Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (1) : 11501    https://doi.org/10.1007/s11467-020-1005-1
RESEARCH ARTICLE
Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon
Yu-Fei Yan1, Lan Zhou2, Wei Zhong1,3, Yu-Bo Sheng1,3()
1. Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
2. Schoool of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
3. Key Lab of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
 Download: PDF(1265 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Measurement-device-independent quantum key distribution (MDI-QKD) provides us a powerful approach to resist all attacks at detection side. Besides the unconditional security, people also seek for high key generation rate, but MDI-QKD has relatively low key generation rate. In this paper, we provide an efficient approach to increase the key generation rate of MDI-QKD by adopting multiple degrees of freedom (DOFs) of single photons to generate keys. Compared with other high-dimension MDI-QKD protocols encoding in one DOF, our protocol is more flexible, for our protocol generating keys in independent subsystems and the detection failure or error in a DOF not affecting the information encoding in other DOFs. Based on above features, our MDI-QKD protocol may have potential application in future quantum communication field.

Keywords measurement-device-independent quantum key distribution      polarization      longitudinal-momentum      key generation rate     
Corresponding Author(s): Yu-Bo Sheng   
Just Accepted Date: 15 September 2020   Issue Date: 27 October 2020
 Cite this article:   
Yu-Fei Yan,Lan Zhou,Wei Zhong, et al. Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon[J]. Front. Phys. , 2021, 16(1): 11501.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-1005-1
https://academic.hep.com.cn/fop/EN/Y2021/V16/I1/11501
1 C. H. Bennett and G. Brassard, in: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India IEEE, New York, 175 (1984)
2 A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67(6), 661 (1991)
https://doi.org/10.1103/PhysRevLett.67.661
3 H. K. Lo and H. F. Chau, Unconditional security of quantum key distribution over arbitrarily long distances, Science 283(5410), 2050 (1999)
https://doi.org/10.1126/science.283.5410.2050
4 N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, Security of quantum key distribution using d-level systems, Phys. Rev. Lett. 88(12), 127902 (2002)
https://doi.org/10.1103/PhysRevLett.88.127902
5 D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, Quantum key distribution over 67 km with a plug play system, New J. Phys. 4, 41 (2002)
https://doi.org/10.1088/1367-2630/4/1/341
6 F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, Quantum key distribution using gaussian-modulated coherent states, Nature 421(6920), 238 (2003)
https://doi.org/10.1038/nature01289
7 H. K. Lo, H. F. Chau, and M. Ardehali, Efficient quantum key distribution scheme and a proof of its unconditional security, J. Cryptol. 18(2), 133 (2005)
https://doi.org/10.1007/s00145-004-0142-y
8 T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, Experimental demonstration of free-space decoy-state quantum key distribution over 144 km, Phys. Rev. Lett. 98(1), 010504 (2007)
https://doi.org/10.1103/PhysRevLett.98.010504
9 M. Koashi, Simple security proof of quantum key distribution based on complementarity, New J. Phys. 11(4), 045018 (2009)
https://doi.org/10.1088/1367-2630/11/4/045018
10 S. Wang, W. Chen, Z. Q. Yin, D. Y. He, C. Hui, P. L. Hao, G. J. Fan-Yuan, C. Wang, L. J. Zhang, J. Kuang, S. F. Liu, Z. Zhou, Y. G. Wang, G. C. Guo, and Z. F. Han, Practical gigahertz quantum key distribution robust against channel disturbance, Opt. Lett. 43(9), 2030 (2018)
https://doi.org/10.1364/OL.43.002030
11 X. D. Wu, Y. J. Wang, H. Zhong, Q. Liao, and Y. Guo, Plug-and-play dual-phase-modulated continuous variable quantum key distribution with photon subtraction, Front. Phys. 14(4), 41501 (2019)
https://doi.org/10.1007/s11467-019-0881-8
12 S. Wang, D. Y. He, Z. Q. Yin, F. Y. Lu, C. H. Cui, W. Chen, Z. Zhou, G. C. Guo, and Z. F. Han, Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system, Phys. Rev. X 9(2), 021046 (2019)
https://doi.org/10.1103/PhysRevX.9.021046
13 F. H. Xu, X. F. Ma, Q. Zhang, H. K. Lo, and J. W. Pan, Secure quantum key distribution with realistic devices, Rev. Mod. Phys. 92(2), 025002 (2020)
https://doi.org/10.1103/RevModPhys.92.025002
14 Y. Zhang and Q. Ni, Design and analysis of random multiple access quantum key distribution, Quant. Engineer. 2(1), e31 (2020)
https://doi.org/10.1002/que2.31
15 G. Chai, D. W. Li, Z. W. Cao, M. Zhang, P. Huang, and G. Zeng, Blind channel estimation for continuousvariable quantum key distribution, Quant. Engineer. 2(2), e37 (2020)
https://doi.org/10.1002/que2.37
16 M. J. He, R. Malaney, and J. Green, Multimode CV-QKD with non-Gaussian operations, Quant. Engineer. 2, e40 (2020)
https://doi.org/10.1002/que2.40
17 H. K. Lo, M. Curty, and K. Tamaki, Secure quantum key distribution, Nat. Photonics 8(8), 595 (2014)
https://doi.org/10.1038/nphoton.2014.149
18 B. Qi, C. H. F. Fung, H. K. Lo, and X. F. Ma, Time-shift attack in practical quantum cryptosystems, Quantum Inf. Comput. 7, 73 (2007)
19 Y. Zhao, C. H. F. Fung, B. Qi, C. Chen, and H. K. Lo, Quantum hacking: experimental demonstration of timeshift attack against practical quantum-keydistribution systems, Phys. Rev. A 78(4), 042333 (2008)
https://doi.org/10.1103/PhysRevA.78.042333
20 N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, Device calibration impacts security of quantum key distribution, Phys. Rev. Lett. 107(11), 110501 (2011)
https://doi.org/10.1103/PhysRevLett.107.110501
21 L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, Hacking commercial quantum cryptography systems by tailored bright illumination, Nat. Photonics 4(10), 686 (2010)
https://doi.org/10.1038/nphoton.2010.214
22 H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, Attacking a practical quantum-key-distribution system with wavelength dependent beam-splitter and multiwavelength sources, Phys. Rev. A 84(6), 062308 (2011)
https://doi.org/10.1103/PhysRevA.84.062308
23 J. Z. Huang, C. Weedbrook, Z. Q. Yin, S. Wang, H. W. Li, W. Chen, G. C. Guo, and Z. F. Han, Quantum hacking of a continuous-variable quantum-key distribution system using a wavelength attack, Phys. Rev. A 87(6), 062329 (2013)
https://doi.org/10.1103/PhysRevA.87.062329
24 V. Makarov and J. Skaar, Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols, Quantum Inf. Comput. 8, 6 (2007)
25 V. Makarov, A. Anisimov, and J. Skaar, Effects of detector efficiency mismatch on security of quantum cryptosystems, Phys. Rev. A 74(2), 022313 (2006)
https://doi.org/10.1103/PhysRevA.74.022313
26 Y. Zhao, B. Qi, and H. K. Lo, Quantum key distribution with an unknown and untrusted source, Phys. Rev. A 77(5), 052327 (2008)
https://doi.org/10.1103/PhysRevA.77.052327
27 X. Peng, H. Jiang, B. J. Xu, X. F. Ma, and H. Guo, Experimental quantum-key distribution with an untrusted source, Opt. Lett. 33(18), 2077 (2008)
https://doi.org/10.1364/OL.33.002077
28 G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, Limitations on practical quantum cryptography, Phys. Rev. Lett. 85(6), 1330 (2000)
https://doi.org/10.1103/PhysRevLett.85.1330
29 W. Y. Hwang, Quantum key distribution with high loss: Toward global secure communication, Phys. Rev. Lett. 91(5), 057901 (2003)
https://doi.org/10.1103/PhysRevLett.91.057901
30 H. K. Lo, X. F. Ma, and K. Chen, Decoy state quantum key distribution, Phys. Rev. Lett. 94(23), 230504 (2005)
https://doi.org/10.1103/PhysRevLett.94.230504
31 X. B. Wang, Beating the photon-number-splitting attack in practical quantum cryptography, Phys. Rev. Lett. 94(23), 230503 (2005)
https://doi.org/10.1103/PhysRevLett.94.230503
32 X. F. Ma, B. Qi, Y. Zhao, and H. K. Lo, Practical decoy state for quantum key distribution, Phys. Rev. A 72(1), 012326 (2005)
https://doi.org/10.1103/PhysRevA.72.012326
33 A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, Device-independent security of quantum cryptography against collective attacks, Phys. Rev. Lett. 98(23), 230501 (2007)
https://doi.org/10.1103/PhysRevLett.98.230501
34 S. Pironio, A. Acín, N. Brunner, N. Gisin, S. Massar, and V. Scarani, Device-independent quantum key distribution secure against collective attacks, New J. Phys. 11(4), 045021 (2009)
https://doi.org/10.1088/1367-2630/11/4/045021
35 L. Masanes, S. Pironio, and A. Acín, Secure deviceindependent quantum key distribution with causally independent measurement devices, Nat. Commun. 2(1), 238 (2011)
https://doi.org/10.1038/ncomms1244
36 A. Máttar, J. Kolodynski, P. Skrzypczyk, D. Cavalcanti, K. Banaszek, and A. Acín, Device-independent quantum key distribution with single-photon sources, arXiv: 1803.07089 (2018)
https://doi.org/10.1117/12.2270325
37 H. K. Lo, M. Curty, and B. Qi, Measurementdeviceindependent quantum key distribution, Phys. Rev. Lett. 108(13), 130503 (2012)
https://doi.org/10.1103/PhysRevLett.108.130503
38 Y. Liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J. W. Pan, Experimental measurement-device-independent quantum key distribution, Phys. Rev. Lett. 111(13), 130502 (2013)
https://doi.org/10.1103/PhysRevLett.111.130502
39 F. H. Xu, M. Curty, B. Qi, and H. K. Lo, Practical aspects of measurement-device-independent quantum key distribution, New J. Phys. 15(11), 113007 (2013)
https://doi.org/10.1088/1367-2630/15/11/113007
40 Z. Y. Tang, Z. F. Liao, F. H. Xu, B. Qi, L. Qian, and H. K. Lo, Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution, Phys. Rev. Lett. 112(19), 190503 (2014)
https://doi.org/10.1103/PhysRevLett.112.190503
41 Y. L. Tang, H. L. Yin, S. J. Chen, Y. Liu, W. J. Zhang, X. Jiang, L. Zhang, J. Wang, L. X. You, J. Y. Guan, D. X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T. Y. Chen, Q. Zhang, and J. W. Pan, Measurement-deviceindependent quantum key distribution over 200 km, Phys. Rev. Lett. 114(6), 069901 (2015)
https://doi.org/10.1103/PhysRevLett.114.069901
42 H. L. Yin, W. F. Cao, Y. Fu, Y. L. Tang, Y. Liu, T. Y. Chen, and Z. B. Chen, Long-distance measurement-deviceindependent quantum key distribution with coherent-state superpositions, Opt. Lett. 39(18), 5451 (2014)
https://doi.org/10.1364/OL.39.005451
43 C. Wang, X. T. Song, Z. Q. Yin, S. Wang, W. Chen, C. M. Zhang, G. C. Guo, and Z. F. Han, Phase-reference-free experiment of measurement-device-independent quantum key distribution, Phys. Rev. Lett. 115(16), 160502 (2015)
https://doi.org/10.1103/PhysRevLett.115.160502
44 H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, Measurement deviceindependent quantum key distribution over a 404 km optical fiber, Phys. Rev. Lett. 117(19), 190501 (2016)
https://doi.org/10.1103/PhysRevLett.117.190501
45 C. Wang, Z. Q. Yin, S. Wang, W. Chen, G. C. Guo, and Z. F. Han, Measurement-device-independent quantum key distribution robust against environmental disturbances, Optica 4(9), 1016 (2017)
https://doi.org/10.1364/OPTICA.4.001016
46 X. D. Wu, Y. J. Wang, D. Huang, and Y. Guo, Simultaneous measurement-device-independent continuous variable quantum key distribution with realistic detector compensation, Front. Phys. 15(3), 31601 (2020)
https://doi.org/10.1007/s11467-020-0954-8
47 J. Mower, Z. S. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, and D. Englund, High-dimensional quantum key distribution using dispersive optics, Phys. Rev. A 87(6), 062322 (2013)
https://doi.org/10.1103/PhysRevA.87.062322
48 M. Mafu, A. Dudley, S. Goyal, D. Giovannini, M. McLaren, M. J. Padgett, T. Konrad, F. Petruccione, N. Lütkenhaus, and A. Forbes, Higherdimensional orbitalangular-momentum-based quantum key distribution with mutually unbiased bases, Phys. Rev. A 88(3), 032305 (2013)
https://doi.org/10.1103/PhysRevA.88.032305
49 T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding, New J. Phys. 17(2), 022002 (2015)
https://doi.org/10.1088/1367-2630/17/2/022002
50 D. Bunandar, Z. S. Zhang, J. H. Shapiro, and D. R. Englund, Practical high-dimensional quantum key distribution with decoy states, Phys. Rev. A 91(2), 022336 (2015)
https://doi.org/10.1103/PhysRevA.91.022336
51 S. Wang, Z. Q. Yin, W. Chen, D. Y. He, X. T. Song, H. W. Li, L. J. Zhang, Z. Zhou, G. C. Guo, and Z. F. Han, Experimental demonstration of a quantum key distribution without signal disturbance monitoring, Nat. Photonics 9(12), 832 (2015)
https://doi.org/10.1038/nphoton.2015.209
52 H. Z. Bao, W. S. Bao, Y. Wang, R. K. Chen, and H. W. Li, Detector-decoy high-dimensional quantum key distribution, Opt. Express 24(19), 22159 (2016)
https://doi.org/10.1364/OE.24.022159
53 H. Chau, C. Wong, Q. Wang, and T. Huang, Qudit-based measurement-device-independent quantum key distribution using linear optics, arXiv: 1608.08329 (2016)
54 F. T. Tabesh, S. Salimi, and A. S. Khorashad, Witness for initial correlations among environments, Phys. Rev. A 95(5), 052323 (2017)
https://doi.org/10.1103/PhysRevA.95.052323
55 G. Cañas, N. Vera, J. Cariñe, P. González, J. Cardenas, P. W. R. Connolly, A. Przysiezna, E. S. Gómez, M. Figueroa, G. Vallone, P. Villoresi, T. F. da Silva, G. B. Xavier, and G. Lima, High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers, Phys. Rev. A 96(2), 022317 (2017)
https://doi.org/10.1103/PhysRevA.96.022317
56 L. Dellantonio, A. S. Sorensen, and D. Bacco, Highdimensional measurement-device-independent quantum key distribution on two-dimensional subspaces, Phys. Rev. A 98(6), 062301 (2018)
https://doi.org/10.1103/PhysRevA.98.062301
57 G. I. Struchalin, E. V. Kovlakov, S. S. Straupe, and S. P. Kulik, Adaptive quantum tomography of highdimensional bipartite systems, Phys. Rev. A 98(3), 032330 (2018)
https://doi.org/10.1103/PhysRevA.98.032330
58 S. Wang, Z. Q. Yin, H. F. Chau, W. Chen, C. Wang, G. C. Guo, and Z. F. Han, Proof-of-principle experimental realization of a qubit-like qudit-based quantum key distribution scheme, Quan. Sci. Technol. 3(2), 025006 (2018)
https://doi.org/10.1088/2058-9565/aaace4
59 F. M. Wang, P. Zeng, J. P. Zhao, B. Braverman, Y. Zhou, M. Mirhosseini, X. Wang, H. Gao, F. Li, R. W. Boyd, and P. Zhang, High-dimensional quantum key distribution based on mutually partially unbiased bases, Phys. Rev. A 101(3), 032340 (2020)
https://doi.org/10.1103/PhysRevA.101.032340
60 F. X. Wang, W. Chen, Z. Q. Yin, S. Wang, G. C. Guo, and Z. F. Han, Characterizing high-quality highdimensional quantum key distribution by state mapping between different degrees of freedom, Phys. Rev. A 11, 024070 (2019)
https://doi.org/10.1103/PhysRevApplied.11.024070
61 J. Chapman, C. Lim, and P. Kwiat, Hyperentangled timebin and polarization quantum key distribution, arXiv: 1908.09018 (2019)
62 Z. X. Cui, W. Zhong, L. Zhou, and Y. B. Sheng, Measurement-device-independent quantum key distribution with hyper-encoding, Sci. China Phys. Mech. Astron. 62(11), 110311 (2019)
https://doi.org/10.1007/s11433-019-1438-6
63 X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Quantum teleportation of multiple degrees of freedom of a single photon, Nature 518(7540), 516 (2015)
https://doi.org/10.1038/nature14246
64 X. M. Hu, Y. Guo, B. H. Liu, Y. F. Huang, C. F. Li, and G. C. Guo, Beating the channel capacity limit for superdense coding with entangled ququarts, Sci. Adv. 4(7), eaat9304 (2018)
https://doi.org/10.1126/sciadv.aat9304
65 F. Z. Wu, G. J. Yang, H. B. Wang, J. Xiong, F. Alzahrani, A. Hobiny, and F. G. Deng, High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states, Sci. China Phys. Mech. Astron. 60(12), 120313 (2017)
https://doi.org/10.1007/s11433-017-9100-9
66 S. S. Chen, L. Zhou, W. Zhong, and Y. B. Sheng, Threestep three-party quantum secure direct communication, Sci. China Phys. Mech. Astron. 61(9), 90312 (2018)
https://doi.org/10.1007/s11433-018-9224-5
67 L. Y. Li, T. J. Wang, and C. Wang, The analysis of highcapacity quantum secure direct communication using polarization and orbital angular momentum of photons, Mod. Phys. Lett. B 34(02), 2050017 (2020)
https://doi.org/10.1142/S0217984920500177
68 G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, Hyper-entanglement of two photons in three degrees of freedom, Phys. Rev. A 79(3), 030301 (2009)
https://doi.org/10.1103/PhysRevA.79.030301
69 Q. Liu, G. Y. Wang, Q. Ai, M. Zhang, and F. G. Deng, Complete nondestructive analysis of two-photon six-qubit hyperentangled Bell states assisted by cross-Kerr nonlinearity, Sci. Rep. 6(1), 22016 (2016)
https://doi.org/10.1038/srep22016
70 H. Inamori, Security of practical time-reversed EPR quantum key distribution, Algorithmica 34(4), 340 (2002)
https://doi.org/10.1007/s00453-002-0983-4
71 P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, Linear optical quantum computing with photonic qubits, Rev. Mod. Phys. 79(1), 135 (2007)
https://doi.org/10.1103/RevModPhys.79.135
72 Y. B. Wei, W. Q. Liu, and N. Y. Chen, Implementing twophoton three-degree-of-freedom hyper-parallel controlled phase flip gate through cavity-assisted interactions, Ann. Phys. 532(4), 1900578 (2020)
https://doi.org/10.1002/andp.201900578
73 C. Zhu and G. Huang, Giant Kerr nonlinearity, controlled entangled photons and polarization phase gates in coupled quantum-well structures, Opt. Express 19(23), 23364 (2011)
https://doi.org/10.1364/OE.19.023364
74 I. C. Hoi, A. F. Kockum, T. Palomaki, T. M. Stace, B. Fan, L. Tornberg, S. R. Sathyamoorthy, G. Johansson, P. Delsing, and C. M. Wilson, Giant cross-Kerr effect for propagating microwaves induced by an artificial atom, Phys. Rev. Lett. 111(5), 053601 (2013)
https://doi.org/10.1103/PhysRevLett.111.053601
75 K. M. Beck, M. Hosseini, Y. H. Duan, and V. Vuletic, Large conditional single-photon cross-phase modulation,Proc. Natl. Acad. Sci. USA 113(35), 9740 (2016)
https://doi.org/10.1073/pnas.1524117113
76 D. Tiarks, S. Schmidt, G. Rempe, and S. Dürr, Optical π phase shift created with a single-photon pulse, Sci. Adv. 2(4), e1600036 (2016)
https://doi.org/10.1126/sciadv.1600036
77 J. Sinclair, D. Angulo, N. Lupu-Gladstein, K. Bonsma-Fisher, and A. M. Steinberg, Observation of a large, resonant, cross-Kerr nonlinearity in a free-space Rydberg medium, arXiv: 1906.05151 (2019)
https://doi.org/10.1103/PhysRevResearch.1.033193
78 B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities, Opt. Express 20(22), 24664 (2012)
https://doi.org/10.1364/OE.20.024664
79 T. J. Wang, Y. Lu, and G. L. Long, Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities, Phys. Rev. A 86(4), 042337 (2012)
https://doi.org/10.1103/PhysRevA.86.042337
80 G. Y. Wang, Q. Ai, B. C. Ren, T. Li, and F. G. Deng, Error-detected generation and complete analysis of hyperentangled Bell states for photons assisted by quantum-dot spins in double-sided optical microcavities, Opt. Express 24(25), 28444 (2016)
https://doi.org/10.1364/OE.24.028444
81 Q. Liu and M. Zhang, Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators, Phys. Rev. A 91(6), 062321 (2015)
https://doi.org/10.1103/PhysRevA.91.062321
82 T. J. Wang and C. Wang, Complete hyperentangled-Bell state analysis for photonic qubits assisted by a three-level Λ-type system, Sci. Rep. 6(1), 19497 (2016)
https://doi.org/10.1038/srep19497
[1] Sen Jia, Xingyu Zhou, Chengping Shen. Experimental review of the ϒ(1S, 2S, 3S) physics at e+e colliders and the LHC[J]. Front. Phys. , 2020, 15(6): 64301-.
[2] X.-J. Hao, R.-Y. Yuan, J.-J. Jin, Y. Guo. Influence of the velocity barrier on the massive Dirac electron transport in a monolayer MoS2 quantum structure[J]. Front. Phys. , 2020, 15(3): 33603-.
[3] Guo-Feng Zhang, Chang-Gang Yang, Yong Ge, Yong-Gang Peng, Rui-Yun Chen, Cheng-Bing Qin, Yan Gao, Lei Zhang, Hai-Zheng Zhong, Yu-Jun Zheng, Lian-Tuan Xiao, Suo-Tang Jia. Influence of surface charges on the emission polarization properties of single CdSe/CdS dot-in-rods[J]. Front. Phys. , 2019, 14(6): 63601-.
[4] Guo-Feng Zhang, Yong-Gang Peng, Hai-Qing Xie, Bin Li, Zhi-Jie Li, Chang-Gang Yang, Wen-Li Guo, Cheng-Bing Qin, Rui-Yun Chen, Yan Gao, Yu-Jun Zheng, Lian-Tuan Xiao, Suo-Tang Jia. Linear dipole behavior of single quantum dots encased in metal oxide semiconductor nanoparticles films[J]. Front. Phys. , 2019, 14(2): 23605-.
[5] Pei Li, Zhao-Meng Gao, Xiu-Shi Huang, Long-Fei Wang, Wei-Feng Zhang, Hai-Zhong Guo. Ferroelectric polarization reversal tuned by magnetic field in a ferroelectric BiFeO3/Nb-doped SrTiO3 heterojunction[J]. Front. Phys. , 2018, 13(5): 136803-.
[6] Zheng-Yong Song, Qiong-Qiong Chu, Xiao-Peng Shen, Qing Huo Liu. Wideband high-efficient linear polarization rotators[J]. Front. Phys. , 2018, 13(5): 137803-.
[7] Hong Wang, Bao-Cang Ren, Ai Hua Wang, Ahmed Alsaedi, Tasawar Hayat, Fu-Guo Deng. General hyperentanglement concentration for polarizationspatial- time-bin multi-photon systems with linear optics[J]. Front. Phys. , 2018, 13(5): 130315-.
[8] Yu-Yu Jin, Sheng-Xian Qin, Hao Zu, Lan Zhou, Wei Zhong, Yu-Bo Sheng. Heralded amplification of single-photon entanglement with polarization feature[J]. Front. Phys. , 2018, 13(5): 130321-.
[9] Xiang Liu, Wen-Bo Mi. Spontaneous ferroelectricity in strained low-temperature monoclinic Fe3O4: A first-principles study[J]. Front. Phys. , 2018, 13(2): 134204-.
[10] Cong Xiao,Dingping Li,Zhongshui Ma. Thermoelectric response of spin polarization in Rashba spintronic systems[J]. Front. Phys. , 2016, 11(3): 117201-.
[11] Qinghua Xu. Recent results on nucleon spin structure study at RHIC[J]. Front. Phys. , 2015, 10(6): 101402-.
[12] Jun Xu,Bao-An Li,Wen-Qing Shen,Yin Xia. Dynamical effects of spin-dependent interactions in low- and intermediate-energy heavy-ion reactions[J]. Front. Phys. , 2015, 10(6): 102501-.
[13] Krisztián Palotás, Gábor Mándi, Werner A. Hofer. Three-dimensional Wentzel–Kramers–Brillouin approach for the simulation of scanning tunneling microscopy and spectroscopy[J]. Front. Phys. , 2014, 9(6): 711-747.
[14] Jia-ming HAO(郝加明), Min QIU(仇旻), Lei ZHOU(周磊), . Manipulate light polarizations with metamaterials: From microwave to visible[J]. Front. Phys. , 2010, 5(3): 291-307.
[15] Shou-wan CHEN (陈寿万), Jian DENG (邓建), Qun WANG (王群), Jian-hua GAO (高建华), . A general derivation of differential cross section in quark–quark and quark–gluon scatterings at fixed impact parameter[J]. Front. Phys. , 2009, 4(4): 509-516.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed