark admixture, Mod. Phys. Lett. A 26, 773 (2011)
https://doi.org/10.1142/S0217732311035390
170 E. Guido, et al. (Belle Collaboration), Observation of ϒ(4S)→ η′ ϒ(1S), Phys. Rev. Lett. 121, 062001 (2018)
171 K. F. Chen, et al. (Belle Collaboration), Observation of anomalous ϒ(1S)π+π− and ϒ(2S) π+π− production near the ϒ(5S) resonance, Phys. Rev. Lett. 100, 112001 (2008)
172 A. Bondar, et al. (Belle Collaboration), Observation of two charged bottomonium-like resonances in ϒ(5S) decays, Phys. Rev. Lett. 108, 122001 (2012)
173 See public webs at CERN,
174 A. A. Alves Jr., et al. (LHCb collaboration), The LHCb detector at the LHC, JINST 3, S08005 (2008)
175 A. A. Alves Jr., et al. (LHCb collaboration), Performance of the LHCb muon system, JINST 8, P02022 (2013)
176 A. A. Alves Jr., et al. (LHCb collaboration), The LHCb Trigger and its Performance in 2011, JINST 8, P04022 (2013)
177 G. Aad, et al. (ATLAS Collaboration), The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3, S08003 (2008)
178 S. Chatrchyan, et al. (CMS Collaboration), The CMS Experiment at the CERN LHC, JINST 3, S08004 (2008).
179 K. Aamodt, et al.ALICE collaboration, The ALICE experiment at the CERN LHC, JINST 3, S08002 (2008)
180 V. Khachatryan, et al. (CMS Collaboration), ϒ production cross-section in ppcollisions at s= 7 TeV, Phys. Rev. D 83, 112004 (2011)
181 G. Aad, et al. (ATLAS Collaboration), Measurement of ϒ production in 7 TeV ppcollisions at ATLAS, Phys. Rev. D 87, 052004 (2013)
182 R. Aaij, et al. (LHCb Collaboration), Measurement of ϒ production in ppcollisions at s= 7 TeV, Eur. Phys. J. C 72, 2025 (2012)
183 S. Acharya, et al. (ALICE Collaboration), Suppression of ϒ(1S) at forward rapidity in PbPb collisions at sNN= 2.76 TeV, Phys. Lett. B 738, 361 (2014)
184 G. Aad, et al. (ATLAS Collaboration), Measurement of the ϒ(1S) production cross-section in ppcollisions at s= 7 TeV in ATLAS, Phys. Lett. B 705, 9 (2011)
185 T. Sjöstrand, S. Mrenna, and P. Z. Skands, PYTHIA 6.4 physics and manual, J. High Energy Phys. 05, 026 (2006)
https://doi.org/10.1088/1126-6708/2006/05/026
186 R. Aaijet al. (LHCb Collaboration), Forward production of ϒ mesons in pp collisions at s= 7 and 8 TeV, J. High Energy Phys. 11, 103 (2015)
187 L. S. Kisslinger, M. X. Liu, and P. McGaughey, Heavy quark state production in ppcollisions, Phys. Rev. D 84, 114020 (2011)
https://doi.org/10.1103/PhysRevD.84.114020
188 L. S. Kisslinger and D. Das, ψand ϒ production in ppcollisions at 7.0 TeV, Mod. Phys. Lett. A 28, 1350120 (2013)
https://doi.org/10.1142/S0217732313501204
189 J. F. Owens, E. Reya, and M. Gluck, Detailed quantum chromodynamic predictions for high pTprocesses, Phys. Rev. D 18, 1501 (1978)
https://doi.org/10.1103/PhysRevD.18.1501
190 V. G. Kartvelishvili, A. K. Likhoded, and S. R. Slabospitsky, Dmeson and ψmeson production in hadronic interactions, Yad. Fiz. 28, 1315 (1978) [Sov. J. Nucl. Phys. 28, 678 (1978)]
191 C. H. Chang, Hadronic production of J/ψassociated with a gluon, Nucl. Phys. B 172, 425 (1980)
https://doi.org/10.1016/0550-3213(80)90175-3
192 E. L. Berger and D. L. Jones, Inelastic photo production of J/ψand ϒ by gluons, Phys. Rev. D 23, 1521 (1981)
https://doi.org/10.1103/PhysRevD.23.1521
193 R. Baier and R. Ruckl, On inelastic leptoproduction of heavy quarkonium states, Nucl. Phys. B 201, 1 (1982).
https://doi.org/10.1016/0550-3213(82)90374-1
194 R. Baier and R. Ruckl, Hadronic collisions: A quarkonium factory, Z. Phys. C 19, 251 (1983)
https://doi.org/10.1007/BF01572254
195 H. Fritzsch, Producing heavy quark flavors in hadronic collisions: A test of quantum chromodynamics, Phys. Lett. 67B, 217 (1977)
https://doi.org/10.1016/0370-2693(77)90108-3
196 F. Halzen, Cvc for gluons and hadroproduction of quark flavors, Phys. Lett. 69B, 105 (1977)
https://doi.org/10.1016/0370-2693(77)90144-7
197 M. Gluck, J. F. Owens, and E. Reya, Gluon contribution to hadronic J/ψproduction, Phys. Rev. D 17, 2324 (1978)
https://doi.org/10.1103/PhysRevD.17.2324
198 V. D. Barger, W. Y. Keung, and R. J. N. Phillips, On ψand ϒ production via gluons, Phys. Lett. 91B, 253 (1980)
https://doi.org/10.1016/0370-2693(80)90444-X
199 J. F. Amundson, O. J. P. Eboli, E. M. Gregores, and F. Halzen, Colorless states in perturbative QCD: Charmonium and rapidity gaps, Phys. Lett. B 372, 127 (1996)
https://doi.org/10.1016/0370-2693(96)00035-4
200 J. F. Amundson, O. J. P. Eboli, E. M. Gregores, and F. Halzen, Quantitative tests of color evaporation: Charmonium production, Phys. Lett. B 390, 323 (1997)
https://doi.org/10.1016/S0370-2693(96)01417-7
201 V. Khachatryan, et al. (CMS Collaboration), Measurements of the ϒ(1S), ϒ(2S), and ϒ(3S) differential cross sections in ppcollisions at s= 7 TeV, Phys. Lett. B 749, 14 (2015)
202 B. Gong, et al., Complete next-to-leading-order study on the yield and polarization of ϒ(1S, 2S, 3S) at the Tevatron and LHC, Phys. Rev. Lett. 112, 032001 (2014)
https://doi.org/10.1103/PhysRevLett.112.032001
203 A. M. Sirunyan, et al. (CMS Collaboration), Measurement of quarkonium production cross sections in ppcollisions at s= 13 TeV, Phys. Lett. B 780, 251 (2018)
204 Y. Q. Ma, K. Wang, and K. T. Chao, J/ψ(ψ′) production at the Tevatron and LHC at O(α4sv4) in nonrelativistic QCD, Phys. Rev. Lett. 106, 042002 (2011)
https://doi.org/10.1103/PhysRevLett.106.042002
205 H. Han, Y. Q. Ma, C. Meng, H. S. Shao, Y. J. Zhang, and K. T. Chao, ϒ(nS) and χb(nP) production at hadron colliders in nonrelativistic QCD, Phys. Rev. D 94, 014028 (2016)
https://doi.org/10.1103/PhysRevD.94.014028
206 R. Aaij, et al. (LHCb Collaboration), Measurement of ϒ production in ppcollisions at s= 2.76 TeV, Eur. Phys. J. C 74, 2835 (2014)
207 P. Faccioli, et al., Towards the experimental clarification of quarkonium polarization, Eur. Phys. J. C 69, 657 (2010)
https://doi.org/10.1140/epjc/s10052-010-1420-5
208 P. Faccioli, et al., J/ψpolarization from fixed-target to collider energies, Phys. Rev. Lett. 102, 151802 (2009)
https://doi.org/10.1103/PhysRevLett.102.151802
209 M. Jacob and G. C. Wick, On the general theory of collisions for particles with spin, Ann. Phys. 7, 404 (1959)
https://doi.org/10.1016/0003-4916(59)90051-X
210 J. C. Collins and D. E. Soper, Angular distribution of dileptons in high-energy hadron collisions, Phys. Rev. D 16, 2219 (1977)
https://doi.org/10.1103/PhysRevD.16.2219
211 E. Braaten, D. Kang, J. Lee, and C. Yu, Optimal spin quantization axes for the polarization of dileptons with large transverse momentum, Phys. Rev. D 79, 014025 (2009)
https://doi.org/10.1103/PhysRevD.79.014025
212 T. Aaltonen, et al. (CDF Collaboration), Measurements of angular distributions of muons from ϒ meson decays in pp¯ collisions at s= 1.96 TeV, Phys. Rev. Lett. 108, 151802 (2012)
213 V. M. Abazov, et al. (D0 Collaboration), Measurement of the polarization of the v1S and v2S states in p¯p collisions at s= 1.96 TeV, Phys. Rev. Lett. 101, 182004 (2008)
214 S. Chatrchyan, et al. (CMS Collaboration), Measurement of the ϒ(1S), ϒ(2S) and ϒ(3S) polarizations in pp collisions at s= 7 TeV, Phys. Rev. Lett. 110, 081802 (2013)
215 R. Aaij, et al. (LHCb Collaboration), Measurement of the Υ polarizations in pp collisions at s= 7 and 8 TeV, J. High Energy Phys. 1712, 110 (2017)
216 K. Gottfried and J. D. Jackson, On the connection between production mechanism and decay of resonances at high-energies, Nuovo Cim. 33, 309 (1964)
https://doi.org/10.1007/BF02750195
217 B. Gong, J. X. Wang, and H. F. Zhang, QCD corrections to ϒ production via color-octet states at the Tevatron and LHC, Phys. Rev. D 83, 114021 (2011)
https://doi.org/10.1103/PhysRevD.83.114021
218 P. Faccioli, et al., Quarkonium production in the LHC era: A polarized perspective, Phys. Lett. B 736, 98 (2014)
https://doi.org/10.1016/j.physletb.2014.07.006
219 S. Chatrchyan, et al. (CMS Collaboration), Indications of suppression of excited ϒ states in PbPb collisions at SNN= 2.76 TeV, Phys. Rev. Lett. 107, 052302 (2011)
220 S. Chatrchyan, et al. (CMS Collaboration), Observation of sequential upsilon suppression in PbPbcollisions, Phys. Rev. Lett. 109, 222301 (2012)
221 S. Chatrchyan, et al. (CMS Collaboration), Observation and studies of jet quenching in PbPb collisions at nucleon– nucleon center-of-mass energy= 2.76 TeV, Phys. Rev. C 84, 024906 (2011)
222 A. M. Sirunyan, et al. (CMS Collaboration), Suppression of excited ϒ states relative to the ground state in Pb-Pb collisions at SNN=5.02 TeV, Phys. Rev. Lett. 120, 142301 (2018)
223 B. Krouppa and M. Strickland, Predictions for bottomonia suppression in 5.023 TeV Pb-Pbcollisions, Universe 2, 16 (2016)
https://doi.org/10.3390/universe2030016
224 X. Du, R. Rapp, and M. He, Color screening and regeneration of bottomonia in high-energy heavy-ion collisions, Phys. Rev. C 96, 054901 (2017)
https://doi.org/10.1103/PhysRevC.96.054901
225 S. Acharya, et al. (ALICE Collaboration), ϒ suppression at forward rapidity in Pb-Pb collisions at SNN= 5.02 TeV, Phys. Lett. B 790, 89 (2019)
226 K. Zhou, N. Xu, and P. Zhaung, ϒ production in heavy ion collisions at LHC, Nucl. Phys. A 931, 654 (2014)
https://doi.org/10.1016/j.nuclphysa.2014.08.104
227 B. Krouppa, A. Rothkopf, M. Strickland, Bottomonium suppression using a lattice QCD vetted potential, Phys. Rev. D 97, 016017 (2018)
https://doi.org/10.1103/PhysRevD.97.016017
228 S. Voloshin and Y. Zhang, Flow study in relativistic nuclear collisions by Fourier expansion of Azimuthal particle distributions, Z. Phys. C 70, 665 (1996)
https://doi.org/10.1007/s002880050141
229 S. Acharya, et al. (ALICE Collaboration), Measurement of ϒ(1S) elliptic flow at forward rapidity in Pb-Pb collisions at SNN= 5.02 TeV, Phys. Rev. Lett. 123, 192301 (2019)
230 C. Adler, et al. (STAR Collaboration), Elliptic flow from two and four particle correlations in Au+Au collisions at SNN= 130 GeV, Phys. Rev. C 66, 034904 (2002)
231 S. A. Voloshin, A. M. Poskanzer, and R. Snellings, Collective phenomena in non-central nuclear collisions, Landolt–Bornstein 23, 293 (2010)
https://doi.org/10.1007/978-3-642-01539-7_10
232 J. Barrette, et al. (E877 Collaboration), Observation of anisotropic event shapes and transverse flow in Au+Au collisions at AGS energy, Phys. Rev. Lett. 73, 2532 (1994)
233 R. Vogt, Cold nuclear matter effects on J/ψand ϒ production at the LHC, Phys. Rev. C 81, 044903 (2010)
https://doi.org/10.1103/PhysRevC.81.044903
234 Z. Hu, N. T. Leonardo, T. Liu, and M. Haytmyradov, Review of bottomonium measurements from CMS, Int. J. Mod. Phys. A 32, 1730015 (2017)
https://doi.org/10.1142/S0217751X17300150
235 S. Chatrchyan, et al. (CMS Collaboration), Event activity dependence of Υ(nS) production in SNN=5.02 TeV pPband s= 2.76 TeV pp collisions, J. High Energy Phys. 1404, 103 (2014)
236 R. Aaij, et al. (LHCb Collaboration), Study of ϒ production and cold nuclear matter effects in pPbcollisions at SNN=5 TeV, J. High Energy Phys. 1407, 094 (2014)
237 S. Acharya, et al. (ALICE Collaboration), Production of inclusive ϒ(1 S) and ϒ(2 S) in p-Pb collisions at SNN= 5.02 TeV, Phys. Lett. B 740, 105 (2015)
238 R. Aaij, et al. (LHCb Collaboration), Production of J/ψand upsilon mesons in pp collisions at s= 8 TeV, J. High Energy Phys. 1306, 064 (2013)
239 E. G. Ferreiro, F. Fleuret, J. P. Lansberg, N. Matagne, and A. Rakotozafindrabe, ϒ production in p(d)A collisions at RHIC and the LHC, Eur. Phys. J. C 73, 2427 (2011)
https://doi.org/10.1140/epjc/s10052-013-2427-5
240 √J. L. Albacete, et al., Predictions for p+Pb collisions at SNN= 5 TeV, Int. J. Mod. Phys. E 22, 1330007 (2013)
241 F. Arleo and S. Peigne, Heavy-quarkonium suppression in p-A collisions from parton energy loss in cold QCD matter, J. High Energy Phys. 1303, 122 (2013)
https://doi.org/10.1007/JHEP03(2013)122
242 R. Aaij, et al. (LHCb Collaboration), Study of ϒ production in pPb collisions at SNN= 8.16 TeV, J. High Energy Phys. 1811, 194 (2018)
243 S. Acharya, et al. (ALICE Collaboration), ϒ production in p-Pb collisions at SNN=8.16 TeV, arXiv: 1910.14405 (2019)
244 H. S. Shao, HELAC-Onia 2.0: An upgraded matrixelement and event generator for heavy quarkonium physics, Comput. Phys. Commun. 198, 238 (2016)
https://doi.org/10.1016/j.cpc.2015.09.011
245 H. S. Shao, HELAC-Onia: An automatic matrix element generator for heavy quarkonium physics, Comput. Phys. Commun. 184, 2562 (2013)
https://doi.org/10.1016/j.cpc.2013.05.023
246 K. J. Eskola, P. Paakkinen, H. Paukkunen, and C. A. Salgado, EPPS16 – Bringing nuclear PDFs to the LHC era, arXiv: 1802.00713 (2019)
247 J. P. Lansberg and H. S. Shao, Towards an automated tool to evaluate the impact of the nuclear modification of the gluon density on quarkonium, Dand Bmeson production in proton–nucleus collisions, Eur. Phys. J. C 77, 1 (2017)
https://doi.org/10.1140/epjc/s10052-016-4575-x
248 K. Kovarik, et al., nCTEQ15 – Global analysis of nuclear parton distributions with uncertainties in the CTEQ framework, Phys. Rev. D 93, 085037 (2016)
https://doi.org/10.1103/PhysRevD.93.085037
249 K. J. Eskola, P. Paakkinen, H. Paukkunen, and C. A. Salgado, EPPS16: Nuclear parton distributions with LHC data, Eur. Phys. J. C 77, 163 (2017)
https://doi.org/10.1140/epjc/s10052-017-4725-9
250 A. Kusina, J. P. Lansberg, I. Schienbein, and H. S. Shao, Gluon shadowing in heavy-flavor production at the LHC, Phys. Rev. Lett. 121, 052004 (2018)
https://doi.org/10.1103/PhysRevLett.121.052004
251 J. L. Albacete, et al., Predictions for cold nuclear matter effects in p+Pb collisions at SNN= 8.16 TeV, Nucl. Phys. A 972, 18 (2018)
252 R. Vogt, Shadowing effects on J/ψ and ϒ production at energies available at the CERN Large Hadron Collider, Phys. Rev. C 92, 034909 (2015)
https://doi.org/10.1103/PhysRevC.92.034909
253 L. Tang and C. F. Qiao, Mass spectra of 0+−, 1−+, and 2+− exotic glueballs, Nucl. Phys. B 904, 282 (2016)
https://doi.org/10.1016/j.nuclphysb.2016.01.017
[1] Yu-Fei Yan, Lan Zhou, Wei Zhong, Yu-Bo Sheng. Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon[J]. Front. Phys. , 2021, 16(1): 11501-.
[2] Ying-Xun Zhang, Ning Wang, Qing-Feng Li, Li Ou, Jun-Long Tian, Min Liu, Kai Zhao, Xi-Zhen Wu, Zhu-Xia Li. Progress of quantum molecular dynamics model and its applications in heavy ion collisions[J]. Front. Phys. , 2020, 15(5): 54301-.
[3] X.-J. Hao, R.-Y. Yuan, J.-J. Jin, Y. Guo. Influence of the velocity barrier on the massive Dirac electron transport in a monolayer MoS2 quantum structure[J]. Front. Phys. , 2020, 15(3): 33603-.
[4] Guo-Feng Zhang, Chang-Gang Yang, Yong Ge, Yong-Gang Peng, Rui-Yun Chen, Cheng-Bing Qin, Yan Gao, Lei Zhang, Hai-Zheng Zhong, Yu-Jun Zheng, Lian-Tuan Xiao, Suo-Tang Jia. Influence of surface charges on the emission polarization properties of single CdSe/CdS dot-in-rods[J]. Front. Phys. , 2019, 14(6): 63601-.
[5] Guo-Feng Zhang, Yong-Gang Peng, Hai-Qing Xie, Bin Li, Zhi-Jie Li, Chang-Gang Yang, Wen-Li Guo, Cheng-Bing Qin, Rui-Yun Chen, Yan Gao, Yu-Jun Zheng, Lian-Tuan Xiao, Suo-Tang Jia. Linear dipole behavior of single quantum dots encased in metal oxide semiconductor nanoparticles films[J]. Front. Phys. , 2019, 14(2): 23605-.
[6] Zheng-Yong Song, Qiong-Qiong Chu, Xiao-Peng Shen, Qing Huo Liu. Wideband high-efficient linear polarization rotators[J]. Front. Phys. , 2018, 13(5): 137803-.
[7] Pei Li, Zhao-Meng Gao, Xiu-Shi Huang, Long-Fei Wang, Wei-Feng Zhang, Hai-Zhong Guo. Ferroelectric polarization reversal tuned by magnetic field in a ferroelectric BiFeO3/Nb-doped SrTiO3 heterojunction[J]. Front. Phys. , 2018, 13(5): 136803-.
[8] Meng-Yin Zhou, Lin Xu, Lu-Chan Zhang, Jiang Wu, Yan-Bo Li, Huan-Yang Chen. Perfect invisibility concentrator with simplified material parameters[J]. Front. Phys. , 2018, 13(5): 134101-.
[9] Yu-Yu Jin, Sheng-Xian Qin, Hao Zu, Lan Zhou, Wei Zhong, Yu-Bo Sheng. Heralded amplification of single-photon entanglement with polarization feature[J]. Front. Phys. , 2018, 13(5): 130321-.
[10] Hong Wang, Bao-Cang Ren, Ai Hua Wang, Ahmed Alsaedi, Tasawar Hayat, Fu-Guo Deng. General hyperentanglement concentration for polarizationspatial- time-bin multi-photon systems with linear optics[J]. Front. Phys. , 2018, 13(5): 130315-.
[11] Xiang Liu, Wen-Bo Mi. Spontaneous ferroelectricity in strained low-temperature monoclinic Fe3O4: A first-principles study[J]. Front. Phys. , 2018, 13(2): 134204-.
[12] Cong Xiao,Dingping Li,Zhongshui Ma. Thermoelectric response of spin polarization in Rashba spintronic systems[J]. Front. Phys. , 2016, 11(3): 117201-.
[13] Qinghua Xu. Recent results on nucleon spin structure study at RHIC[J]. Front. Phys. , 2015, 10(6): 101402-.
[14] Chang-Zheng Yuan. Study of the XYZ states at the BESIII[J]. Front. Phys. , 2015, 10(6): 101401-.
[15] Jun Xu,Bao-An Li,Wen-Qing Shen,Yin Xia. Dynamical effects of spin-dependent interactions in low- and intermediate-energy heavy-ion reactions[J]. Front. Phys. , 2015, 10(6): 102501-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed