Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (5) : 53501    https://doi.org/10.1007/s11467-021-1068-7
RESEARCH ACTICLE
p + ip-wave pairing symmetry at type-II van Hove singularities
Yin-Xiang Li(), Xiao-Tong Yang
Tin Ka-Ping College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
 Download: PDF(1791 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Based on the random phase approximation calculation in two-orbital honeycomb lattice model, we investigate the pairing symmetry of Ni-based transition-metal trichalcogenides by electron doping access to type-II van Hove singularities (vHs). We find that chiral even-parity d + id-wave (Eg) state is suppressed by odd-parity p + ip-wave (Eu) state when electron doping approaches the type-II vHs. The type-II vHs peak in density of states (DOS) enables to strengthen the ferromagnetic fluctuation, which is responsible for triplet pairing. The competition between antiferromagnetic and ferromagnetic fluctuation results in pairing phase transition from singlet to triplet pairing. The Ni-based transitionmetal trichalcogenides provide a promising platform to unconventional superconductor emerging from electronic DOS.

Keywords type-II van Hove singularities      pairing symmetry      random phase approximation      unconventional superconductor     
Corresponding Author(s): Yin-Xiang Li   
Issue Date: 17 September 2021
 Cite this article:   
Yin-Xiang Li,Xiao-Tong Yang. p + ip-wave pairing symmetry at type-II van Hove singularities[J]. Front. Phys. , 2021, 16(5): 53501.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-021-1068-7
https://academic.hep.com.cn/fop/EN/Y2021/V16/I5/53501
1 B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells, Science 314(5806), 1757 (2006)
https://doi.org/10.1126/science.1133734
2 M. König, S. Wiedmann, C. Brüne,, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Quantum spin Hall insulator state in HgTe quantum wells, Science 318, 766 (2007)
https://doi.org/10.1126/science.1148047
3 H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys.5(6), 438 (2009)
https://doi.org/10.1038/nphys1270
4 Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Observation of a large-gap topological-insulator class with a single Dirac cone on the surface, Nat. Phys. 5(6), 398 (2009)
https://doi.org/10.1038/nphys1274
5 L. Fu, Topological crystalline insulators, Phys. Rev. Lett. 106(10), 106802 (2011)
https://doi.org/10.1103/PhysRevLett.106.106802
6 T. H. Hsieh, H. Lin, J. W. Liu, W. H. Duan, A. Bansil, and L. Fu, Topological crystalline insulators in the SnTe material class, Nat. Commun. 3(1), 982 (2012)
https://doi.org/10.1038/ncomms1969
7 Z. J. Wang, H. M. Weng, Q. S. Wu, X. Dai, and Z. Fang, Three-dimensional Dirac semimetal and quantum transport in Cd3As2, Phys. Rev. B 88(12), 125427 (2013)
https://doi.org/10.1103/PhysRevB.88.125427
8 H. M. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides, Phys. Rev. X 5(1), 011029 (2015)
https://doi.org/10.1103/PhysRevX.5.011029
9 B. Q. Lv, N. Xu, H. M. Weng, J. Z. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, C. E. Matt, F. Bisti, V. N. Strocov, J. Mesot, Z. Fang, X. Dai, T. Qian, M. Shi, and H. Ding, Observation of Weyl nodes in TaAs, Nat. Phys. 11(9), 724 (2015)
https://doi.org/10.1038/nphys3426
10 N. N. Hao and J. P. Hu, Topological phases in the singlelayer FeSe,Phys. Rev. X 4(3), 031053 (2014)
https://doi.org/10.1103/PhysRevX.4.031053
11 X. X. Wu, S. S. Qin, Y. Liang, C. C. Le, H. Fan, and J. P. Hu, CaFeAs2: A staggered intercalation of quantum spin Hall and high-temperature superconductivity, Phys. Rev. B 91(8), 081111 (2015)
https://doi.org/10.1103/PhysRevB.91.081111
12 X. X. Wu, S. S. Qin, Y. Liang, H. Fan, and J. P. Hu, Topological characters in Fe(Te1−xSex) thin films, Phys. Rev. B 93(11), 115129 (2016)
https://doi.org/10.1103/PhysRevB.93.115129
13 D. F. Wang, L. Y. Kong, P. Fan, H. Chen, S. Y. Zhu, W. Y. Liu, L. Cao, Y. J. Sun, S. X. Du, J. Schneeloch, R. D. Zhong, G. D. Gu, L. Fu, H. Ding, and H. J. Gao, Evidence for Majorana bound states in an iron-based superconductor, Science 362(6412), 333 (2018)
https://doi.org/10.1126/science.aao1797
14 Z. B. Yan, F. Song, and Z. Wang, Majorana corner modes in a high-temperature platform, Phys. Rev. Lett. 121(9), 096803 (2018)
https://doi.org/10.1103/PhysRevLett.121.096803
15 Q. Y. Wang, C. C. Liu, Y. M. Lu, and F. Zhang, Hightemperature Majorana corner states, Phys. Rev. Lett. 121(18), 186801 (2018)
https://doi.org/10.1103/PhysRevLett.121.186801
16 R. X. Zhang, W. S. Cole, and S. Das Sarma, Helical hinge Majorana modes in iron-based superconductors, Phys. Rev. Lett. 122(18), 187001 (2019)
https://doi.org/10.1103/PhysRevLett.122.187001
17 X. X. Wu, W. A. Benalcazar, Y. X. Li, R. Thomale, C. X. Liu, and J. P. Hu, Boundary-obstructed topological high-Tc superconductivity in iron pnictides, Phys. Rev. X 10(4), 041014 (2020)
https://doi.org/10.1103/PhysRevX.10.041014
18 A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303(1), 2 (2003)
https://doi.org/10.1016/S0003-4916(02)00018-0
19 M. H. Freedman, P/NP, and the quantum field computer, Proc. Natl. Acad. Sci. USA 95(1), 98 (1998)
https://doi.org/10.1073/pnas.95.1.98
20 N. Read and D. Green, Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect, Phys. Rev. B 61(15), 10267 (2000)
https://doi.org/10.1103/PhysRevB.61.10267
21 L. Y. Kong, S. Y. Zhu, M. Papaj, H. Chen, L. Cao, H. Isobe, Y. Q. Xing, W. Y. Liu, D. F. Wang, P. Fan, Y. J. Sun, S. X. Du, J. Schneeloch, R. D. Zhong, G. D. Gu, L. Fu, H. J. Gao, and H. Ding, Half-integer level shift of vortex bound states in an iron-based superconductor, Nat. Phys. 15(11), 1181 (2019)
https://doi.org/10.1038/s41567-019-0630-5
22 S. Y. Zhu, L. Y. Kong, L. Cao, H. Chen, M. Papaj, S. X. Du, Y. Q. Xing, W. Y. Liu, D. F. Wang, C. M. Shen, F. Z. Yang, J. Schneeloch, R. D. Zhong, G. D. Gu, L. Fu, Y. Y. Zhang, H. Ding, and H. J. Gao, Nearly quantized conductance plateau of vortex zero mode in an iron-based superconductor, Science 367(6474), 189 (2020)
https://doi.org/10.1126/science.aax0274
23 Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices, Nature 556(7699), 43 (2018)
https://doi.org/10.1038/nature26160
24 Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo- Herrero, Correlated insulator behaviour at half-filling in magic-angle graphene superlattices, Nature 556(7699), 80 (2018)
https://doi.org/10.1038/nature26154
25 M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe, T. Taniguchi, D. Graf, A. F. Young, and C. R. Dean, Tuning superconductivity in twisted bilayer graphene, Science 363(6431), 1059 (2019)
https://doi.org/10.1126/science.aav1910
26 X. Lu, P. Stepanov, W. Yang, M. Xie, M. A. Aamir, I. Das, C. Urgell, K. Watanabe, T. Taniguchi, G. Zhang, A. Bachtold, A. H. MacDonald, and D. K. Efetov, Superconductors, orbital magnets and correlated states in magicangle bilayer graphene, Nature 574(7780), 653 (2019)
https://doi.org/10.1038/s41586-019-1695-0
27 A. R. Wildes, V. Simonet, E. Ressouche, G. J. McIntyre, M. Avdeev, E. Suard, S. A. J. Kimber, D. Lancon, G. Pepe, B. Moubaraki, and T. J. Hicks, Magnetic structure of the quasi-two-dimensional antiferromagnet NiPS3, Phys. Rev. B 92(22), 224408 (2015)
https://doi.org/10.1103/PhysRevB.92.224408
28 B. L. Chittari, Y. Park, D. Lee, M. Han, A. H. Mac- Donald, E. Hwang, and J. Jung, Electronic and magnetic properties of single-layer MPX3 metal phosphorous trichalcogenides, Phys. Rev. B 94(18), 184428 (2016)
https://doi.org/10.1103/PhysRevB.94.184428
29 N. Sivadas, M. W. Daniels, R. H. Swendsen, S. Okamoto, and D. Xiao, Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers, Phys. Rev. B 91(23), 235425 (2015)
https://doi.org/10.1103/PhysRevB.91.235425
30 J. U. Lee, S. Lee, J. H. Ryoo, S. Kang, T. Y. Kim, P. Kim, C. H. Park, J. Park, and H. Cheong, Ising-type magnetic ordering in atomically thin FePS3, Nano Lett. 16(12), 7433 (2016)
https://doi.org/10.1021/acs.nanolett.6b03052
31 C. T. Kuo, M. Neumann, K. Balamurugan, H. J. Park, S. Kang, H. W. Shiu, J. H. Kang, B. H. Hong, M. Han, T. W. Noh, and J. G. Park, Exfoliation and Raman spectroscopic fingerprint of few-layer NiPS3 van der Waals crystals, Sci. Rep. 6(1), 20904 (2016)
https://doi.org/10.1038/srep20904
32 Y. G. Wang, J. J. Ying, Z. Y. Zhou, J. L. Sun, T. Wen, Y. N. Zhou, N. N. Li, Q. Zhang, F. Han, Y. M. Xiao, P. Chow, W. G. Yang, V. V. Struzhkin, Y. S. Zhao, and H. K. Mao, Emergent superconductivity in an iron-based honeycomb lattice initiated by pressure-driven spin-crossover, Nat. Commun. 9(1), 1914 (2018)
https://doi.org/10.1038/s41467-018-04326-1
33 Y. H. Gu, Q. Zhang, C. C. Le, Y. X. Li, T. Xiang, and J. P. Hu, Ni-based transition metal trichalcogenide monolayer: A strongly correlated quadruple-layer graphene,Phys. Rev. B 100(16), 165405 (2019)
https://doi.org/10.1103/PhysRevB.100.165405
34 H. Yao and F. Yang, Topological odd-parity superconductivity at type-II two-dimensional van Hove singularities, Phys. Rev. B 92(3), 035132 (2015)
https://doi.org/10.1103/PhysRevB.92.035132
35 R. Nandkishore, L. S. Levitov, and A. V. Chubukov, Chiral superconductivity from repulsive interactions in doped graphene, Nat. Phys. 8(2), 158 (2012)
https://doi.org/10.1038/nphys2208
36 W. S. Wang, Y. Y. Xiang, Q. H. Wang, F. Wang, F. Yang, and D. H. Lee, Functional renormalization group and variational Monte Carlo studies of the electronic instabilities in graphene near 1/4 doping, Phys. Rev. B 85(3), 035414 (2012)
https://doi.org/10.1103/PhysRevB.85.035414
37 M. L. Kiesel, C. Platt, W. Hanke, D. A. Abanin, and R. Thomale, Competing many-body instabilities and unconventional superconductivity in graphene, Phys. Rev. B 82(2), 020507 (2012)
https://doi.org/10.1103/PhysRevB.86.020507
38 T. X. Ma, F. Yang, H. Yao, and H. Q. Lin, Possible triplet p+ip superconductivity in graphene at low filling, Phys. Rev. B 90, 245114 (2014)
https://doi.org/10.1103/PhysRevB.90.245114
39 Z. Y. Meng, F. Yang, K. S. Chen, H. Yao, and H. Y. Kee, Evidence for spin-triplet odd-parity superconductivity close to type-II van Hove singularities, Phys. Rev. B 91(18), 184509 (2015)
https://doi.org/10.1103/PhysRevB.91.184509
40 X. Chen, Y. G. Yao, H. Yao, F. Yang, and J. Ni, Topological p+ip superconductivity in doped graphene-like singlesheet materials BC3, Phys. Rev. B 92(17), 174503 (2015)
https://doi.org/10.1103/PhysRevB.92.174503
41 L. D. Zhang, F. Yang, and Y. G. Yao, Itinerant ferromagnetism and p+ip superconductivity in doped bilayer silicene,Phys. Rev. B 92(10), 104504 (2015)
https://doi.org/10.1103/PhysRevB.92.104504
42 C. C. Liu, L. D. Zhang, W. Q. Chen, and F. Yang, Chiral spin density wave and d+id superconductivity in the magic-angle-twisted bilayer graphene, Phys. Rev. Lett. 121(21), 217001 (2018)
https://doi.org/10.1103/PhysRevLett.121.217001
43 H. Isobe, N. F. Q. Yuan, and L. Fu, Unconventional superconductivity and density waves in twisted bilayer graphene, Phys. Rev. X 8(4), 041041 (2018)
https://doi.org/10.1103/PhysRevX.8.041041
44 D. Di Sante, X. Wu, M. Fink, W. Hanke, and R. Thomale, Triplet superconductivity in the Dirac semimetal germanene on a substrate,Phys. Rev. B 99(20), 201106 (2019)
https://doi.org/10.1103/PhysRevB.99.201106
45 X. X. Wu, M. Fink, W. Hanke, R. Thomale, and D. Di Sante, Unconventional superconductivity in a doped quantum spin Hall insulator, Phys. Rev. B 100(4), 041117 (2019)
https://doi.org/10.1103/PhysRevB.100.041117
46 Y. X. Li, X. X. Wu, Y. H. Gu, C. C. Le, S. S. Qin, R. Thomale, and J. P. Hu, Topological superconductivity in Ni-based transition metal trichalcogenides,Phys. Rev. B 100, 214513 (2019)
https://doi.org/10.1103/PhysRevB.100.214513
47 S. Graser, T. A. Maier, P. J. Hirschfeld, and D. J. Scalapino, Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides, New J. Phys. 11(2), 025016 (2009)
https://doi.org/10.1088/1367-2630/11/2/025016
48 A. F. Kemper, T. A. Maier, S. Graser, H. P. Cheng, P. J. Hirschfeld, and D. J. Scalapino, Sensitivity of the superconducting state and magnetic susceptibility to key aspects of electronic structure in ferropnictides, New J. Phys. 12(7), 073030 (2010)
https://doi.org/10.1088/1367-2630/12/7/073030
49 X. X. Wu, F. Yang, C. C. Le, H. Fan, and J. P. Hu, Triplet pz-wave pairing in quasi-one-dimensional A2Cr3As3 superconductors (A= K, Rb, Cs), Phys. Rev. B 92(10), 104511 (2015)
https://doi.org/10.1103/PhysRevB.92.104511
50 L. D. Zhang, F. Yang, and Y. G. Yao, Possible electricfield- induced superconducting states in doped silicene, Sci. Rep. 5(1), 8203 (2015)
https://doi.org/10.1038/srep08203
51 Y. T. Kang, C. Lu, F. Yang, and D. X. Yao, Single-orbital realization of high-temperature s± superconductivity in the square-octagon lattice, Phys. Rev. B 99(18), 184506 (2019)
https://doi.org/10.1103/PhysRevB.99.184506
52 L. D. Zhang, X. X. Wu, H. Fan, F. Yang, and J. P. Hu, Revisitation of superconductivity in K2Cr3As3 based on the six-band model, Europhys. Lett. 113(3), 37003 (2016)
https://doi.org/10.1209/0295-5075/113/37003
53 F. Liu, C. C. Liu, K. H. Wu, F. Yang, and Y. G. Yao, d+id chiral superconductivity in bilayer silicene, Phys. Rev. Lett. 111(6), 066804 (2013)
https://doi.org/10.1103/PhysRevLett.111.066804
[1] Dong-Dong Wang, Bin Liu, Min Liu, Yi-Feng Yang, Shi-Ping Feng. Impurity-induced bound states as a signature of pairing symmetry in multiband superconducting CeCu2Si2[J]. Front. Phys. , 2019, 14(1): 13501-.
[2] Shengshan Qin, Yinxiang Li, Qiang Zhang, Congcong Le, Jiangping Hu. Theoretical studies of superconductivity in doped BaCoSO[J]. Front. Phys. , 2018, 13(3): 137502-.
[3] Mateusz Krzyzosiak, Ryszard Gonczarek, Adam Gonczarek, Lucjan Jacak. Applications of the conformal transformation method in studies of composed superconducting systems[J]. Front. Phys. , 2016, 11(6): 117407-.
[4] Yi Liang, Xianxin Wu, Wei-Feng Tsai, Jiangping Hu. Pairing symmetry in layered BiS2 compounds driven by electron–electron correlation[J]. Front. Phys. , 2014, 9(2): 194-199.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed