Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2017, Vol. 12 Issue (3) : 128701    https://doi.org/10.1007/s11467-017-0665-y
RESEARCH ARTICLE
Ordered quasi-two-dimensional structure of nanoparticles in semiflexible ring polymer brushes under compression
Yunfeng Hua,Zhenyu Deng,Yangwei Jiang,Linxi Zhang()
Department of Physics, Zhejiang University, Hangzhou 310027, China
 Download: PDF(5317 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Molecular dynamics simulations of a coarse-grained bead-spring model of ring polymer brushes under compression are presented. Flexible polymer brushes are always disordered during compression, whereas semiflexible polymer brushes tend to be ordered under sufficiently strong compression. Further, the polymer monomer density of the semiflexible polymer brush is very high near the brush surface, inducing a peak value of the free energy near the surface. Therefore, when nanoparticles are compressed in semiflexible ring polymer brushes, they tend to exhibit a closely packed single-layer structure between the brush surface and the impenetrable wall, and a quasi-two-dimensional ordered structure near the brush surface is formed under strong compression. These findings provide a new approach to designing responsive applications.

Keywords molecular dynamics simulation      semiflexible ring polymer brushes      nanoparticle      compression      ordered structure     
Corresponding Author(s): Linxi Zhang   
Issue Date: 17 March 2017
 Cite this article:   
Yunfeng Hua,Zhenyu Deng,Yangwei Jiang, et al. Ordered quasi-two-dimensional structure of nanoparticles in semiflexible ring polymer brushes under compression[J]. Front. Phys. , 2017, 12(3): 128701.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-017-0665-y
https://academic.hep.com.cn/fop/EN/Y2017/V12/I3/128701
1 M. V. Reddy, T. Yu, C. H. Sow, Z. X. Shen, C. T. Lim, G. V. S. Rao, and B. V. R. Chowdari, α-Fe2O3 nanoflakes as an anode material for Li-ion batteries, Adv. Funct. Mater. 17(7), 2792 (2006)
2 T. Yu, Y. W. Zhu, X. J. Xu, Z. X. Shen, P. Chen, C.T. Lim, J. T. L. Thong, and C. H. Sow, Controlled growth and field-emission properties of cobalt oxide nanowalls, Adv. Mater. 17(13), 1595 (2005)
https://doi.org/10.1002/adma.200500322
3 X. D. Gao, X. M. Li, W. D. Yu, F. Peng, and C. Y. Zhang, Oversized hexagonal nanosheets of layered zinc hydroxysulfates via the hexamethylenetetraminemediated solution route, Mater. Res. Bull. 41(3), 608 (2006)
https://doi.org/10.1016/j.materresbull.2005.09.001
4 X. Huang, S. Tang, X. Mu, Y. Dai, G. Chen, Z. Zhou, F. Ruan, Z. Yang, and N. Zheng, Freestanding palladium nanosheets with plasmonic and catalytic properties, Nat. Nanotechnol. 6(1), 28 (2011)
https://doi.org/10.1038/nnano.2010.235
5 H. L. Wang, H. S. Casalongue, Y. Y. Liang, and H. J. Dai, NiOH2 nanoplates grown on graphene as advanced electrochemical pseudocapacitormaterials, J. Am. Chem. Soc. 132(21), 7472 (2010)
https://doi.org/10.1021/ja102267j
6 S. H. Chen and D. L. Carroll, Silver nanoplates: Size control in two dimensions and formation mechanisms, J. Phys. Chem. B 108(18), 5500 (2004)
https://doi.org/10.1021/jp031077n
7 X. P. Sun, S. J. Dong, and E. Wang, Large-scale synthesis of micrometer- scale single-crystalline Au plates of nanometer thickness by a wet-chemical route, Angew. Chem. Int. Ed. 43(46), 6360 (2004)
https://doi.org/10.1002/anie.200461013
8 A. K. Geim, Graphene: Status and prospects, Science 324(5934), 1530 (2009)
https://doi.org/10.1126/science.1158877
9 M. Q. Yang, N. Zhang, M. Pagliaro, and Y. J. Xu, Artificial photosynthesis over graphene-semiconductor composites: Are we getting better? Chem. Soc. Rev. 43(24), 8240 (2014)
https://doi.org/10.1039/C4CS00213J
10 S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, , Challenges and opportunities in two-dimensional materials beyond graphene, ACS Nano 7(4), 2898 (2013)
https://doi.org/10.1021/nn400280c
11 J. Yu, Y. Yu, P. Zhou, W. Xiao, and B. Cheng, Morphology dependent photocatalytic H2-production Activity of CdS, Appl. Catal. B 184(2), 156 (2014)
https://doi.org/10.1016/j.apcatb.2014.03.013
12 F. Dong, L. Wu, Y. Sun, M. Fu, Z. Wu, and S. C. Lee, Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts, J. Mater. Chem. 21(39), 15171 (2011)
https://doi.org/10.1039/c1jm12844b
13 J. Hong, Y. Wang, Y. Wang, W. Zhang, and R. Xu, Noble-metal-free NiS/C3N4 for efficient photocatalytic hydrogen evolution from water, ChemSusChem 6(12), 2263 (2013)
https://doi.org/10.1002/cssc.201300647
14 X. Song, J. Hu, and H. Zeng, Two-dimensional semiconductors: Recent progress and future perspectives, J. Mater. Chem. 1, 2952 (2013)
https://doi.org/10.1039/c3tc00710c
15 S. Khanchandani, S. Kundu, A. Patra, and A. K. Ganguli, Shell thickness dependent photocatalytic properties of ZnO/CdS core-shell nanorods, J. Phys. Chem. C 116(44), 23653 (2012)
https://doi.org/10.1021/jp3083419
16 Y. Xu, W. Zhao, R. Xu, Y. Shi, and B. Zhang, Synthesis of ultrathin CdS nanosheets as efficient visiblelight- driven water splitting photocatalysts for hydrogen evolution, Chem. Commun. 49(84), 9803 (2013)
https://doi.org/10.1039/c3cc46342g
17 Y. Yu, P. Zhang, L. Guo, Z. Chen, Q. Wu, Y. Ding, W. Zheng, and Y. Cao, The design of TiO2 nanostructures (nanoparticle, nanotube, and nanosheet) and their photocatalytic activity, J. Phys. Chem. C 118(24), 12727 (2014)
https://doi.org/10.1021/jp500252g
18 I. Y. Kim, Y. K. Jo, J. M. Lee, L. Wang, and S. J. Hwang, Unique advantages of exfoliated 2D nanosheets for tailoring the functionalities of nanocomposites, J. Phys. Chem. Lett. 5(23), 4149 (2014)
https://doi.org/10.1021/jz502038g
19 T. Sagawa, S. Yoshikawa, and H. Imahori, Onedimensional nanostructured semiconducting materials for organic photovoltaics, J. Phys. Chem. Lett. 1(7), 1020 (2010)
https://doi.org/10.1021/jz100065u
20 L. Yuan, M. Q. Yang, and Y. J. Xu, Tuning the surface charge of graphene for self-Assembly synthesis of a SnNb2O6 nanosheet-graphene (2D-2D) nanocomposite with enhanced visible light photoactivity, Nanoscale 6(12), 6335 (2014)
https://doi.org/10.1039/c4nr00116h
21 S. Milner, Polymer brushes, Science 251(4996), 905 (1991)
https://doi.org/10.1126/science.251.4996.905
22 A. Halperin, M. Tirrell, and T. P. Lodge, Tethered chains in polymer microstructures, Adv. Polym. Sci. 100, 31 (1992)
https://doi.org/10.1007/BFb0051635
23 G. S. Grest, Normal and shear forces between polymer brushes, Adv. Polym. Sci. 138, 149 (1999)
https://doi.org/10.1007/3-540-69711-X_4
24 R. C. Advincula, W. J. Brittain, K. C. Caster, and J. Rühe, Polymer Brushes, Weinheim: Wiley VCH, pp 427–440 (2004)
https://doi.org/10.1002/3527603824
25 G. S. Grest and K. Kremer, Molecular dynamics simulation for polymers in the presence of a heat bath, Phys. Rev. A 33(5), 3628 (1986)
https://doi.org/10.1103/PhysRevA.33.3628
26 A. Brasiello, S. Crescitelli, and G. Milano, Development of a coarse-grained model for simulations of tridecanoin liquid-solid phase transitions, Phys. Chem. Chem. Phys. 13(37), 16618 (2011)
https://doi.org/10.1039/c1cp20604d
27 T. Carlsson, N. Kamerlin, G. A. Arteca, and C. Elvingson, Brownian dynamics of a compressed polymer brush model: Off-equilibrium response as a function of surface coverage and compression rate, Phys. Chem. Chem. Phys. 13(35), 16084 (2011)
https://doi.org/10.1039/c1cp21433k
28 I. G. Elliott, T. L. Kuhl, and R. Faller, Molecular simulation study of the structure of high density polymer brushes in good solvent, Macromolecules 43(21), 9131 (2010)
https://doi.org/10.1021/ma101252c
29 S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117(1), 1 (1995)
https://doi.org/10.1006/jcph.1995.1039
30 W. Humphrey, A. Dalke, and K. Schulten, VMD – Visual molecular dynamics, J. Mol. Graph. 14(1), 33 (1996)
https://doi.org/10.1016/0263-7855(96)00018-5
31 Y. F. Hua, L. X. Zhang, and L. Zhang, Compressiondriven migration of nanoparticles in semiflexible polymer brushes, Polymer 83(9), 67 (2016)
https://doi.org/10.1016/j.polymer.2015.12.003
32 A. Milchev and K. Binder, Unconventional ordering behavior of semi-flexible polymers in dense brushes under compression, Soft Matter 10(21), 3783 (2014)
https://doi.org/10.1039/c3sm53133c
33 G. M. Torrie and J. P. Valleau, Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling, J. Comput. Phys. 23(2), 187 (1977)
https://doi.org/10.1016/0021-9991(77)90121-8
[1] Jin-Bo Wang, Rao Huang, Yu-Hua Wen. Thermally activated phase transitions in Fe-Ni core-shell nanoparticles[J]. Front. Phys. , 2019, 14(6): 63604-.
[2] Guo-Feng Zhang, Yong-Gang Peng, Hai-Qing Xie, Bin Li, Zhi-Jie Li, Chang-Gang Yang, Wen-Li Guo, Cheng-Bing Qin, Rui-Yun Chen, Yan Gao, Yu-Jun Zheng, Lian-Tuan Xiao, Suo-Tang Jia. Linear dipole behavior of single quantum dots encased in metal oxide semiconductor nanoparticles films[J]. Front. Phys. , 2019, 14(2): 23605-.
[3] Da Li (李达), Yan Liu (刘妍), Fu-Bo Tian (田夫波), Shu-Li Wei (魏书丽), Zhao Liu (刘召), De-Fang Duan (段德芳), Bing-Bing Liu (刘冰冰), Tian Cui (崔田). Pressure-induced superconducting ternary hydride H3SXe: A theoretical investigation[J]. Front. Phys. , 2018, 13(5): 137107-.
[4] Ze-Zhou He, Yin-Bo Zhu, Heng-An Wu. Self-folding mechanics of graphene tearing and peeling from a substrate[J]. Front. Phys. , 2018, 13(3): 138111-.
[5] Salvatore Spadaro, Marco Santoro, Francesco Barreca, Angela Scala, Simona Grimato, Fortunato Neri, Enza Fazio. PEG-PLGA electrospun nanofibrous membranes loaded with Au@Fe2O3 nanoparticles for drug delivery applications[J]. Front. Phys. , 2018, 13(1): 136201-.
[6] Margherita De Marzio, Gaia Camisasca, Mauro Rovere, Paola Gallo. Fragile to strong crossover and Widom line in supercooled water: A comparative study[J]. Front. Phys. , 2018, 13(1): 136103-.
[7] Shu-Xia Liu,Yi-Zhao Geng,Shi-Wei Yan. Structural effects and competition mechanisms targeting the interactions between p53 and MDM2 for cancer therapy[J]. Front. Phys. , 2017, 12(3): 128908-.
[8] Guo-Xi Nie,Yu Wang,Ji-Ping Huang. Shape effect of nanochannels on water mobility[J]. Front. Phys. , 2016, 11(6): 114702-.
[9] Li-Hua Qian,Li-Zhi Yi,Gui-Sheng Wang,Chao Zhang,Song-Liu Yuan. Survey of plasmonic gaps tuned at sub-nanometer scale in self-assembled arrays[J]. Front. Phys. , 2016, 11(2): 115204-.
[10] Guo-Xi Nie,Yu Wang,Ji-Ping Huang. Role of confinement in water solidification under electric fields[J]. Front. Phys. , 2015, 10(5): 106101-.
[11] Guan-Xing Guo, Lei Zhang, Yong Zhang. Molecular dynamics study of the infiltration of lipid-wrapping C60 and polyhydroxylated single-walled nanotubes into lipid bilayers[J]. Front. Phys. , 2015, 10(2): 108601-.
[12] Xiao-Fei Li, Yi Luo. Conductivity of carbon-based molecular junctions from ab-initio methods[J]. Front. Phys. , 2014, 9(6): 748-759.
[13] Martin H. Magnusson, B. Jonas Ohlsson, Mikael T. Björk, Kimberly A. Dick, Magnus T. Borgström, Knut Deppert, Lars Samuelson. Semiconductor nanostructures enabled by aerosol technology[J]. Front. Phys. , 2014, 9(3): 398-418.
[14] Zee Hwan Kim. Single-molecule surface-enhanced Raman scattering: Current status and future perspective[J]. Front. Phys. , 2014, 9(1): 25-30.
[15] Yuko S. Yamamoto, Mitsuru Ishikawa, Yukihiro Ozaki, Tamitake Itoh. Fundamental studies on enhancement and blinking mechanism of surface-enhanced Raman scattering (SERS) and basic applications of SERS biological sensing[J]. Front. Phys. , 2014, 9(1): 31-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed