Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (1) : 13302    https://doi.org/10.1007/s11467-020-0985-1
TOPICAL REVIEW
Tactile and temperature sensors based on organic transistors: Towards e-skin fabrication
Miao Zhu1, Muhammad Umair Ali2,3, Changwei Zou1, Wei Xie1, Songquan Li1, Hong Meng3()
1. School of Physical Science and Technology, Lingnan Normal University, Zhanjiang 524048, China
2. Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
3. School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
 Download: PDF(2517 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Tactile and temperature sensors are the key components for e-skin fabrication. Organic transistors, a kind of intrinsic logic devices with diverse internal configurations, offer a wide range of options for sensor design and have played a vital role in the fabrication of e-skin-oriented tactile and temperature sensors. This research field has attained tremendous advancements, both in terms of materials design and device architecture, thereby leading to excellent performance of resulting tactile/temperature sensors. Herein, a systematic review of organic transistor-based tactile and temperature sensors is presented to summarize the latest progress in these devices. Particularly, we focus on spotlighting various device structures, underlying mechanisms and their performance. Lastly, an outlook for the future development of these devices is briefly discussed. We anticipate that this review will provide a quick overview of such a rapidly emerging research direction and attract more dedicated efforts for the development of next-generation sensing devices towards e-skin fabrication.

Keywords tactile sensor      temperature sensor      flexible      e-skin      organic transistor     
Corresponding Author(s): Hong Meng   
Just Accepted Date: 17 August 2020   Issue Date: 10 October 2020
 Cite this article:   
Miao Zhu,Muhammad Umair Ali,Changwei Zou, et al. Tactile and temperature sensors based on organic transistors: Towards e-skin fabrication[J]. Front. Phys. , 2021, 16(1): 13302.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-0985-1
https://academic.hep.com.cn/fop/EN/Y2021/V16/I1/13302
1 T. Nezakati, A. Seifalian, A. Tan, and A. M. Seifalian, Conductive polymers: Opportunities and challenges in biomedical applications, Chem. Rev. 118(14), 6766 (2018)
https://doi.org/10.1021/acs.chemrev.6b00275
2 J. Chen, Q. Yu, X. Cui, M. Dong, J. Zhang, C. Wang, J. Fan, Y. Zhu, and Z. Guo, An overview of stretchable strain sensors from conductive polymer nanocomposites, J. Mater. Chem. C 7(38), 11710 (2019)
https://doi.org/10.1039/C9TC03655E
3 J. Chen, Y. Zhu, J. Huang, J. Zhang, D. Pan, J. Zhou, J. Ryu, A. Umar, and Z. Guo, Advances in responsively conductive polymer composites and sensing applications, Polym. Rev., doi:10.1080/15583724.2020.1734818 (2020)
https://doi.org/10.1080/15583724.2020.1734818
4 C. H. Lee, B. Kim, and K. Kim, Printing flexible and hybrid electronics for human skin and eye-interfaced health monitoring systems, Adv. Mater. 32(15), 1902051 (2019)
https://doi.org/10.1002/adma.201902051
5 H. R. Lim, H. S. Kim, R. Qazi, Y. T. Kwon, J. W. Jeong, and W. H. Yeo, Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment, Adv. Mater. 32(15), 1901924 (2020)
https://doi.org/10.1002/adma.201901924
6 W. Gao, H. Ota, D. Kiriya, K. Takei, and A. Javey, Flexible electronics toward wearable sensing, Acc. Chem. Res. 52(3), 523 (2019)
https://doi.org/10.1021/acs.accounts.8b00500
7 Y. Liu, M. Pharr, and G. A. Salvatore, Lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring, ACS Nano 11(10), 9614 (2017)
https://doi.org/10.1021/acsnano.7b04898
8 H. Xu, M. K. Zhang, Y. F. Lu, J. J. Li, S. J. Ge, and Z. Z. Gu, Dual-mode wearable strain sensor based on graphene/colloidal crystal films for simultaneously detection of subtle and large human motions, Adv. Mater. Technol. 5(2), 1901056 (2020)
https://doi.org/10.1002/admt.201901056
9 X. You, J. Yang, M. Wang, J. Huh, Y. Ding, X. Zhang and S. Dong, Graphene-based fiber sensors with high stretchability and sensitivity by direct ink extrusion, 2D Mater. 7(1), 015025 (2020)
https://doi.org/10.1088/2053-1583/ab559f
10 C. Deng, P. Gao, L. Lan, P. He, X. Zhao, W. Zheng, W. Chen, X. Zhong, Y. Wu, L. Liu, J. Peng, and Y. Cao, Ultrasensitive and highly stretchable multifunctional strain sensors with timbre-recognition ability based on vertical graphene, Adv. Funct. Mater. 29(51), 1907151 (2019)
https://doi.org/10.1002/adfm.201907151
11 C. Yang, W. Liu, N. Liu, J. Su, L. Li, L. Xiong, F. Long, Z. Zou, and Y. Gao, Graphene aerogel broken to fragments for a piezoresistive pressure sensor with a higher sensitivity, ACS Appl. Mater. Interfaces 11(36), 33165 (2019)
https://doi.org/10.1021/acsami.9b12055
12 B. Zhao, Y. Wang, S. Sinha, C. Chen, D. Liu, A. Dasgupta, L. Hu, and S. Das, Shape-driven arrest of coffee stain effect drives the fabrication of carbon-nanotubegraphene- oxide inks for printing embedded structures and temperature sensors, Nanoscale 11(48), 23402 (2019)
https://doi.org/10.1039/C9NR08450A
13 Y. Cheng, Y. Ma, L. Li, M. Zhu, Y. Yue, W. Liu, L. Wang, S. Jia, C. Li, T. Qi, J. Wang, and Y. Gao, Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor, ACS Nano 14(2), 2145 (2020)
https://doi.org/10.1021/acsnano.9b08952
14 Y. Gao, C. Yan, H. Huang, T. Yang, G. Tian, D. Xiong, N. Chen, X. Chu, S. Zhong, W. Deng, Y. Fang, and W. Yang, Microchannel-confined MXene based flexible piezoresistive multifunctional micro-force sensor, Adv. Funct. Mater. 30(11), 1909603 (2020)
https://doi.org/10.1002/adfm.201909603
15 Z. Cao, Y. Yang, Y. Zheng, W. Wu, F. Xu, R. Wang, and J. Sun, Highly flexible and sensitive temperature sensors based on Ti3C2Tx (MXene) for electronic skin, J. Mater. Chem. A 7(44), 25314 (2019)
https://doi.org/10.1039/C9TA09225K
16 T. Huang, P. He, R. Wang, S. Yang, J. Sun, X. Xie, and G. Ding, Porous fibers composed of polymer nanoball decorated graphene for wearable and highly sensitive strain sensors, Adv. Funct. Mater. 29(45), 1903732 (2019)
https://doi.org/10.1002/adfm.201903732
17 Z. Zeng, S. I. S. Shahabadi, B. Che, Y. Zhang, C. Zhao, and X. Lu, Highly stretchable, sensitive strain sensors with a wide linear sensing region based on compressed anisotropic graphene foam/polymer nanocomposites, Nanoscale 9(44), 17396 (2017)
https://doi.org/10.1039/C7NR05106A
18 S. Riyajuddin, S. Kumar, S. P. Gaur, A. Sud, T. Maruyama, M. E. Ali, and K. Ghosh, Linear piezoresistive strain sensor based on graphene/g-C3N4/PDMS heterostructure, Nanotechnology 31(29), 295501 (2020)
https://doi.org/10.1088/1361-6528/ab7b88
19 Q. Tian, W. Yan, Y. Li, and D. Ho, Bean podinspired ultrasensitive and self-healing pressure sensor based on laser-induced graphene and polystyrene microsphere sandwiched structure, ACS Appl. Mater. Interfaces 12(8), 9710 (2020)
https://doi.org/10.1021/acsami.9b18873
20 R. Furlan de Oliveira, P. A. Livio, V. Montes-García, S. Ippolito, M. Eredia, P. Fanjul-Bolado, M. B. González García, S. Casalini, and P. Samorì, Liquid-gated transistors based on reduced graphene oxide for flexible and wearable electronics, Adv. Funct. Mater. 29(46), 1905375 (2019)
https://doi.org/10.1002/adfm.201905375
21 Z. Wang, Z. Hao, S. Yu, C. G. D. Moraes, L. H. Suh, X. Zhao, and Q. Lin, An ultraflexible and stretchable aptameric graphene nanosensor for biomarker detection and monitoring, Adv. Funct. Mater. 29(44), 1905202 (2019)
https://doi.org/10.1002/adfm.201905202
22 N. Schaefer, R. G. Cortadella, J. Martneíz-Aguilar, G. Schwesig, X. Illa, A. M. Lara, S. Santiago, C. Hébert, G. Guirado, R. Villa, A. Sirota, A. Guimerà-Brunet, and J. A. Garrido, Multiplexed neural sensor array of graphene solution-gated field-effect transistors, 2D Mater. 7(2), 025046 (2020)
https://doi.org/10.1088/2053-1583/ab7976
23 T. Leng, K. Parvez, K. Pan, J. Ali, D. McManus, K. S. Novoselov, C. Casiraghi, and Z. Hu, Printed graphene/WS2 battery-free wireless photosensor on papers, 2D Mater. 7(2), 024004 (2020)
https://doi.org/10.1088/2053-1583/ab602f
24 L. Li, Y. Guo, Y. Sun, L. Yang, L. Qin, S. Guan, J. Wang, X. Qiu, H. Li, Y. Shang, and Y. Fang, A general method for the chemical synthesis of large-scale, seamless transition metal dichalcogenide electronics, Adv. Mater. 30(12), 1706215 (2018)
https://doi.org/10.1002/adma.201706215
25 D. Zhang, J. Du, Y. L. Hong, W. Zhang, X. Wang, H. Jin, P. L. Burn, J. Yu, M. Chen, D. M. Sun, M. Li, L. Liu, L. P. Ma, H. M. Cheng, and W. Ren, A double support layer for facile clean transfer of two-dimensional materials for high-performance electronic and optoelectronic devices, ACS Nano 13(5), 5513 (2019)
https://doi.org/10.1021/acsnano.9b00330
26 P. W. M. Blom, Polymer electronics: To be or not to be? Adv. Mater. Technol. 5(6), 2000144 (2020)
https://doi.org/10.1002/admt.202000144
27 K. G. Lim, E. Guo, A. Fischer, Q. Miao, K. Leo, and H. Kleemann, Anodization for simplified processing and efficient charge transport in vertical organic field-effect transistors, Adv. Funct. Mater. 2001703(27), 2001703 (2020)
https://doi.org/10.1002/adfm.202001703
28 S. Fratini, M. Nikolka, A. Salleo, G. Schweicher, and H. Sirringhaus, Charge transport in high-mobility conjugated polymers and molecular semiconductors, Nat. Mater. 19(5), 491 (2020)
https://doi.org/10.1038/s41563-020-0647-2
29 H. Zhong, G. Wu, Z. Fu, H. Lv, G. Xu, and R. Wang, Flexible porous organic polymer membranes for protonic field-effect transistors, Adv. Mater. 32(21), 2000730 (2020)
https://doi.org/10.1002/adma.202000730
30 H. Chen, W. Zhang, M. Li, G. He, and X. Guo, Interface engineering in organic field-effect transistors: Principles, applications, and perspectives, Chem. Rev. 120(5), 2879 (2020)
https://doi.org/10.1021/acs.chemrev.9b00532
31 T. Q. Trung, S. Ramasundaram, S. W. Hong, and N. E. Lee, Flexible and transparent nanocomposite of reduced graphene oxide and P(VDF-TrFE) copolymer for high thermal responsivity in a field-effect transistor, Adv. Funct. Mater. 24(22), 3438 (2014)
https://doi.org/10.1002/adfm.201304224
32 T. Q. Trung, S. Ramasundaram, B. U. Hwang, and N. E. Lee, An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics, Adv. Mater. 28(3), 502 (2016)
https://doi.org/10.1002/adma.201504441
33 Q. Zhang, F. Leonardi, R. Pfattner, and M. Mas-Torrent, A solid-state aqueous electrolyte-gated field-effect transistor as a low-voltage operation pressure-sensitive Platform, Adv. Mater. Interfaces 6(16), 1900719 (2019)
https://doi.org/10.1002/admi.201900719
34 X. Ren, K. Pei, B. Peng, Z. Zhang, Z. Wang, X. Wang, and P. K. L. Chan, A low-operating-power and flexible active-matrix organic-transistor temperature-sensor array, Adv. Mater. 28(24), 4832 (2016)
https://doi.org/10.1002/adma.201600040
35 K. Nakayama, B. S. Cha, Y. Kanaoka, N. Isahaya, M. Omori, M. Uno, and J. Takeya, Organic temperature sensors and organic analog-to-digital converters based on ptype and n-type organic transistors, Org. Electron. 36, 148 (2016)
https://doi.org/10.1016/j.orgel.2016.06.001
36 Y. H. Lee, M. Jang, M. Y. Lee, O. Y. Kweon, and J. H. Oh, Flexible field-effect transistor-type sensors based on conjugated molecules, Chem 3(5), 724 (2017)
https://doi.org/10.1016/j.chempr.2017.10.005
37 K. Kim, G. Song, C. Park, and K. S. Yun, Multifunctional woven structure operating as triboelectric energy harvester, capacitive tactile sensor array, and piezoresistive strain sensor array, Sensors 17(11), 2582 (2017)
https://doi.org/10.3390/s17112582
38 H. K. Kim, S. Lee, and K. S. Yun, Capacitive tactile sensor array for touch screen application, Sens. Act. A: Phys. 165(1), 2 (2011)
https://doi.org/10.1016/j.sna.2009.12.031
39 R. Surapaneni, Q. Guo, Y. Xie, D. J. Young, and C. H. Mastrangelo, A three-axis high-resolution capacitive tactile imager system based on floating comb electrodes, J. Micromech. Microeng. 23(7), 075004 (2013)
https://doi.org/10.1088/0960-1317/23/7/075004
40 W. Shi, Y. Guo, and Y. Liu, When flexible organic fieldeffect transistors meet biomimetics: A prospective view of the internet of things, Adv. Mater. 32(15), 1901493 (2020)
https://doi.org/10.1002/adma.201901493
41 Y. H. Lee, O. Y. Kweon, H. Kim, J. H. Yoo, S. G. Han, and J. H. Oh, Recent advances in organic sensors for health self-monitoring systems, J. Mater. Chem. C 6(32), 8569 (2018)
https://doi.org/10.1039/C8TC02230E
42 W. Gao, H. Ota, D. Kiriya, K. Takei, and A. Javey, Flexible electronics toward wearable sensing, Acc. Chem. Res. 52(3), 523 (2019)
https://doi.org/10.1021/acs.accounts.8b00500
43 X. Wu, S. Mao, J. Chen, and J. Huang, Strategies for improving the performance of sensors based on organic fieldeffect transistors, Adv. Mater. 30(17), 1705642 (2018)
https://doi.org/10.1002/adma.201705642
44 D. Chen and Q. Pei, Electronic muscles and skins: A review of soft sensors and actuators, Chem. Rev. 117(17), 11239 (2017)
https://doi.org/10.1021/acs.chemrev.7b00019
45 Y. Zang, D. Huang, C. Di, and D. Zhu, Device engineered organic transistors for flexible sensing applications, Adv. Mater. 28(22), 4549 (2016)
https://doi.org/10.1002/adma.201505034
46 Q. J. Sun, T. Li, W. Wu, S. Venkatesh, X. H. Zhao, Z. X. Xu, and V. A. L. Roy, Printed high kdielectric for flexible low-power extended gate field-effect transistor in sensing pressure, ACS Appl. Electron. Mater. 1(5), 711 (2019)
https://doi.org/10.1021/acsaelm.9b00081
47 Z. Yin, M. J. Yin, Z. Liu, Y. Zhang, A. P. Zhang, and Q. Zheng, Solution-processed bilayer dielectrics for flexible low-voltage organic field-effect transistors in pressuresensing applications, Adv. Sci. 5(9), 1701041 (2018)
https://doi.org/10.1002/advs.201701041
48 M. J. Yin, Z. Yin, Y. Zhang, Q. Zheng, and A. P. Zhang, Micropatterned elastic ionic polyacrylamide hydrogel for low-voltage capacitive and organic thin-film transistor pressure sensors, Nano Energy 58, 96 (2019)
https://doi.org/10.1016/j.nanoen.2019.01.032
49 O. O. Ogunleye, H. Sakai, Y. Ishii, and H. Murata, Investigation of the sensing mechanism of dual-gate lowvoltage organic transistor based pressure sensor, Org. Electron. 75, 105431 (2019)
https://doi.org/10.1016/j.orgel.2019.105431
50 F. A. Viola, A. Spanu, P. C. Ricci, A. Bonfiglio, and P. Cosseddu, Ultrathin, flexible and multimodal tactile sensors based on organic field-effect transistors, Sci. Rep. 8(1), 8073 (2018)
https://doi.org/10.1038/s41598-018-26263-1
51 Z. Meng, H. Zhang, M. Zhu, X. Wei, J. Cao, I. Murtaza, M. U. Ali, H. Meng, and J. Xu, Lead zirconate titanate (a piezoelectric ceramic)-based thermal and tactile bimodal organic transistor sensors, Org. Electron. 80, 105673 (2020)
https://doi.org/10.1016/j.orgel.2020.105673
52 S. Baek, G. Y. Bae, J. Kwon, K. Cho, and S. Jung, Flexible pressure-sensitive contact transistors operating in the subthreshold regime, ACS Appl. Mater. Interfaces 11(34), 31111 (2019)
https://doi.org/10.1021/acsami.9b09636
53 Z. Wang, S. Guo, H. Li, B. Wang, Y. Sun, Z. Xu, X. Chen, K. Wu, X. Zhang, F. Xing, L. Li, and W. Hu, The semiconductor/conductor interface piezoresistive effect in an organic transistor for highly sensitive pressure sensors, Adv. Mater. 31(6), 1805630 (2018)
https://doi.org/10.1002/adma.201805630
54 Z. Liu, Z. Yin, J. Wang, and Q. Zheng, Polyelectrolyte dielectrics for flexible low-voltage organic thin-film transistors in highly sensitive pressure sensing, Adv. Funct. Mater. 29(1), 1806092 (2019)
https://doi.org/10.1002/adfm.201806092
55 Y. Yang, H. Zhang, Z. H. Lin, Y. S. Zhou, Q. Jing, Y. Su, J. Yang, J. Chen, C. Hu, and Z. L. Wang, Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system, ACS Nano 7(10), 9213 (2013)
https://doi.org/10.1021/nn403838y
56 Z. Ren, J. Nie, L. Xu, T. Jiang, B. Chen, X. Chen, and Z. L. Wang, Directly visualizing tactile perception and ultrasensitive tactile sensors by utilizing body-enhanced induction of ambient electromagnetic waves, Adv. Funct. Mater. 28(47), 1805277 (2018)
https://doi.org/10.1002/adfm.201805277
57 R. Cao, X. Pu, X. Du, W. Yang, J. Wang, H. Guo, S. Zhao, Z. Yuan, C. Zhang, C. Li, and Z. L. Wang, Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensor for intelligent human-machine interaction, ACS Nano 12(6), 5190 (2018)
https://doi.org/10.1021/acsnano.8b02477
58 C. Zhang, W. Tang, L. Zhang, C. Han, and Z. L. Wang, Contact electrification field-effect transistor, ACS Nano 8(8), 8702 (2014)
https://doi.org/10.1021/nn5039806
59 Y. Jiang, Z. Liu, Z. Yin, and Q. Zheng, Sandwich structured dielectrics for air-stable and flexible low-voltage organic transistors in ultrasensitive pressure sensing, Mater. Chem. Front. 4(5), 1459 (2020)
https://doi.org/10.1039/D0QM00062K
60 D. Thuau, K. Begley, R. Dilmurat, A. Ablat, G. Wantz, C. Ayela, and M. Abbas, Exploring the critical thickness of organic semiconductor layer for enhanced piezoresistive sensitivity in field-effect transistor sensors, Materials (Basel) 13(7), 1583 (2020)
https://doi.org/10.3390/ma13071583
61 T. Ishikawa, H. Sakai, and H. Murata, Fabrication of the flexible dual-gate OFET based organic pressure sensor, IEICE Trans. Elect. E102-C(2), 188 (2019)
https://doi.org/10.1587/transele.2018OMS0013
62 S. Hannah, A. Davidson, I. Glesk, D. Uttamchandani, R. Dahiya, and H. Gleskova, Multifunctional sensor based on organic field-effect transistor and ferroelectric poly(vinylidene fluoride trifluoroethylene), Org. Electron. 56, 170 (2018)
https://doi.org/10.1016/j.orgel.2018.01.041
63 S. Wang, J. Xu, W. Wang, G. J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S.K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B.H. Tok, and Z. Bao, Skin electronics from scalable fabrication of an intrinsically stretchable transistor array, Nature 555(7694), 83 (2018)
https://doi.org/10.1038/nature25494
64 S. Lai, F. A. Viola, P. Cosseddu, and A. Bonfiglio, Floating gate, organic field-effect transistor-based sensors towards biomedical applications fabricated with largearea processes over flexible substrates, Sensors 18(3), 688 (2018)
https://doi.org/10.3390/s18030688
65 T. Someya, Y. Kato, T. Sekitani, S. Iba, Y. Noguchi, Y. Murase, H. Kawaguchi, and T. Sakurai, Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes, Proc. Natl. Acad. Sci. USA 102(35), 12321 (2005)
https://doi.org/10.1073/pnas.0502392102
66 I. Graz, M. Krause, S. Bauer-Gogonea, S. Bauer, S. P. Lacour, B. Ploss, M. Zirkl, B. Stadlober, and S. Wagner, Flexible active-matrix cells with selectively poled bifunctional polymer-ceramic nanocomposite for pressure and temperature sensing skin, J. Appl. Phys. 106(3), 034503 (2009)
https://doi.org/10.1063/1.3191677
67 X. Ren, P. K. L. Chan, J. Lu, B. Huang, and D. C. W. Leung, High dynamic range organic temperature sensor, Adv. Mater. 25(9), 1291 (2013)
https://doi.org/10.1002/adma.201204396
68 D. Zhao, S. Fabiano, M. Berggren, and X. Crispin, Ionic thermoelectric gating organic transistors, Nat. Commun. 8(1), 14214 (2017)
https://doi.org/10.1038/ncomms14214
69 N. T. Tien, S. Jeon, D. I. Kim, T. Q. Trung, M. Jang, B. U. Hwang, K. E. Byun, J. Bae, E. Lee, J. B. H. Tok, Z. Bao, N. E. Lee, and J. J. Park, A flexible bimodal sensor array for simultaneous sensing of pressure and temperature, Adv. Mater. 26(5), 796 (2014)
https://doi.org/10.1002/adma.201302869
70 C. Zhu, H. C. Wu, G. Nyikayaramba, Z. Bao, and B. Murmann, Intrinsically stretchable temperature sensor based on organic thin-film transistor, IEEE Electron Device Lett. 40(10), 1630 (2019)
https://doi.org/10.1109/LED.2019.2933838
71 M. Zhu, J. Cao, X. Wei, Y. He, A. Li, X. Xu, M. U. Ali, L. Yan, and H. Meng, Self-supported hysteresis-free flexible organic thermal transistor based on commercial graphite paper, Appl. Phys. Lett. 112(25), 253301 (2018)
https://doi.org/10.1063/1.5034047
72 N. V. V. Subbarao, S. Mandal, M. Gedda, P. K. Iyer, and D. K. Goswami, Effect of temperature on hysteresis of dipolar dielectric layer based organic field-effect transistors: A temperature sensing mechanism, Sens. Act. A: Phys. 269, 491 (2018)
https://doi.org/10.1016/j.sna.2017.12.004
73 S. Mandal, M. Banerjee, S. Roy, A. Mandal, A. Ghosh, B. Satpati, and D. K. Goswami, Organic fieldeffect transistor-based ultrafast, flexible, physiologicaltemperature sensors with hexagonal barium titanate nanocrystals in amorphous matrix as sensing material, ACS Appl. Mater. Interfaces 11(4), 4193 (2019)
https://doi.org/10.1021/acsami.8b19051
74 J. Jang, B. Oh, S. Jo, S. Park, H. S. An, S. Lee, W. H. Cheong, S. Yoo, and J. U. Park, Human-interactive, active-matrix displays for visualization of tactile pressures, Adv. Mater. Technol. 4(7), 1900082 (2019)
https://doi.org/10.1002/admt.201900082
75 Y. H. Lee, O. Y. Kweon, H. Kim, J. H. Yoo, S. G. Han, and J. H. Oh, Recent advances in organic sensors for health self-monitoring systems, J. Mater. Chem. C 6(32), 8569 (2018)
https://doi.org/10.1039/C8TC02230E
76 S. Bi, Q. Li, Z. He, Q. Guo, K. Asare-Yeboah, Y. Liu, and C. Jiang, Highly enhanced performance of integrated piezo photo-transistor with dual inverted OLED gate and nanowire array channel, Nano Energy 66, 104101 (2019)
https://doi.org/10.1016/j.nanoen.2019.104101
77 Y. J. Jeong, Y. E. Kim, K. J. Kim, E. J. Woo, and T. I. Oh, Multilayered fabric pressure sensor for real-time piezo-impedance imaging of pressure distribution, IEEE Trans. Instrum. Meas. 69(2), 565 (2020)
https://doi.org/10.1109/TIM.2019.2903701
78 Y. Guo, M. Zhong, Z. Fang, P. Wan, and G. Yu, A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing, Nano Lett. 19(2), 1143 (2019)
https://doi.org/10.1021/acs.nanolett.8b04514
[1] Changbin Zhao, Muhammad Umair Ali, Jiaoyi Ning, Hong Meng. Organic single crystal phototransistors: Recent approaches and achievements[J]. Front. Phys. , 2021, 16(4): 43202-.
[2] Yunfeng Hua,Zhenyu Deng,Yangwei Jiang,Linxi Zhang. Ordered quasi-two-dimensional structure of nanoparticles in semiflexible ring polymer brushes under compression[J]. Front. Phys. , 2017, 12(3): 128701-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed