Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (3) : 33505    https://doi.org/10.1007/s11467-020-1044-7
RESEARCH ARTICLE
Physical description of the monoclinic phase of zirconia based on the bond-order characteristic of the Tersoff potential
Run-Sen Zhang1, Ji-Dong He1, Bing-Shen Wang2, Jin-Wu Jiang1()
1. Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, China
2. State Key Laboratory of Semiconductor Superlattice and Microstructure and Institute of Semiconductor, Chinese Academy of Sciences, Beijing 100083, China
 Download: PDF(2928 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Zirconia has many important phases with Zr coordination varying from six-fold in the orthorhombic phase to eight-fold in the cubic and tetragonal phases. Development of empirical potentials to describe these zirconia phases is an important but long-standing challenge, and it is a bottleneck for theoretical investigation of large zirconia structures. Here, instead of using the standard core–shell model, we developed a new potential for zirconia by combining the long-range Coulomb interaction and bondorder Tersoff model. The bond-order characteristic of the Tersoff potential enables it to be well suited to describe the zirconia phases with different coordination numbers. In particular, the complex monoclinic phase with two inequivalent oxygen atoms, which is difficult to describe with most existing empirical potentials, is well described by this newly developed potential. This potential provides reasonable predictions of most of the static and dynamic properties of various zirconia phases. Besides its clear physical essence, this potential is at least one order of magnitude faster than core–shell based potentials in molecular dynamics simulation. This is because it does not include an ultralight shell that requires an extremely small time step. We also provide potential scripts for the widely used simulation packages GULP and LAMMPS.

Keywords zirconia      ZrO2      empirical potential      molecular dynamics simulation     
Corresponding Author(s): Jin-Wu Jiang   
Just Accepted Date: 31 December 2020   Issue Date: 25 March 2021
 Cite this article:   
Run-Sen Zhang,Ji-Dong He,Bing-Shen Wang, et al. Physical description of the monoclinic phase of zirconia based on the bond-order characteristic of the Tersoff potential[J]. Front. Phys. , 2021, 16(3): 33505.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-1044-7
https://academic.hep.com.cn/fop/EN/Y2021/V16/I3/33505
1 E. H. Kisi and C. J. Howard, Crystal structures of zirconia phases and their inter-relation, Key Eng. Mater.153–154, 1 (1998)
https://doi.org/10.4028/www.scientific.net/KEM.153-154.1
2 N. P. Padture, M. Gell, and E. H. Jordan, Thermal barrier coatings for gas-turbine engine applications, Science 296(5566), 280 (2002)
https://doi.org/10.1126/science.1068609
3 E. H. Kisi and C. J. Howard, in: Zirconia Engineering Ceramics: Old Challenges-new Ideas, Netikon-Zurich: Trans Tech, 1998
4 H. J. F. Jansen and J. A. Gardner, Total energy calculations for ZrO2, Physica B 150(1–2), 10 (1988)
https://doi.org/10.1016/0378-4363(88)90098-8
5 K. Parlinski, Z. Q. Li, and Y. Kawazoe, First-principles determination of the soft mode in cubic ZrO2, Phys. Rev. Lett. 78(21), 4063 (1997)
https://doi.org/10.1103/PhysRevLett.78.4063
6 G. Jomard, T. Petit, A. Pasturel, L. Magaud, G. Kresse, and J. Hafner, First-principles calculations to describe zirconia pseudopolymorphs, Phys. Rev. B 59(6), 4044 (1999)
https://doi.org/10.1103/PhysRevB.59.4044
7 A. Kuwabara, T. Tohei, T. Yamamoto, and I. Tanaka, Ab initiolattice dynamics and phase transformations of ZrO2, Phys. Rev. B 71(6), 064301 (2005)
https://doi.org/10.1103/PhysRevB.71.064301
8 P. Souvatzis and S. P. Rudin, Dynamical stabilization of cubic ZrO2 by phonon-phonon interactions: Ab initio calculations, Phys. Rev. B 78(18), 184304 (2008)
https://doi.org/10.1103/PhysRevB.78.184304
9 H. Wu, Y. Duan, K. Liu, D. Lv, L. Qin, L. Shi, and G. Tang, First-principles study of phase transition and band structure of ZrO2 under pressure, J. Alloys Compd. 645, 352 (2015)
10 C. W. Li, H. L. Smith, T. Lan, J. L. Niedziela, J. A. Munoz, J. B. Keith, L. Mauger, D. L. Abernathy, and B. Fultz, Phonon anharmonicity of monoclinic zirconia and yttrium-stabilized zirconia, Phys. Rev. B 91(14), 144302 (2015)
https://doi.org/10.1103/PhysRevB.91.144302
11 G. V. Lewis and C. R. A. Catlow, Potential models for ionic oxides, J. Phys. C 18(6), 1149 (1985)
https://doi.org/10.1088/0022-3719/18/6/010
12 M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford: Oxford University Press, 1954
13 P. K. Schelling, S. R. Phillpot, and D. Wolf, Mechanism of the cubic-to-tetragonal phase transition in zirconia and yttria-stabilized zirconia by molecular-dynamics simulation, J. Am. Ceram. Soc. 84(7), 1609 (2001)
https://doi.org/10.1111/j.1151-2916.2001.tb00885.x
14 M. Kilo, C. Argirusis, G. Borchardt, and R. A. Jackson, Oxygen diffusion in yttria stabilised zirconia — experimental results and molecular dynamics calculations, Phys. Chem. Chem. Phys. 5(11), 2219 (2003)
https://doi.org/10.1039/B300151M
15 C. Yang, K. Trachenko, S. Hull, I. T. Todorov, and M. T. Dove, Emergence of microstructure and oxygen diffusion in yttrium-stabilized cubic zirconia, Phys. Rev. B 97(18), 184107 (2018)
https://doi.org/10.1103/PhysRevB.97.184107
16 J. B. G. Dick and A. W. Overhauser, Theory of the dielectric constants of alkali halide crystals, Phys. Rev. 112(1), 90 (1958)
https://doi.org/10.1103/PhysRev.112.90
17 A. Dwivedi and A. N. Cormack, A computer simulation study of the defect structure of calcia-stabilized zirconia, Philos. Mag. A 61(1), 1 (1990)
https://doi.org/10.1080/01418619008235554
18 M. Wilson, U. Schonberger, and M. W. Finnis, Transferable atomistic model to describe the energetics of zirconia, Phys. Rev. B 54(13), 9147 (1996)
https://doi.org/10.1103/PhysRevB.54.9147
19 K. C. Lau and B. I. Dunlap, Molecular dynamics simulation of yttria-stabilized zirconia (YSZ) crystalline and amorphous solids, J. Phys.: Condens. Matter 23(3), 035401 (2011)
https://doi.org/10.1088/0953-8984/23/3/035401
20 F. Shimojo, T. Okabe, F. Tachibana, M. Kobayashi, and H. Okazaki, Molecular dynamics studies of yttria stabilized zirconia (I): Structure and oxygen diffusion, J. Phys. Soc. Jpn. 61(8), 2848 (1992)
https://doi.org/10.1143/JPSJ.61.2848
21 M. Smirnov, A. Mirgorodsky, and R. Guinebretiere, Phenomenological theory of lattice dynamics and polymorphism of ZrO2, Phys. Rev. B 68(10), 104106 (2003)
https://doi.org/10.1103/PhysRevB.68.104106
22 S. Fabris, A. T. Paxton, and M. W. Finnis, Relative energetics and structural properties of zirconia using a selfconsistent tight-binding model, Phys. Rev. B 61(10), 6617 (2000)
https://doi.org/10.1103/PhysRevB.61.6617
23 A. C. T. van Duin, B. V. Merinov, S. S. Jang, and W. A. Goddard, The ReaxFF reactive force field for solid oxide fuel cell systems with application to oxygen ion transport in yttria-stabilized zirconia, J. Phys. Chem. A 112, 3133 (2008)
https://doi.org/10.1021/jp076775c
24 C. Wang, A. Tharval, and J. R. Kitchin, A density functional theory parameterised neural network model of zirconia, Mol. Simul. 44(8), 623 (2018)
https://doi.org/10.1080/08927022.2017.1420185
25 J. Tersoff, New empirical model for the structural properties of silicon, Phys. Rev. Lett. 56(6), 632 (1986)
https://doi.org/10.1103/PhysRevLett.56.632
26 O. Ohtaka, H. Fukui, T. Kunisada, T. Fujisawa, K. Funakoshi, W. Utsumi, T. Irifune, K. Kuroda, and T. Kikegawa, Phase relations and equations of state of ZrO2 under high temperature and high pressure, Phys. Rev. B 63(17), 174108 (2001)
https://doi.org/10.1103/PhysRevB.63.174108
27 D. Wolf, P. Keblinski, S. R. Phillpot, and J. Eggebrecht, Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r–1 summation, J. Chem. Phys. 110(17), 8254 (1999)
https://doi.org/10.1063/1.478738
28 C. J. Fennell and J. D. Gezelter, Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics, J. Chem. Phys. 124(23), 234104 (2006)
https://doi.org/10.1063/1.2206581
29 S. Dai, M. Gharbi, P. Sharma, and H. S. Park, Surface piezoelectricity: Size effects in nanostructures and the emergence of piezoelectricity in non-piezoelectric materials, J. Appl. Phys. 110(10), 104305 (2011)
https://doi.org/10.1063/1.3660431
30 R. Agrawal, B. Peng, E. E. Gdoutos, and H. D. Espinosa, Elasticity size effects in ZnO nanowires: A combined experimental-computational approach, Nano Lett. 8(11), 3668 (2008)
https://doi.org/10.1021/nl801724b
31 J. Tersoff, New empirical approach for the structure and energy of covalent systems, Phys. Rev. B 37(12), 6991 (1988)
https://doi.org/10.1103/PhysRevB.37.6991
32 J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems, Phys. Rev. B 39(8), 5566 (1989)
https://doi.org/10.1103/PhysRevB.39.5566
33 P. M. Morse, Diatomic molecules according to the wave mechanics (II): Vibrational levels, Phys. Rev. 34(1), 57 (1929)
https://doi.org/10.1103/PhysRev.34.57
34 W. A. Harrison, Elemetary Electronic Structure, Singapore: World Scientific, 2004
https://doi.org/10.1142/5432
35 J. D. Gale, GULP: A computer program for the symmetryadapted simulation of solids, J. Chem. Soc. Faraday Trans. 93(4), 629 (1997)
https://doi.org/10.1039/a606455h
36 S. J. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117(1), 1 (1995)
https://doi.org/10.1006/jcph.1995.1039
37 A. Christensen and E. A. Carter, First-principles study of the surfaces of zirconia, Phys. Rev. B 58(12), 8050 (1998)
https://doi.org/10.1103/PhysRevB.58.8050
38 A. Kokalj, Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale, Comput. Mater. Sci. 28(2), 155 (2003)
https://doi.org/10.1016/S0927-0256(03)00104-6
39 A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO — the Open Visualization Tool, Model. Simul. Mater. Sci. Eng. 18(1), 015012 (2010)
https://doi.org/10.1088/0965-0393/18/1/015012
40 A. Eichler and G. Kresse, First-principles calculations for the surface termination of pure and yttria-doped zirconia surfaces, Phys. Rev. B 69(4), 045402 (2004)
https://doi.org/10.1103/PhysRevB.69.045402
41 G. Ballabio, M. Bernasconi, F. Pietrucci, and S. Serra, Ab initio study of yttria-stabilized cubic zirconia surfaces, Phys. Rev. B 70(7), 075417 (2004)
https://doi.org/10.1103/PhysRevB.70.075417
[1] Ze-Zhou He, Yin-Bo Zhu, Heng-An Wu. Self-folding mechanics of graphene tearing and peeling from a substrate[J]. Front. Phys. , 2018, 13(3): 138111-.
[2] Margherita De Marzio, Gaia Camisasca, Mauro Rovere, Paola Gallo. Fragile to strong crossover and Widom line in supercooled water: A comparative study[J]. Front. Phys. , 2018, 13(1): 136103-.
[3] Yunfeng Hua,Zhenyu Deng,Yangwei Jiang,Linxi Zhang. Ordered quasi-two-dimensional structure of nanoparticles in semiflexible ring polymer brushes under compression[J]. Front. Phys. , 2017, 12(3): 128701-.
[4] Shu-Xia Liu,Yi-Zhao Geng,Shi-Wei Yan. Structural effects and competition mechanisms targeting the interactions between p53 and MDM2 for cancer therapy[J]. Front. Phys. , 2017, 12(3): 128908-.
[5] Guo-Xi Nie,Yu Wang,Ji-Ping Huang. Shape effect of nanochannels on water mobility[J]. Front. Phys. , 2016, 11(6): 114702-.
[6] Guo-Xi Nie,Yu Wang,Ji-Ping Huang. Role of confinement in water solidification under electric fields[J]. Front. Phys. , 2015, 10(5): 106101-.
[7] Xiao-Fei Li, Yi Luo. Conductivity of carbon-based molecular junctions from ab-initio methods[J]. Front. Phys. , 2014, 9(6): 748-759.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed