|
|
Physical description of the monoclinic phase of zirconia based on the bond-order characteristic of the Tersoff potential |
Run-Sen Zhang1, Ji-Dong He1, Bing-Shen Wang2, Jin-Wu Jiang1( ) |
1. Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, China 2. State Key Laboratory of Semiconductor Superlattice and Microstructure and Institute of Semiconductor, Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract Zirconia has many important phases with Zr coordination varying from six-fold in the orthorhombic phase to eight-fold in the cubic and tetragonal phases. Development of empirical potentials to describe these zirconia phases is an important but long-standing challenge, and it is a bottleneck for theoretical investigation of large zirconia structures. Here, instead of using the standard core–shell model, we developed a new potential for zirconia by combining the long-range Coulomb interaction and bondorder Tersoff model. The bond-order characteristic of the Tersoff potential enables it to be well suited to describe the zirconia phases with different coordination numbers. In particular, the complex monoclinic phase with two inequivalent oxygen atoms, which is difficult to describe with most existing empirical potentials, is well described by this newly developed potential. This potential provides reasonable predictions of most of the static and dynamic properties of various zirconia phases. Besides its clear physical essence, this potential is at least one order of magnitude faster than core–shell based potentials in molecular dynamics simulation. This is because it does not include an ultralight shell that requires an extremely small time step. We also provide potential scripts for the widely used simulation packages GULP and LAMMPS.
|
Keywords
zirconia
ZrO2
empirical potential
molecular dynamics simulation
|
Corresponding Author(s):
Jin-Wu Jiang
|
Just Accepted Date: 31 December 2020
Issue Date: 25 March 2021
|
|
1 |
E. H. Kisi and C. J. Howard, Crystal structures of zirconia phases and their inter-relation, Key Eng. Mater.153–154, 1 (1998)
https://doi.org/10.4028/www.scientific.net/KEM.153-154.1
|
2 |
N. P. Padture, M. Gell, and E. H. Jordan, Thermal barrier coatings for gas-turbine engine applications, Science 296(5566), 280 (2002)
https://doi.org/10.1126/science.1068609
|
3 |
E. H. Kisi and C. J. Howard, in: Zirconia Engineering Ceramics: Old Challenges-new Ideas, Netikon-Zurich: Trans Tech, 1998
|
4 |
H. J. F. Jansen and J. A. Gardner, Total energy calculations for ZrO2, Physica B 150(1–2), 10 (1988)
https://doi.org/10.1016/0378-4363(88)90098-8
|
5 |
K. Parlinski, Z. Q. Li, and Y. Kawazoe, First-principles determination of the soft mode in cubic ZrO2, Phys. Rev. Lett. 78(21), 4063 (1997)
https://doi.org/10.1103/PhysRevLett.78.4063
|
6 |
G. Jomard, T. Petit, A. Pasturel, L. Magaud, G. Kresse, and J. Hafner, First-principles calculations to describe zirconia pseudopolymorphs, Phys. Rev. B 59(6), 4044 (1999)
https://doi.org/10.1103/PhysRevB.59.4044
|
7 |
A. Kuwabara, T. Tohei, T. Yamamoto, and I. Tanaka, Ab initiolattice dynamics and phase transformations of ZrO2, Phys. Rev. B 71(6), 064301 (2005)
https://doi.org/10.1103/PhysRevB.71.064301
|
8 |
P. Souvatzis and S. P. Rudin, Dynamical stabilization of cubic ZrO2 by phonon-phonon interactions: Ab initio calculations, Phys. Rev. B 78(18), 184304 (2008)
https://doi.org/10.1103/PhysRevB.78.184304
|
9 |
H. Wu, Y. Duan, K. Liu, D. Lv, L. Qin, L. Shi, and G. Tang, First-principles study of phase transition and band structure of ZrO2 under pressure, J. Alloys Compd. 645, 352 (2015)
|
10 |
C. W. Li, H. L. Smith, T. Lan, J. L. Niedziela, J. A. Munoz, J. B. Keith, L. Mauger, D. L. Abernathy, and B. Fultz, Phonon anharmonicity of monoclinic zirconia and yttrium-stabilized zirconia, Phys. Rev. B 91(14), 144302 (2015)
https://doi.org/10.1103/PhysRevB.91.144302
|
11 |
G. V. Lewis and C. R. A. Catlow, Potential models for ionic oxides, J. Phys. C 18(6), 1149 (1985)
https://doi.org/10.1088/0022-3719/18/6/010
|
12 |
M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford: Oxford University Press, 1954
|
13 |
P. K. Schelling, S. R. Phillpot, and D. Wolf, Mechanism of the cubic-to-tetragonal phase transition in zirconia and yttria-stabilized zirconia by molecular-dynamics simulation, J. Am. Ceram. Soc. 84(7), 1609 (2001)
https://doi.org/10.1111/j.1151-2916.2001.tb00885.x
|
14 |
M. Kilo, C. Argirusis, G. Borchardt, and R. A. Jackson, Oxygen diffusion in yttria stabilised zirconia — experimental results and molecular dynamics calculations, Phys. Chem. Chem. Phys. 5(11), 2219 (2003)
https://doi.org/10.1039/B300151M
|
15 |
C. Yang, K. Trachenko, S. Hull, I. T. Todorov, and M. T. Dove, Emergence of microstructure and oxygen diffusion in yttrium-stabilized cubic zirconia, Phys. Rev. B 97(18), 184107 (2018)
https://doi.org/10.1103/PhysRevB.97.184107
|
16 |
J. B. G. Dick and A. W. Overhauser, Theory of the dielectric constants of alkali halide crystals, Phys. Rev. 112(1), 90 (1958)
https://doi.org/10.1103/PhysRev.112.90
|
17 |
A. Dwivedi and A. N. Cormack, A computer simulation study of the defect structure of calcia-stabilized zirconia, Philos. Mag. A 61(1), 1 (1990)
https://doi.org/10.1080/01418619008235554
|
18 |
M. Wilson, U. Schonberger, and M. W. Finnis, Transferable atomistic model to describe the energetics of zirconia, Phys. Rev. B 54(13), 9147 (1996)
https://doi.org/10.1103/PhysRevB.54.9147
|
19 |
K. C. Lau and B. I. Dunlap, Molecular dynamics simulation of yttria-stabilized zirconia (YSZ) crystalline and amorphous solids, J. Phys.: Condens. Matter 23(3), 035401 (2011)
https://doi.org/10.1088/0953-8984/23/3/035401
|
20 |
F. Shimojo, T. Okabe, F. Tachibana, M. Kobayashi, and H. Okazaki, Molecular dynamics studies of yttria stabilized zirconia (I): Structure and oxygen diffusion, J. Phys. Soc. Jpn. 61(8), 2848 (1992)
https://doi.org/10.1143/JPSJ.61.2848
|
21 |
M. Smirnov, A. Mirgorodsky, and R. Guinebretiere, Phenomenological theory of lattice dynamics and polymorphism of ZrO2, Phys. Rev. B 68(10), 104106 (2003)
https://doi.org/10.1103/PhysRevB.68.104106
|
22 |
S. Fabris, A. T. Paxton, and M. W. Finnis, Relative energetics and structural properties of zirconia using a selfconsistent tight-binding model, Phys. Rev. B 61(10), 6617 (2000)
https://doi.org/10.1103/PhysRevB.61.6617
|
23 |
A. C. T. van Duin, B. V. Merinov, S. S. Jang, and W. A. Goddard, The ReaxFF reactive force field for solid oxide fuel cell systems with application to oxygen ion transport in yttria-stabilized zirconia, J. Phys. Chem. A 112, 3133 (2008)
https://doi.org/10.1021/jp076775c
|
24 |
C. Wang, A. Tharval, and J. R. Kitchin, A density functional theory parameterised neural network model of zirconia, Mol. Simul. 44(8), 623 (2018)
https://doi.org/10.1080/08927022.2017.1420185
|
25 |
J. Tersoff, New empirical model for the structural properties of silicon, Phys. Rev. Lett. 56(6), 632 (1986)
https://doi.org/10.1103/PhysRevLett.56.632
|
26 |
O. Ohtaka, H. Fukui, T. Kunisada, T. Fujisawa, K. Funakoshi, W. Utsumi, T. Irifune, K. Kuroda, and T. Kikegawa, Phase relations and equations of state of ZrO2 under high temperature and high pressure, Phys. Rev. B 63(17), 174108 (2001)
https://doi.org/10.1103/PhysRevB.63.174108
|
27 |
D. Wolf, P. Keblinski, S. R. Phillpot, and J. Eggebrecht, Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r–1 summation, J. Chem. Phys. 110(17), 8254 (1999)
https://doi.org/10.1063/1.478738
|
28 |
C. J. Fennell and J. D. Gezelter, Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics, J. Chem. Phys. 124(23), 234104 (2006)
https://doi.org/10.1063/1.2206581
|
29 |
S. Dai, M. Gharbi, P. Sharma, and H. S. Park, Surface piezoelectricity: Size effects in nanostructures and the emergence of piezoelectricity in non-piezoelectric materials, J. Appl. Phys. 110(10), 104305 (2011)
https://doi.org/10.1063/1.3660431
|
30 |
R. Agrawal, B. Peng, E. E. Gdoutos, and H. D. Espinosa, Elasticity size effects in ZnO nanowires: A combined experimental-computational approach, Nano Lett. 8(11), 3668 (2008)
https://doi.org/10.1021/nl801724b
|
31 |
J. Tersoff, New empirical approach for the structure and energy of covalent systems, Phys. Rev. B 37(12), 6991 (1988)
https://doi.org/10.1103/PhysRevB.37.6991
|
32 |
J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems, Phys. Rev. B 39(8), 5566 (1989)
https://doi.org/10.1103/PhysRevB.39.5566
|
33 |
P. M. Morse, Diatomic molecules according to the wave mechanics (II): Vibrational levels, Phys. Rev. 34(1), 57 (1929)
https://doi.org/10.1103/PhysRev.34.57
|
34 |
W. A. Harrison, Elemetary Electronic Structure, Singapore: World Scientific, 2004
https://doi.org/10.1142/5432
|
35 |
J. D. Gale, GULP: A computer program for the symmetryadapted simulation of solids, J. Chem. Soc. Faraday Trans. 93(4), 629 (1997)
https://doi.org/10.1039/a606455h
|
36 |
S. J. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117(1), 1 (1995)
https://doi.org/10.1006/jcph.1995.1039
|
37 |
A. Christensen and E. A. Carter, First-principles study of the surfaces of zirconia, Phys. Rev. B 58(12), 8050 (1998)
https://doi.org/10.1103/PhysRevB.58.8050
|
38 |
A. Kokalj, Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale, Comput. Mater. Sci. 28(2), 155 (2003)
https://doi.org/10.1016/S0927-0256(03)00104-6
|
39 |
A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO — the Open Visualization Tool, Model. Simul. Mater. Sci. Eng. 18(1), 015012 (2010)
https://doi.org/10.1088/0965-0393/18/1/015012
|
40 |
A. Eichler and G. Kresse, First-principles calculations for the surface termination of pure and yttria-doped zirconia surfaces, Phys. Rev. B 69(4), 045402 (2004)
https://doi.org/10.1103/PhysRevB.69.045402
|
41 |
G. Ballabio, M. Bernasconi, F. Pietrucci, and S. Serra, Ab initio study of yttria-stabilized cubic zirconia surfaces, Phys. Rev. B 70(7), 075417 (2004)
https://doi.org/10.1103/PhysRevB.70.075417
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|