Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (5) : 53302    https://doi.org/10.1007/s11467-021-1070-0
REVIEW ARTICLE
Negative thermal expansion: Mechanisms and materials
Erjun Liang(), Qiang Sun, Huanli Yuan, Jiaqi Wang, Gaojie Zeng, Qilong Gao
Key Laboratory of Materials Physics of Ministry of Education of China, and School of Physics & Microelectronics, Zhengzhou University, Zhengzhou 450001, China
 Download: PDF(4435 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Negative thermal expansion (NTE) of materials is an intriguing phenomenon challenging the concept of traditional lattice dynamics and of importance for a variety of applications. Progresses in this field develop markedly and update continuously our knowledge on the NTE behavior of materials. In this article, we review the most recent understandings on the underlying mechanisms (anharmonic phonon vibration, magnetovolume effect, ferroelectrorestriction and charge transfer) of thermal shrinkage and the development of NTE materials under each mechanism from both the theoretical and experimental aspects. Besides the low frequency optical phonons which are usually accepted as the origins of NTE in framework structures, NTE driven by acoustic phonons and the interplay between anisotropic elasticity and phonons are stressed. Based on the data documented, some problems affecting applications of NTE materials are discussed and strategies for discovering and design novel framework structured NET materials are also presented.

Keywords negative thermal expansion      mechanisms of thermal contraction      negative thermal expansion materials      lattice thermal dynamics      magnetovolume effect      ferroelectrostriction      charge transfer      anisotropic elasticity     
Corresponding Author(s): Erjun Liang   
Issue Date: 15 July 2021
 Cite this article:   
Erjun Liang,Qiang Sun,Huanli Yuan, et al. Negative thermal expansion: Mechanisms and materials[J]. Front. Phys. , 2021, 16(5): 53302.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-021-1070-0
https://academic.hep.com.cn/fop/EN/Y2021/V16/I5/53302
1 L. P. Prisco, P. I. Ponton, M. V. Guaman, R. R. Avillez, C. P. Romao, M. B. Johnson, M. A. White, and B. A. Marinkovic, Assessment of the thermal shock resistance figures of merit of Al2W3O12, a low thermal expansion ceramic, J. Am. Ceram. Soc. 99(5), 1742 (2016)
https://doi.org/10.1111/jace.14160
2 T. A. Mary, J. S. O. Evans, T. Vogt, and A. W. Sleight, Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8, Science 272(5258), 90 (1996)
https://doi.org/10.1126/science.272.5258.90
3 N. Zhang, L. Li, M. Wu, Y. Li, D. Feng, C. Liu, Y. Mao, J. Guo, M. Chao, and E. Liang, Negative thermal expansion and electrical properties of α-Cu2V2O7, J. Eur. Ceram. Soc. 36(11), 2761 (2016)
https://doi.org/10.1016/j.jeurceramsoc.2016.04.030
4 X. H. Ge, Y. C. Mao, X. S. Liu, Y. G. Cheng, B. H. Yuan, M. J. Chao, and E. J. Liang, Negative thermal expansion and broad band photo luminescence in a novel material of ZrScMo2VO12, Sci. Rep. 6(1), 24832 (2016)
https://doi.org/10.1038/srep24832
5 N. K. Shi, A. Sanson, Q. Gao, Q. Sun, Y. Ren, Q. Z. Huang, D. O. deSouza, X. R. Xing, and J. Chen, Strong negative thermal expansion in a low-cost and facile oxide of Cu2P2O7, J. Am. Chem. Soc. 142(6), 3088 (2020)
https://doi.org/10.1021/jacs.9b12442
6 M. K. Gupta, R. Mittal, and S. L. Chaplot, Negative thermal expansion behavior in orthorhombic Sc2(MoO4)3 andSc2(WO4)3, J. Appl. Phys. 126(12), 125114 (2019)
https://doi.org/10.1063/1.5115318
7 A. L. Goodwin and C. J. Kepert, Negative thermal expansion and low-frequency modes in cyanide-bridged framework materials, Phys. Rev. B 71, 140301(R) (2005)
https://doi.org/10.1103/PhysRevB.71.140301
8 K. W. Chapman, P. J. Chupas, and C. J. Kepert, Compositional dependence of negative thermal expansion in the Prussian blue analogues MII PtIV (CN)6(M)Mn, Fe, Co, Ni, Cu, Zn, Cd), J. Am. Chem. Soc. 128(21), 7009 (2006)
https://doi.org/10.1021/ja060916r
9 S. d’Ambrumenil, M. Zbiri, A. M. Chippindale, S. J. Hibble, E. Marelli, and A. C. Hannon, Lattice dynamics and negative thermal expansion in the framework compound ZnNi(CN)4 with two-dimensional and three-dimensional local environments, Phys. Rev. B 99(2), 024309 (2019)
https://doi.org/10.1103/PhysRevB.99.024309
10 Q. Gao, J. Wang, A. Sanson, Q. Sun, E. Liang, X. Xing, and J. Chen, Discovering large isotropic negative thermal expansion in framework compound AgB(CN)4 via the concept of average atomic volume, J. Am. Chem. Soc. 142(15), 6935 (2020)
https://doi.org/10.1021/jacs.0c02188
11 B. K. Greve, K. L. Martin, P. L. Lee, P. J. Chupas, K. W. Chapman, and A. P. Wilkinson, Pronounced negative thermal expansion from a simple structure: Cubic ScF3, J. Am. Chem. Soc. 132(44), 15496 (2010)
https://doi.org/10.1021/ja106711v
12 J. C. Hancock, K. W. Chapman, G. J. Halder, C. R. Morelock, B. S. Kaplan, L. C. Gallington, A. Bongiorno, C. Han, S. Zhou, and A. P. Wilkinson, Large negative thermal expansion and anomalous behavior on compression in cubic ReO3-type AII BIV F6: CaZrF6 and CaHfF6, Chem. Mater. 27(11), 3912 (2015)
https://doi.org/10.1021/acs.chemmater.5b00662
13 B. R. Hester, J. C. Hancock, S. H. Lapidus, and A. P. Wilkinson, Composition, response to pressure, and negative thermal expansion in MII BIV F6 (M= Ca, Mg; B= Zr, Nb), Chem. Mater. 29(2), 823 (2017)
https://doi.org/10.1021/acs.chemmater.6b04809
14 D. Yoon, Y. W. Son, and H. Cheong, Negative thermal expansion coefficient of graphene measured by Raman spectroscopy, Nano Lett. 11(8), 3227 (2011)
https://doi.org/10.1021/nl201488g
15 G. Liu and J. Zhou, First-principles study of thermal expansion and thermomechanics of group-V monolayers: blue phosphorene, arsenene, and antimonene, J. Phys.: Condens. Matter 31(6), 065302 (2019)
https://doi.org/10.1088/1361-648X/aaf413
16 K. Takenaka and H. Takagi, Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides, Appl. Phys. Lett. 87(23), 261902 (2005)
https://doi.org/10.1063/1.2147726
17 Y. Sun, C. Wang, Y. C. Wen, K. G. Zhu, and J. T. Zhao, Lattice contraction and magnetic and electronic transport properties of Mn3Zn1−xGexN, Appl. Phys. Lett. 91(23), 231913 (2007)
https://doi.org/10.1063/1.2822813
18 X. G. Guo, P. Tong, J. C. Lina, C. Yang, K. Zhang, M. Wang, Y. Wu, S. Lin, W. H. Song, and Y. P. Sun, Large negative thermal expansion in(Ga0.7Cu0.3)1−xMnxNMn3 (x≤0.4), compensating for the thermal expansion of cryogenic materials, Scr. Mater. 128, 74 (2017)
https://doi.org/10.1016/j.scriptamat.2016.10.002
19 R. J. Huang, Y. Y. Liu, W. Fan, J. Tan, F. R. Xiao, L. H. Qian, and L. F. Li, Giant negative thermal expansion in NaZn13-type La(Fe, Si, Co)13 compounds, J. Am. Chem. Soc. 135(28), 11469 (2013)
https://doi.org/10.1021/ja405161z
20 W. T. Sun, H. Zhang, W. Li, R. J. Huang, Y. Q. Zhao, W. Wang, and L. F. Li, Controllable negative thermal expansion in NaZn13-type La(Fe, Co, Al)13 compounds, AIP Adv. 10(7), 075123 (2020)
https://doi.org/10.1063/5.0010204
21 X. R. Xing, J. X. Deng, J. Chen, and G. R. Liu, Novel thermal expansion of lead titanate, Rare Met. 22(4), 294 (2003)
22 H. Fang, Y. Wang, S. Shang, and Z. K. Liu, Nature of ferroelectric–paraelectric phase transition and origin of negative thermal expansion in PbTiO3, Phys. Rev. B 91(2), 024104 (2015)
https://doi.org/10.1103/PhysRevB.91.024104
23 E. T. Ritz and N. A. Benedek, Interplay between phonons and anisotropic elasticity drives negative thermal expansion in PbTiO3, Phys. Rev. Lett. 121(22), 255901 (2018)
https://doi.org/10.1103/PhysRevLett.121.255901
24 Y. W. Long, N. Hayashi, T. Saito, M. Azuma, S. Muranaka, and Y. Shimakawa, Temperature-induced A–B intersite charge transfer in an A-site-ordered LaCu3Fe4O12 perovskite, Nature 458(7234), 60 (2009)
https://doi.org/10.1038/nature07816
25 M. Azuma, W. T. Chen, H. Seki, M. Czapski, S. Olga, K. Oka, M. Mizumaki, T. Watanuki, N. Ishimatsu, N. Kawamura, S. Ishiwata, M. G. Tucker, Y. Shimakawa, and J. P. Attfield, Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer, Nat. Commun. 2(1), 347 (2011)
https://doi.org/10.1038/ncomms1361
26 A. P. Giddy, M. T. Dove, G. S. Pawley, and V. Heine, The determination of rigid-unit modes as potential soft modes for displacive phase transitions in framework crystal structures, Acta Crystallogr Sec. A: Found. Crystallogr. A49, 697 (1993)
https://doi.org/10.1107/S0108767393002545
27 L. Goodwin, Rigid unit modes and intrinsic flexibility in linearly bridged framework structures, Phys. Rev. B 74(13), 134302 (2006)
https://doi.org/10.1103/PhysRevB.74.134302
28 M. T. Dove, Flexibility of network materials and the Rigid Unit Mode model: A personal perspective, Phil. Trans. R. Soc. A 377(2149), 20180222 (2019)
https://doi.org/10.1098/rsta.2018.0222
29 W. Kim, S. H. Kang, and Y. K. Kwon, Rigid unit modes in sp-sp(2) hybridized carbon systems: Origin of negative thermal expansion, Phys. Rev. B 92(24), 245434 (2015)
https://doi.org/10.1103/PhysRevB.92.245434
30 J. Z. Tao and A. W. Sleight, The role of rigid unit modes in negative thermal expansion, J. Solid State Chem. 173(2), 442 (2003)
https://doi.org/10.1016/S0022-4596(03)00140-3
31 K. D. Hammonds, A. Bosenick, M. T. Dove, and V. Heine, Rigid unit modes in crystal structures with octahedrally coordinated atoms, Am. Mineral. 83(5–6), 476 (1998)
https://doi.org/10.2138/am-1998-5-607
32 A. K. A. Pryde, K. D. Hammonds, M. T. Dove, V. Heine, J. D. Gale, and M. C. Warren, Origin of the negative thermal expansion in ZrW2O8 and ZrV2O7, J. Phys.: Condens. Matter 8(50), 10973 (1999)
https://doi.org/10.1088/0953-8984/8/50/023
33 L. H. N. Rimmer and M. T. Dove, Simulation study of negative thermal expansion in yttrium tungstate Y2W3O12, J. Phys.: Condens. Matter 27(18), 185401 (2015)
https://doi.org/10.1088/0953-8984/27/18/185401
34 A. Sanson, F. Rocca, G. Dalba, P. Fornasini, R. Grisenti, M. Dapiaggi, and G. Artioli, Negative thermal expansion and local dynamics in Cu2O and Ag2O, Phys. Rev. B 73(21), 214305 (2006)
https://doi.org/10.1103/PhysRevB.73.214305
35 L. H. N. Rimmer, M. T. Dove, B. Winkler, D. J. Wilson, K. Refson, and A. L. Goodwin, Framework flexibility and the negative thermal expansion mechanism of copper (I) oxide Cu2O, Phys. Rev. B 89(21), 214115 (2014)
https://doi.org/10.1103/PhysRevB.89.214115
36 C. W. Li, X. Tang, J. A. Munöz, J. B. Keith, S. J. Tracy, D. L. Abernathy, and B. Fultz, Structural relationship between negative thermal expansion and quartic anharmonicity of cubic ScF3, Phys. Rev. Lett. 107(19), 195504 (2011)
https://doi.org/10.1103/PhysRevLett.107.195504
37 C. P. Romao, Anisotropic thermal expansion in flexible materials, Phys. Rev. B 96(13), 134113 (2017)
https://doi.org/10.1103/PhysRevB.96.134113
38 E. Grüneisen, Theory of the solid state of monoatomic elements, Ann. Phys. 344(12), 257 (1912)
https://doi.org/10.1002/andp.19123441202
39 N. Mounet and N. Marzari, First-principles determination of the structural, vibrational and thermodynamical properties of diamond, graphite, and derivatives, Phys. Rev. B 71(20), 205214 (2005)
https://doi.org/10.1103/PhysRevB.71.205214
40 Z. Y. Wang, Y. L. Zhou, X. Q. Wang, F. Wang, Q. Sun, Z. X. Guo, and Y. Jia, Effects of in-plane stiffness and charge transfer on thermal expansion of monolayer transition metal dichalcogenide, Chin. Phys. B 24(2), 026501 (2015)
https://doi.org/10.1088/1674-1056/24/2/026501
41 R. M. Hazen and A. Y. Au, High-pressure crystal chemistry of phenakite (Be2SiO4) and bertrandite (Be4Si2O7(OH)2), Phys. Chem. Miner. 13(2), 69 (1986)
https://doi.org/10.1007/BF00311896
42 R. Stevens, B. F. Woodfield, J. Boerio-Goates, and M. K. Crawford, Heat capacities, third-law entropies and thermodynamic functions of the negative thermal expansion material Zn2GeO4 from T=(0 to 400) K, J. Chem. Thermodyn. 36(5), 349 (2004)
https://doi.org/10.1016/j.jct.2003.12.010
43 H. L. Yuan, Q. L. Gao, P. Xu, J. Guo, L. H. He, A. Sanson, M. J. Chao, and E. J. Liang, Understanding negative thermal expansion of Zn2GeO4 through local structure and vibrational dynamics, Inorg. Chem. 60(3), 1499 (2021)
https://doi.org/10.1021/acs.inorgchem.0c02839
44 J. Q. Wang, P. Xu, H. L. Yuan, Q. L. Gao, Q. Sun, and E. J. Liang, Negative thermal expansion driven by acoustic phonon modes in rhombohedral Zn2GeO4, Results Phys. 19, 103531 (2020)
https://doi.org/10.1016/j.rinp.2020.103531
45 J. N. Plendl and L. C. Mansur, Anomalous thermal expansion with infrared spectroscopy, Appl. Opt. 11(5), 1194 (1972)
https://doi.org/10.1364/AO.11.001194
46 M. Vaccari, R. Grisenti, P. Fornasini, F. Rocca, and A. Sanson, Negative thermal expansion in CuCl: An extended X-ray absorption fine structure study, Phys. Rev. B 75(18), 184307 (2007)
https://doi.org/10.1103/PhysRevB.75.184307
47 A. M. Gopakumar, M. K. Gupta, R. Mittal, S. Rolsd, and S. L. Chaplot, Investigating anomalous thermal expansion of copper halides by inelastic neutron scattering and ab initio phonon calculations, Phys. Chem. Chem. Phys. 19(19), 12107 (2017)
https://doi.org/10.1039/C7CP01517H
48 T. H. K. Barron and R. W. Munn, Analysis of the thermal expansion of anisotropic solids: Application to zinc, Philos. Mag. 15(133), 85 (1967)
https://doi.org/10.1080/14786436708230352
49 C. Ablitt, S. Craddock, M. S. Senn, A. A. Mostofi, and N. C. Bristowe, The origin of uniaxial negative thermal expansion in layered perovskites, npj Comput. Mater. 3, 44 (2017)
https://doi.org/10.1038/s41524-017-0040-0
50 N. Mounet and N. Marzari, First-principles determination of the structural, vibrational and thermodynamical properties of diamond, graphite, and derivatives, Phys. Rev. B 71(20), 205214 (2005)
https://doi.org/10.1103/PhysRevB.71.205214
51 G. Lucazeau, Effect of pressure and temperature on Raman spectra of solids: Anharmonicity, J. Raman Spectrosc. 34(7–8), 478 (2003)
https://doi.org/10.1002/jrs.1027
52 L. C. Gallington, K. W. Chapman, C. R. Morelock, P. J. Chupas, and A. P. Wilkinson, Dramatic softening of the negative thermal expansion material HfW2O8 upon heating through its WO4 orientational order–disorder phase transition, J. Appl. Phys. 115(5), 053512 (2014)
https://doi.org/10.1063/1.4864258
53 S. Allen and J. S. O. Evans, Negative thermal expansion and oxygen disorder in cubic ZrMo2O8, Phys. Rev. B 68(13), 134101 (2003)
https://doi.org/10.1103/PhysRevB.68.134101
54 A. Kennedy, M. A. White, A. P. Wilkinson, and T. Varga, Low thermal conductivity of the negative thermal expansion material, HfMo2O8, Appl. Phys. Lett. 90(15), 151906 (2007)
https://doi.org/10.1063/1.2721860
55 J. S. O. Evans, T. A. Mary, and A. W. Sleight, Negative thermal expansion materials, Physica B 241, 311 (1998)
https://doi.org/10.1016/S0921-4526(97)00571-1
56 M. G. Tucker, A. L. Goodwin, M. T. Dove, D. A. Keen, S. A. Wells, and J. S. O. Evans, Negative thermal expansion in ZrW2O8: Mechanisms, rigid unit modes, and neutron total scattering, PRL 95(22), 255501 (2005)
https://doi.org/10.1103/PhysRevLett.95.255501
57 D. Cao, F. Bridges, G. R. Kowach, and A. P. Ramirez, Frustrated softmodes and negative thermal expansion in ZrW2O8, Phys. Rev. Lett. 89(21), 215902 (2002)
https://doi.org/10.1103/PhysRevLett.89.215902
58 F. Cao, F. Bridges, G. R. Kowach, and A. P. Ramirez, Correlated atomicmotions in the negative thermal expansion material ZrW2O8: A local structure study, Phys. Rev. B 68(1), 014303 (2003)
https://doi.org/10.1103/PhysRevB.68.014303
59 F. Bridges, T. Keiber, P. Juhas, S. J. L. Billinge, L. Sutton, J. Wilde, and G. R. Kowach, Local vibrations and negative thermal expansion in ZrW2O8, Phys. Rev. Lett. 112(4), 045505 (2014)
https://doi.org/10.1103/PhysRevLett.112.045505
60 T. R. Ravindran, A. K. Arora, and T. A. Mary, High-pressure Raman spectroscopic study of zirconium tungstate, J. Phys.: Condens. Matter 13(50), 11573 (2001)
https://doi.org/10.1088/0953-8984/13/50/316
61 E. J. Liang, Y. Liang, Y. Zhao, J. Liu, and Y. J. Jiang, Low frequency phonon modes and negative thermal expansion in A(MO4)2 (A=Zr, Hf and M=W, Mo) by Raman and terahertz time-domain spectroscopy, J. Phys. Chem. A 112(49), 12582 (2008)
https://doi.org/10.1021/jp805256d
62 J. N. Hancock, C. Turpen, Z. Schlesinger, G. R. Kowach, and A. P. Ramirez, Unusual low-energy phonon dynamics in the negative thermal expansion compound ZrW2O8, Phys. Rev. Lett. 93(22), 225501 (2004)
https://doi.org/10.1103/PhysRevLett.93.225501
63 V. Gava, A. L. Martinotto, and C. A. Perottoni, Firstprinciples mode Gruneisen parameters and negative thermal expansion in α-ZrW2O8, Phys. Rev. Lett. 109(19), 195503 (2012)
https://doi.org/10.1103/PhysRevLett.109.195503
64 M. K. Gupta, R. Mittal, and S. L. Chaplot, Negative thermal expansion in cubic ZrW2O8: Role of phonons in the entire Brillouin zone from ab initio calculations, Phys. Rev. B 88(1), 014303 (2013)
https://doi.org/10.1103/PhysRevB.88.014303
65 N. Khosrovani, A. W. Sleight, and T. Vogt, Structure of ZrV2O7 from –263 to 470 °C, J. Solid State Chem. 132(2), 355 (1997)
https://doi.org/10.1006/jssc.1997.7474
66 C. Turquat, C. Muller, E. Nigrelli, C. Leroux, J. L. Soubeyroux, and G. Nihoul, Structural investigation of temperature-induced phase transitions in HfV2O7, Eur. Phys. J. Appl. Phys. 10(1), 15 (2000)
https://doi.org/10.1051/epjap:2000115
67 R. L. Withers, J. S. O. Evans, J. Hanson, and A. W. Sleight, An in situ temperature-dependent electron and X-ray diffraction study of structural phase transitions in ZrV2O7, J. Solid State Chem. 137(1), 161 (1998)
https://doi.org/10.1006/jssc.1998.7748
68 L. C. Gallington, B. R. Hester, B. S. Kaplan, and A. P. Wilkinson, Pressure-dependence of the phase transitions and thermal expansion in zirconium and hafnium pyrovanadate, J. Solid State Chem. 249, 46 (2017)
https://doi.org/10.1016/j.jssc.2017.02.014
69 V. Korthuis, N. Khosrovani, A. W. Sleight, N. Roberts, R. Dupree, and W. W. Warren, Negative thermal expansion and phase transitions in the ZrV2−xPxO7 series, Chem. Mater. 7(2), 412 (1995)
https://doi.org/10.1021/cm00050a028
70 P. P. Sahoo, S. Sumithra, G. Madras, and T. N. G. Row, Synthesis, structure, negative thermal expansion, and photocatalytic property of Mo doped ZrV2O7, Inorg. Chem. 50(18), 8774 (2011)
https://doi.org/10.1021/ic201224g
71 H. L. Yuan, B. H. Yuan, F. Li, and E. J. Liang, Phase transition and thermal expansion properties of ZrV2−xPxO7, Acta Physica Sinica 61(22), 226502 (2012)
https://doi.org/10.7498/aps.61.226502
72 Q. Q. Liu, J. Yang, X. J. Sun, X. N. Cheng, H. Tang, and H. H. Li, Influence of W doped ZrV2O7 on structure, negative thermal expansion property and photocatalytic performance, Appl. Surf. Sci. 313, 41 (2014)
https://doi.org/10.1016/j.apsusc.2014.05.120
73 H. Yanase, H. Chida, and H. Kobayashi, Fabrication and negative thermal expansion properties of P-substituted ZrV2O7 sintered bodies, J. Eur. Ceram. Soc. 38(1), 221 (2018)
https://doi.org/10.1016/j.jeurceramsoc.2017.08.010
74 T. Hisashige, T. Yamaguchi, T. Tsuji, and Y. Yamamura, Phase transition of Zr1−xHfxV2O7 solid solutions having negative thermal expansion, J. Ceram. Soc. Jpn. 114(1331), 607 (2006)
https://doi.org/10.2109/jcersj.114.607
75 T. Yanase, T. Kojima, and H. Kobayashi, Effects of Nb and Y substitution on negative thermal expansion of ZrV2−xPxO7 (0≤x≤0.8), Solid State Commun. 151(8), 595 (2011)
https://doi.org/10.1016/j.ssc.2011.02.007
76 B. H. Yuan, H. L. Yuan, W. B. Song, X. S. Liu, Y. G. Cheng, M. J. Chao, and E. J. Liang, High solubility of hetero-valence ion (Cu2+) for reducing phase transition and thermal expansion of ZrV1.6P0.4O7, Chin. Phys. Lett. 31(7), 076501 (2014)
https://doi.org/10.1088/0256-307X/31/7/076501
77 B. H. Yuan, X. S. Liu, W. B. Song, Y. G. Cheng, M. J. Chao, and E. J. Liang, High substitution of Fe3+ for Zr4+ in ZrV1.6P0.4O7 with small amount of FeV0.8P0.2O4 for low thermal expansion, J. Phys. Lett. A 378(45), 3397 (2014)
https://doi.org/10.1016/j.physleta.2014.09.051
78 P. Wang, Q. D. Chen, S. L. Li, Y. J. Ji, W. Y. Mu, W. W. Feng, G. J. Zeng, Y. W. Liu, and E. J. Liang, Phase transition and near-zero thermal expansion of Zr0.5Hf0.5VPO7, Chin. Phys. B 27(6), 066501 (2018)
https://doi.org/10.1088/1674-1056/27/6/066501
79 P. Wang, Q. D. Chen, S. L. Li, Y. J. Ji, G. J. Zeng, Y. W. Liu, and E. J. Liang, Phase transition and nearzero thermal expansion properties of Zr0.5Hf0.5V2−xPxO7 (0≤ x≤1.2), Solid State Commun. 287, 7 (2019)
https://doi.org/10.1016/j.ssc.2018.09.016
80 B. H. Yuan, W. S. Cao, X. H. Ge, Y. G. Cheng, X. S. Liu, and E. J. Liang, Substitutions of dual-ion Al3+/Mo6+ for Zr4+/V5+in ZrV2O7 for realizing near-zero thermal expansion, Acta Physica Sinica 66(7), 076501 (2017)
https://doi.org/10.7498/aps.66.076501
81 B. H. Yuan, X. S. Liu, Y. C. Mao, J. Q. Wang, J. Guo, Y. G. Cheng, W. B. Song, E. J. Liang, and M. J. Chao, Low thermal expansion over a wide temperature range of Zr1−xFexV2−xMoxO7 (0≤x≤0.9), Mater. Chem. Phys. 170, 162 (2016)
https://doi.org/10.1016/j.matchemphys.2015.12.034
82 W. Wei, Q. L. Gao, J. Guo, M. J. Chao, L. H. He, J. Chen, and E. J. Liang, Realizing isotropic negative thermal expansion covering room temperature by breaking the superstructure of ZrV2O7, Appl. Phys. Lett. 116(18), 181902 (2020)
https://doi.org/10.1063/1.5143691
83 R. Mittal and S. L. Chaplot, Lattice dynamical calculation of negative thermal expansion in ZrV2O7 and HfV2O7, Phys. Rev. B 78(17), 174303 (2008)
https://doi.org/10.1103/PhysRevB.78.174303
84 M. Maczka, W. Paraguassu, A. G. S. Filho, P. T. C. Freire, J. M. Filho, F. E. A. Melo, and J. Hanuza, High-pressure Raman study of Al2(WO4)3, J. Solid State Chem. 177(6), 2002 (2004)
https://doi.org/10.1016/j.jssc.2004.01.021
85 G. J. Zeng, H. L. Yuan, J. Guo, Q. Sun, Q. L. Gao, M. J. Chao, X. Ren, and E. J. Liang, Hydrate formation and its effects on the thermal expansion properties of HfMgW3O12, Phys. Chem. Chem. Phys. 22(22), 12605 (2020)
https://doi.org/10.1039/D0CP01446J
86 J. Pommer, V. Kataev, K. Y. Choi, P. Lemmens, A. Ionescu, Y. Pashkevich, A. Freimuth, and G. Güntherodt, Interplay between structure and magnetism in the spinchain compound (Cu, Zn)2V2O7, Phys. Rev. B 67(21), 214410 (2003)
https://doi.org/10.1103/PhysRevB.67.214410
87 M. Schindler and F. C. Hawthorne, Structural characterization of the β-Cu2V2O7–α-Zn2V2O7 solid solution, J. Solid State Chem. 146(1), 271 (1999)
https://doi.org/10.1006/jssc.1999.8371
88 B. V. Slobodin and R. F. Samigullina, Thermoanalytical study of the polymorphism and melting behavior of Cu2V2O7, Inorg. Mater. 46(2), 196 (2010)
https://doi.org/10.1134/S0020168510020196
89 K. Katayama, K. Otsuka, M. Mitamura, Y. Yokoyama, Y. Okamoto, and K. Takenaka, Microstructural effects on negative thermal expansion extending over a wide temperature range in β-Cu1.8Zn0.2V2O7, Appl. Phys. Lett. 113(18), 181902 (2018)
https://doi.org/10.1063/1.5055304
90 L. Wang, J. Werner, A. Ottmann, R. Weis, M. Abdel-Hafiez, J. Sannigrahi, S. Majumdar, C. Koo, and R. Klingeler, Magnetoelastic coupling and ferromagnetic-type ingap spin excitations in multiferroic α-Cu2V2O7, New J. Phys. 20(6), 063045 (2018)
https://doi.org/10.1088/1367-2630/aac9dc
91 K. Shi, A. Sanson, A. Venier, L. L. Fan, C. L. Sun, X. R. Xing, and J. Chen, Negative and zero thermal expansion in α-(Cu2−xZnx)V2O7 solid solutions, Chem. Commun. (Camb.) 56(73), 10666 (2020)
https://doi.org/10.1039/D0CC04505E
92 M. Sato, V. Warne-Lang, Y. Kadowaki, N. Katayama, Y. Okamoto, and K. Takenaka, Sol–gel synthesis of doped Cu2V2O7 fine particles showing giant negative thermal expansion, AIP Adv. 10(7), 075207 (2020)
https://doi.org/10.1063/5.0010631
93 Y. W. Lee, T. H. Jang, S. E. Dissanayake, S. Lee, and Y. H. Jeong, Magnetism and magnetoelectricity in the polar oxide α-Cu2V2O7,Europhys. Lett. 113(2), 27007 (2016)
https://doi.org/10.1209/0295-5075/113/27007
94 H. Wang, M. Yang, M. Chao, J. Guo, Q. Gao, Y. Jiao, X. Tang, and E. Liang, Negative thermal expansion property of β-Cu2V2O7, Solid State Ion. 343, 115086 (2019)
https://doi.org/10.1016/j.ssi.2019.115086
95 H. Wang, M. Yang, M. Chao, J. Guo, X. Tang, Y. Jiao, and E. Liang, Negative thermal expansion properties of Cu1.5Mg0.5V2O7, Ceram. Int. 45(8), 9814 (2019)
https://doi.org/10.1016/j.ceramint.2019.02.019
96 K. Takenaka, Y. Okamoto, T. Shinoda, N. Katayama, and Y. Sakai, Colossal negative thermal expansion in reduced layered ruthenate, Nat. Commun. 8(1), 14102 (2017)
https://doi.org/10.1038/ncomms14102
97 K. Takenaka, N. Inoue, Y. Mizuno, Y. Okamoto, N. Katayama, Y. Sakai, T. Nishikubo, and M. Azuma, Extended operating temperature window of giant negative thermal expansion in Sn-doped Ca2RuO4, Appl. Phys. Lett. 113(7), 071902 (2018)
https://doi.org/10.1063/1.5046463
98 S. Xu, Y. M. Hu, Y. Liang, C. F. Shi, Y. L. Su, J. Guo, Q. L. Gao, M. J. Chao, and E. J. Liang, Negative thermal expansion of Ca2RuO4 with oxygen vacancies, Chin. Phys. B 29(8), 086501 (2020)
https://doi.org/10.1088/1674-1056/ab8a36
99 A. K. Tyagi, S. N. Achary, and M. D. Mathews, Phase transition and negative thermal expansion in A2(MoO4)3 system (A= Fe3+, Cr3+ and Al3+), J. Alloys Compd. 339(1–2), 207 (2002)
https://doi.org/10.1016/S0925-8388(01)02003-5
100 T. Varga, J. L. Moats, S. V. Ushakov, and A. Navrotsky, Thermochemistry of A2M3O12 negative thermal expansion materials, J. Mater. Res. 22(9), 2512 (2007)
https://doi.org/10.1557/jmr.2007.0311
101 X. S. Liu, B. H. Yuan, Y. G. Cheng, E. J. Liang, and W. F. Zhang, Combined influences of A3+ and Mo6+ on monoclinic–orthorhombic phase transition of negativethermal- expansion A2Mo3O12, J. Alloys Compd. 776, 236 (2019)
https://doi.org/10.1016/j.jallcom.2018.10.315
102 G. Yang, X. S. Liu, X. W. Sun, E. J. Liang, and W. F. Zhang, Synthesis process control of low-thermalexpansion Fe2W3O12 by suppressing the intermediate phase Fe2WO6, Ceram. Int. 44(17), 22032 (2018)
https://doi.org/10.1016/j.ceramint.2018.08.274
103 Z. P. Zhang, W. K. Sun, H. F. Liu, B. T. Xiao, X. H. Zeng, and X. B. Chen, Densification and negative thermal expansion property of In0.5Sc1.5(MoO4)3 ceramics, J. Alloys Compd. 783, 77 (2019)
https://doi.org/10.1016/j.jallcom.2018.12.276
104 T. Suzuki and A. Omote, Negative thermal expansion in (HfMg)(WO4)3, J. Am. Ceram. Soc. 87(7), 1365 (2004)
https://doi.org/10.1111/j.1151-2916.2004.tb07737.x
105 B. A. Marinkovic, P. M. Jardim, M. Ari, R. R. de Avillez,F. Rizzo, and F. F. Ferreira, Low positive thermal expansion in HfMgMo3O12, Phys. Status Solidi. (b) 245(11), 2514 (2008)
https://doi.org/10.1002/pssb.200880262
106 W. B. Song, E. J. Liang, X. S. Liu, Z. Y. Li, B. H. Yuan, and J. Q. Wang, A negative thermal expansion material of ZrMgMo3O12, Chin. Phys. Lett. 30(12), 126502 (2013)
https://doi.org/10.1088/0256-307X/30/12/126502
107 F. Li, X. S. Liu, W. B. Song, B. Yuan, Y. G. Cheng, H. L. Yuan, F. X. Cheng, M. J. Chao, and E. liang, Phase transition, crystal water and low thermal expansion behavior of Al2−2x(ZrMg)xW3O12·n(H2O), Solid State Chem. 218, 15 (2014)
https://doi.org/10.1016/j.jssc.2014.06.009
108 X. H. Ge, Y. C. Mao, L. Li, L. P. Li, N. Yuan, Y. G. Cheng, J. Guo, M. J. Chao, and E. J. Liang, Phase transition and negative thermal expansion property of ZrMnMo3O12, Chin. Phys. Lett. 33(4), 046503 (2016)
https://doi.org/10.1088/0256-307X/33/4/046503
109 Y. Y. Liu, B. H. Yuan, Y. G. Cheng, E. J. Liang, X. H. Ge, H. L. Yuan, Y. Zhang, J. Guo, and M. J. Chao, Phase transition and negative thermal expansion of HfMnMo3O12,Mater. Res. Bull. 99, 255 (2018)
https://doi.org/10.1016/j.materresbull.2017.11.009
110 X. H. Ge, X. S. Liu, Y. G. Cheng, B. H. Yuan, D. X. Chen, M. J. Chao, J. Guo, J. Q. Wang, and E. J. Liang, Negative thermal expansion and photoluminescence properties in a novel material ZrScW2PO12, J. Appl. Phys. 120(20), 205101 (2016)
https://doi.org/10.1063/1.4968546
111 Y. G. Cheng, Y. Liang, X. H. Ge, X. S. Liu, B. H. Yuan, J. Guo, M. J. Chao, and E. J. Liang, A novel material of HfScMo2VO12 with negative thermal expansion and intense white-light emission, RSC Advances 6(59), 53657 (2016)
https://doi.org/10.1039/C6RA09666B
112 Y. G. Cheng, Y. Liang, Y. C. Mao, X. H. Ge, B. H. Yuan, J. Guo, M. J. Chao, and E. J. Liang, A novel material of HfScW2PO12 with negative thermal expansion from 140 K to 1469 K and intense blue photoluminescence, Mater. Res. Bull. 85, 176 (2017)
https://doi.org/10.1016/j.materresbull.2016.09.008
113 X. Chen, B. H. Yuan, Y. G. Cheng, X. H. Ge, Y. Jia, E. J. Liang, and M. J. Chao, Phase transition and nearzero thermal expansion in ZrFeMo2VO12, Phys. Lett. A 380(48), 4070 (2016)
https://doi.org/10.1016/j.physleta.2016.10.009
114 D. X. Chen, Y. Zhang, X. H. Ge, Y. G. Cheng, Y. Y. Liu, H. L. Yuan, J. Guo, M. J. Chao, and E. J. Liang, Structural, vibrational and thermal expansion properties of Sc2W4O15, Phys. Chem. Chem. Phys. 20(27), 20160 (2018)
https://doi.org/10.1039/C8CP02403K
115 Y. Liang, Y. G. Cheng, X. H. Ge, B. H. Yuan, J. Guo, Q. Sun, and E. J. Liang, Negative thermal expansion and photoluminescence in solid solution (HfSc)0.83W2.25P0.83O12−δ, Chin. Phys. B 26(10), 106501 (2017)
https://doi.org/10.1088/1674-1056/26/10/106501
116 L. Wang, F. Wang, P. F. Yuan, Q. Sun, E. J. Liang, Y. Jia, and Z. X. Guo, Negative thermal expansion correlated with polyhedral movements and distortions in orthorhombic Y2Mo3O12, Mater. Res. Bull. 48(7), 2724 (2013)
https://doi.org/10.1016/j.materresbull.2013.04.001
117 H. L. Yuan, C. Y. Wang, Q. L. Gao, X. H. Ge, H. Sun, S. H. Lapidus, J. Guo, M. J. Chao, Y. Jia, and E. J. Liang, Structure and negative thermal expansion in Zr0.3Sc1.7Mo2.7V0.3O12, Inorg. Chem. 59(6), 4090 (2020)
https://doi.org/10.1021/acs.inorgchem.0c00126
118 T. G. Amos, A. Yokochi, and A. W. Sleight, Phase transition and negative thermal expansion in tetragonal NbOPO4, J. Solid State Chem. 141(1), 303 (1998)
https://doi.org/10.1006/jssc.1998.8045
119 T. G. Amos and A. W. Sleight, Negative thermal expansion in orthorhombic NbOPO4, J. Solid State Chem. 160(1), 230 (2001)
https://doi.org/10.1006/jssc.2001.9227
120 X. Wang, Q. Huang, J. Deng, R. Yu, J. Chen, and X. Xing, Phase transformation and negative thermal expansion in TaVO5, Inorg. Chem. 50(6), 2685 (2011)
https://doi.org/10.1021/ic200003n
121 J. Wang, J. Deng, R. Yu, J. Chen, and X. Xing, Coprecipitation synthesis and negative thermal expansion of NbVO5, Dalton Trans. 40(13), 3394 (2011)
https://doi.org/10.1039/c0dt01562h
122 N. P. Salke, M. K. Gupta, R. Rao, R. Mittal, J. Deng, and X. Xing, Raman and ab initio investigation of negative thermal expansion material TaVO5: Insights into phase stability and anharmonicity, J. Appl. Phys. 117(23), 235902 (2015)
https://doi.org/10.1063/1.4922744
123 N. P. Salke, R. Rao, S. N. Achary, C. Nayak, A. B. Garg, P. S. R. Krishna, A. B. Shinde, S. N. Jha, D. Bhattacharyya, Jagannath, and A. K. Tyagi, High pressure phases and amorphization of a negative thermal expansion compound TaVO5, Inorg. Chem. 57(12), 6973 (2018)
https://doi.org/10.1021/acs.inorgchem.8b00590
124 M. Ivanda, D. Waasmaier, A. Endriss, J. Ihringer, A. Kirfel, and W. Kiefer, Low-temperature anomalies of cuprite observed by Raman spectroscopy and X-ray powder diffraction, J. Raman Spectrosc. 28(7), 487 (1997)
https://doi.org/10.1002/(SICI)1097-4555(199707)28:7<487::AID-JRS115>3.0.CO;2-V
125 A. Sanson, G. Dalba, P. Fornasini, R. Grisenti, F. Rocca, G. Artioli, M. Dapiaggi, and W. Tiano, EXAFS and XRD study of local dynamics in Cu2O and Ag2O, Phys. Scr. T 115, 271 (2005)
https://doi.org/10.1238/Physica.Topical.115a00271
126 S. A. Beccara, G. Dalba, P. Fornasini, R. Grisenti, A. Sanson, and F. Rocca, Local thermal expansion in a cuprite structure: The case of Ag2O, Phys. Rev. Lett. 89(2), 025503 (2002)
https://doi.org/10.1103/PhysRevLett.89.025503
127 M. K. Gupta, R. Mittal, S. Rols, and S. L. Chaplot, Inelastic neutron scattering an ab–initio calculation of negative thermal expansion in Ag2O, Physica B 407(12), 2146 (2012)
https://doi.org/10.1016/j.physb.2012.02.023
128 T. Lan, C. W. Li, J. L. Niedziela, H. Smith, D. L. Abernathy, G. R. Rossman, and B. Fultz, Anharmonic lattice dynamics of Ag2O studied by inelastic neutron scattering and first-principles molecular dynamics simulations, Phys. Rev. B 89(5), 054306 (2014)
https://doi.org/10.1103/PhysRevB.89.054306
129 G. Wallez, N. Clavier, N. Dacheux, and D. Bregiroux, Negative thermal expansion in Th2O(PO4)2, Mater. Res. Bull. 46(11), 1777 (2011)
https://doi.org/10.1016/j.materresbull.2011.08.003
130 J. Xu, L. Hu, Y. Song, F. Han, Y. Qiao, J. Deng, J. Chen, and X. Xing, Zero thermal expansion in cubic MgZrF6, J. Am. Ceram. Soc. 100(12), 5385 (2017)
https://doi.org/10.1111/jace.15105
131 B. R. Hester and A. P. Wilkinson, Negative thermal expansion, response to pressure and phase transitions in CaTiF6, Inorg. Chem. 57(17), 11275 (2018)
https://doi.org/10.1021/acs.inorgchem.8b01912
132 M. T. Dove, J. Du, A. E. Phillips, D. A. Keen, and M. G. Tucker, A real-space experimental model for negative thermal expansion in scandium trifluoride, arXiv: 1905.09250 (2019)
133 Y. Oba, T. Tadano, R. Akashi, and S. Tsuneyuki, Firstprinciples study of phonon anharmonicity and negative thermal expansion in ScF3, Phys. Rev. Mater. 3(3), 033601 (2019)
https://doi.org/10.1103/PhysRevMaterials.3.033601
134 D. Bocharov, M. Krack, Y. Rafalskij, A. Kuzmin, and J. Purans, Ab initio molecular dynamics simulations of negative thermal expansion in ScF3: The effect of the supercell size, Comput. Mater. Sci. 171, 109198 (2020)
https://doi.org/10.1016/j.commatsci.2019.109198
135 M. K. Gupta, B. Singh, R. Mittal, and S. L. Chaplot, Negative thermal expansion behavior in MZrF6 (M= Ca, Mg, Sr): Ab initio lattice dynamical studies, Phys. Rev. B 98(1), 014301 (2018)
https://doi.org/10.1103/PhysRevB.98.014301
136 T. A. Bird, J. Woodland-Scott, L. Hu, M. T. Wharmby, J. Chen, A. L. Goodwin, and M. S. Senn, Anharmonicity and scissoring modes in the negative thermal expansion materials ScF3 and CaZrF6, Phys. Rev. B 101(6), 064306 (2020)
https://doi.org/10.1103/PhysRevB.101.064306
137 A. Sanson, M. Giarola, G. Mariotto, L. Hu, J. Chen, and X. R. Xing, Lattice dynamics and anharmonicity of CaZrF6 from Raman spectroscopy and ab initio calculations, Mater. Chem. Phys. 180, 213 (2016)
https://doi.org/10.1016/j.matchemphys.2016.05.067
138 T. Chatterji, T. C. Hansen, M. Brunelli, and P. F. Henry, Negative thermal expansion of ReO3 in the extended temperature range, Appl. Phys. Lett. 94(24), 241902 (2009)
https://doi.org/10.1063/1.3155191
139 Y. M. Liu, Z. H. Wang, M. Wu, Q. Sun, M. J. Chao, and Y. Jia, Negative thermal expansion in isostructural cubic ReO3 and ScF3: A comparative study, Comput. Mater. Sci. 107, 157 (2015)
https://doi.org/10.1016/j.commatsci.2015.05.019
140 A. L. Goodwin, M. Calleja, M. J. Conterio, M. T. Dove, J. S. O. Evans, D. A. Keen, L. Peters, and M. G. Tucker, Colossal positive and negative thermal expansion in the framework material Ag3[Co(CN)6], Science 319(5864), 794 (2008)
https://doi.org/10.1126/science.1151442
141 L. Gao, N. K. Shi, Q. Sun, A. Sanson, R. Milazzo, A. Carnera, H. Zhu, S. H. Lapidus, Y. Ren, Q. Huang, J. Chen, and X. Xing, Low-frequency phonon driven negative thermal expansion in cubic GaFe(CN)6 Prussian blue analogues, Inorg. Chem. 57(17), 10918 (2018)
https://doi.org/10.1021/acs.inorgchem.8b01526
142 L. Gao, Y. Sun, N. Shi, R. Milazzo, S. Pollastri, L. Olivi, Q. Huang, H. Liu, A. Sanson, Q. Sun, E. Liang, X. Xing, and J. Chen, Large isotropic negative thermal expansion in water-free Prussian blue analogues of ScCo(CN)6, Scr. Mater. 187, 119 (2020)
https://doi.org/10.1016/j.scriptamat.2020.05.041
143 P. Ding, E. J. Liang, Y. Jia, and Z. Y. Du, Electronic structure, bonding and phonon modes in the negative thermal expansion materials of Cd(CN)2 and Zn(CN)2, J. Phys.: Condens. Matter 20(24), 275224 (2008)
https://doi.org/10.1088/0953-8984/20/27/275224
144 Z. Y. Du, E. J. Liang, P. Ding, J. P. Wang, and E. M. Xu, Lattice vibrational analysis of the negative thermal expansion materials of Zn(CN)2 and Zn(CN)2, Chin. J. Light Scatt. 20(2),145 (2008)
145 J. Hibble, A. M. Chippindale, E. Marelli, S. Kroeker, V. K. Michaelis, B. J. Greer, P. M. Aguiar, E. J. Bilbe, E. R. Barney, and A. C. Hannon, Local and average structure in zinc cyanide: Toward an understanding of the atomistic origin of negative thermal expansion, J. Am. Chem. Soc. 135(44), 16478 (2013)
https://doi.org/10.1021/ja406848s
146 M. K. Gupta, B. Singh, R. Mittal, M. Zbiri, A. B. Cairns, A. L. Goodwin, H. Schober, and S. L. Chaplot, Anomalous thermal expansion, negative linear compressibility, and high-pressure phase transition in ZnAu2(CN)4: Neutron inelastic scattering and lattice dynamics studies, Phys. Rev. B 96(21), 214303 (2017)
https://doi.org/10.1103/PhysRevB.96.214303
147 M. Mittal, H. Zbiri, E. Schober, S. J. Marelli, A. M. Hibble, A. M. Chippindale, and S. L. Chaplot, Relationship between phonons and thermal expansion in Zn(CN)2 and Ni(CN)2 from inelastic neutron scattering and ab initio calculations, Phys. Rev. B 83(2), 024301 (2011)
https://doi.org/10.1103/PhysRevB.83.024301
148 H. Fang, M. T. Dove, L. H. N. Rimmer, and A. J. Misquitta, Simulation study of pressure and temperature dependence of the negative thermal expansion in Zn(CN)2, Phys. Rev. B 88(10), 104306 (2013)
https://doi.org/10.1103/PhysRevB.88.104306
149 J. Hibble, A. M. Chippindale, A. H. Pohl, and A. C. Hannon, Surprises from a simple material — The structure and properties of nickel cyanide, Angew. Chem. Int. Ed. 46(37), 7116 (2007)
https://doi.org/10.1002/anie.200701246
150 A. M. Chippindale, S. J. Hibble, E. Marelli, E. J. Bilbé, A. C. Hannon, and M. Zbiri, Chemistry and structure by design: Ordered CuNi(CN)4 sheets with copper(ii) in a square-planar environment, Dalton Trans. 44(25), 12502 (2015)
https://doi.org/10.1039/C5DT01127B
151 S. d’Ambrumenil,M. Zbiri, A. M. Chippindale, and S. J. Hibble, Phonon dynamics in the layered negative thermal expansion compounds CuxNi2−x(CN)4, Phys. Rev. B 100(9), 094312 (2019)
https://doi.org/10.1103/PhysRevB.100.094312
152 M. Li, Y. Li, C. Y. Wang, and Q. Sun, Negative thermal expansion of GaFe(CN)6 and effect of Na insertion by first-principles calculations, Chin. Phys. Lett. 36(6), 066301 (2019)
https://doi.org/10.1088/0256-307X/36/6/066301
153 Y. Li, Q. L. Gao, D. H. Chang, P. J. Sun, J. Z. Liu, Y. Jia, E. J. Liang, and Q. Sun, Effect of bond on negative thermal expansion of Prussian blue analogues MCo(CN)6 (M= Fe, Ti and Sc): A first-principles study, J. Phys.: Condens. Matter 32(45), 455703 (2020)
https://doi.org/10.1088/1361-648X/aba777
154 P. Kroll, M. Andrade, X. Yan, E. Ionescu, G. Miehe, and R. Riedel, Isotropic negative thermal expansion in β-Si(NCN)2 and itsorigin, J. Phys. Chem. C 116(1), 526 (2012)
https://doi.org/10.1021/jp2106583
155 L. Li, K. Refson, and M. T. Dove, Negative thermal expansion of cubic silicon dicarbodiimide, Si(NCN)2, studied by ab initio lattice dynamics, J. Phys.: Condens. Matter 32(46), 465402 (2020)
https://doi.org/10.1088/1361-648X/aba8cb
156 D. Dubbeldam, K. S. Walton, D. Ellis, and R. Snurr, Exceptional negative thermal expansion in isoreticular metal–organic frameworks, Angew. Chem. Int. Ed. 119(24), 4580 (2007)
https://doi.org/10.1002/ange.200700218
157 S. S. Han, and W. A. Goddard, Metal-organic frameworks provide large negative thermal expansion behavior, J. Phys. Chem. C 111(42), 15185 (2007)
https://doi.org/10.1021/jp075389s
158 W. Zhou, H. Wu, T. Yildirim, J. R. Simpson, and A. R. H. Walker, Originof the exceptional negative thermal expansion in metal–organic framework-5 Zn4O(1, 4-benzenedicarboxylate)3, Phys. Rev. B 78(5), 054114 (2008)
https://doi.org/10.1103/PhysRevB.78.054114
159 N. Lock, M. Christensen, Y. Wu, V. K. Peterson, M. K. Thomsen, R. O. Piltz, A. J. Ramirez-Cuesta,G. J. McIntyre, K. Norén,R. Kutteh, C. J. Kepert, G. J. Kearley, and B. B. Iversen, Scrutinizing negative thermal expansion in MOF-5 by scattering techniques and ab initio calculations, Dalton Trans. 42(6), 1996 (2013)
https://doi.org/10.1039/C2DT31491F
160 L. H. N. Rimmer, M. T. Dove, A. L. Goodwin, and D. C. Palmer, Acoustic phonons and negative thermal expansion in MOF-5, Phys. Chem. Chem. Phys. 16(39), 21144 (2014)
https://doi.org/10.1039/C4CP01701C
161 Y. Wu, A. Kobayashi, G. Halder, V. Peterson, K. Chapman, N. Lock, P. Southon, and C. Kepert, Negative thermal expansion in the metal–organic framework material Cu3(1, 3, 5-benzenetricarboxylate)2, Angew. Chem. Int. Ed. 47(46), 8929 (2008)
https://doi.org/10.1002/anie.200803925
162 W. L. Queen, C. M. Brown, D. K. Britt, P. Zajdel, M. R. Hudson, and O. M. Yaghi, Site specific CO2 adsorption and zero thermal expansion in ananisotropic pore network, J. Phys. Chem. C 115(50), 24915 (2011)
https://doi.org/10.1021/jp208529p
163 S. Henke, A. Schneemann, and R. A. Fischer, Massive anisotropic thermal expansion and thermo-responsive breathing in metal–organic frameworks modulated by linker functionalization, Adv. Funct. Mater. 23(48), 5990 (2013)
https://doi.org/10.1002/adfm.201301256
164 Z. N. Liu, Q. Li, H. Zhu, K. Lin, J. X. Deng, J. Chen, and X. Xing, 3D negative thermal expansion in orthorhombic MIL-68(In), Chem. Commun. (Camb.) 54(45), 5712 (2018)
https://doi.org/10.1039/C8CC03219J
165 F. X. Coudert and J. D. Evans, Nanoscale metamaterials: Meta-MOFs and framework materials with anomalous behavior, Coord. Chem. Rev. 388, 48 (2019)
https://doi.org/10.1016/j.ccr.2019.02.023
166 Z. Y. Wang, Y. L. Zhou, X. Q. Wang, F. Wang, Q. Sun, Z. X. Guo, and Y. Jia, Effects of in-plane stiffness and charge transfer on thermal expansion of monolayer transition metal dichalcogenide, Chin. Phys. B 24(2), 026501 (2015)
https://doi.org/10.1088/1674-1056/24/2/026501
167 D. Kumar, B. Singh, P. Kumar, V. Balakrishnan, and P. Kumar, Thermal expansion coefficient and phonon dynamics in coexisting allotropes of monolayer WS2 probed by Raman scattering, J. Phys.: Condens. Matter 31(50), 505403 (2019)
https://doi.org/10.1088/1361-648X/ab3fec
168 Y. Aierken, D. Cakir, C. Sevik, and F. M. Peeters, Thermal properties of black and blue phosphorenes from a first-principles quasiharmonic approach, Phys. Rev. B 92(8), 081408 (2015)
https://doi.org/10.1103/PhysRevB.92.081408
169 L. Wang, C. Wang, and Y. Chen, Black phosphorene exhibiting negative thermal expansion and negative linear compressibility, J. Phys.: Condens. Matter 31(46), 465003 (2019)
https://doi.org/10.1088/1361-648X/ab3673
170 H. Sun, G. Liu, Q. Li, and X. G. Wan, First-principles study of thermal expansion and thermomechanics of single-layer black and blue phosphorus, Phys. Lett. A 380(24), 2098 (2016)
https://doi.org/10.1016/j.physleta.2016.04.021
171 X. J. Ge, K. L. Yao, and J. T. Lü, Comparative study of phonon spectrum and thermal expansion of graphene, silicene, germanene, and blue phosphorene, Phys. Rev. B 94(16), 165433 (2016)
https://doi.org/10.1103/PhysRevB.94.165433
172 P. R. Shaina, L. George, V. Yadav, and M. Jaiswal, Estimating the thermal expansion coefficient of graphene: The role of graphene-substrate interactions, J. Phys.: Condens. Matter 28(8), 085301 (2016)
https://doi.org/10.1088/0953-8984/28/8/085301
173 C. W. Kim, S. H. Kang, and Y. K. Kwon, Rigid unit modes in sp-sp2 hybridized carbon systems: Origin of negative thermal expansion, Phys. Rev. B 92(24), 245434 (2015)
https://doi.org/10.1103/PhysRevB.92.245434
174 A. I. Lebedev, Negative thermal expansion in CdSe quasitwo- dimensional nanoplatelets, Phys. Rev. B 100(3), 035432 (2019)
https://doi.org/10.1103/PhysRevB.100.035432
175 Y. Hu, J. Chen, and B. Wang, On the intrinsic ripples and negative thermal expansion of graphene, Carbon 95, 239 (2015)
https://doi.org/10.1016/j.carbon.2015.08.022
176 H. Sun, G. Liu, Q. Li, and X. G. Wan, First-principles study of thermal expansion and thermomechanics of single-layer black and blue phosphorus, Phys. Lett. A 380(24), 2098 (2016)
https://doi.org/10.1016/j.physleta.2016.04.021
177 C. W. Kim, S. H. Kang, and Y. K. Kwon, Rigid unit modes in sp-sp2 hybridized carbon systems: Origin of negative thermal expansion, Phys. Rev. B 92(24), 245434 (2015)
https://doi.org/10.1103/PhysRevB.92.245434
178 Y. X. Gao, C. Y. Wang, Q. L. Gao, J. Guo, M. J. Chao, Y. Jia, and E. J. Liang, Zero thermal expansion in Ta2Mo2O11 by compensation effects, Inorg. Chem. 59(24), 18427 (2020)
https://doi.org/10.1021/acs.inorgchem.0c03046
179 C. Guillaume, Recherches sur les aciers au nickel, Dilatations auxtemperatures elevees, resistance electrique, CR Acad. Sci. 125(235), 18 (1897)
180 R. J. Weiss, The origin of the “Invar” effect, Proc. Phys. Soc. 82(2), 281 (1963)
https://doi.org/10.1088/0370-1328/82/2/314
181 T. Moriya and K. Usami, Magneto-volume effect and invar phenomena in ferromagnetic metals, Solid State Commun. 34(2), 95 (1980)
https://doi.org/10.1016/0038-1098(80)91241-7
182 H. Yamada, Metamagnetic transition and susceptibility maximum in an itinerant-electron system, Phys. Rev. B 47(17), 11211 (1993)
https://doi.org/10.1103/PhysRevB.47.11211
183 H. Akai and P. H. Dederichs, Local moment disorder in ferromagnetic alloys, Phys. Rev. B 47(14), 8739 (1993)
https://doi.org/10.1103/PhysRevB.47.8739
184 V. Crisan, P. Entel, H. Ebert, H. Akai, D. D. Johnson, and J. B. Staunton, Magnetochemical origin for Invar anomalies in iron–nickel alloys, Phys. Rev. B 66(1), 014416 (2002)
https://doi.org/10.1103/PhysRevB.66.014416
185 Y. Wang, G. M. Stocks, D. M. C. Nicholson, W. A. Shelton, V. P. Antropov, and B. N. Harmon, Noncollinear magnetic structure in Ni0.35Fe0.65, J. Appl. Phys. 81(8), 3873 (1997)
https://doi.org/10.1063/1.364740
186 M. Schilfgaarde, I. A. Abrikosov, and B. Johansson, Origin of the Invar effect in iron–nickel alloys, Nature 400(6739), 46 (1999)
https://doi.org/10.1038/21848
187 H. Yamada, Pressure effect in an itinerant-electron metamagnet at finite temperature, J. Magn. Magn. Mater. 139(1–2), 162 (1995)
https://doi.org/10.1016/0304-8853(95)90042-X
188 G. G. Lonzarich and L. TaiUefer, Effect of spin fluctuations on the magnetic equation of state of ferromagnetic or nearly ferromagnetic metals, J. Phys. (Paris) 18, 4339 (1985)
https://doi.org/10.1088/0022-3719/18/22/017
189 T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism, Springer-Verlag, Berlin, 1985
https://doi.org/10.1007/978-3-642-82499-9
190 A. V. Andreev, F. R. de Boer, T. H. Jacobs, and K. H. J. Buschow, Thermal expansion anomalies and spontaneous magnetostriction in R2Fe17Cx intermetallic compounds, Physica B 175(4), 361 (1991)
https://doi.org/10.1016/0921-4526(91)90071-L
191 Y. M. Hao, X. M. Zhang, B. W. Wang, Y. Z. Yuang, and F. Wang, Anomalous thermal expansion and magnetic properties of Tm2Fe17−xCrx compounds, J. Appl. Phys. 108(2), 023915 (2010)
https://doi.org/10.1063/1.3456444
192 P. Álvarez-Alonso, P. Gorria, J. A. Blanco, J. Sánchez- Marcos, G. J. Cuello, I. Puente-Orench, J. A. Rodríguez- Velamazán, G. Garbarino, I. dePedro, J. R. Fernández, and J. L. S. Llamazares, Magnetovolume and magnetocaloric effects in Er2Fe17, Phys. Rev. B 86, 184411 (2012)
https://doi.org/10.1103/PhysRevB.86.184411
193 D. Givord and R. Lemaire, Magnetic transition and anomalous thermal expansion in R2Fe17 compounds, IEEE Trans. Magn. 10(2), 109 (1974)
https://doi.org/10.1109/TMAG.1974.1058311
194 R. J. Huang, Y. Liu, W. Fan, J. Tan, F. Xiao, L. Qian, and L. Li, Giant negative thermal expansion in NaZn13- type La(Fe, Si, Co)13 compounds, J. Am. Chem. Soc. 135(28), 11469 (2013)
https://doi.org/10.1021/ja405161z
195 B. Li, X. H. Luo, H. Wang, W. J. Ren, S. Yano, C. W. Wang, J. S. Gardner, K. D. Liss, P. Miao, S. H. Lee, T. Kamiyama, R. Q. Wu, Y. Kawakita, and Z. D. Zhang, Colossal negative thermal expansion induced by magnetic phase competition on frustrated lattices in Laves phase compound (Hf, Ta)Fe2, Phys. Rev. B 93(22), 224405 (2016)
https://doi.org/10.1103/PhysRevB.93.224405
196 Y. Song, J. Chen, X. Liu, C. Wang, Q. Gao, Q. Li, L. Hu, J. Zhang, S. Zhang, and X. Xing, Structure, magnetism, and tunable negative thermal expansion in (Hf, Nb)Fe2 alloys, Chem. Mater. 29(17), 7078 (2017)
https://doi.org/10.1021/acs.chemmater.7b02563
197 L. F. Li, P. Tong, Y. M. Zou, W. Tong, W. B. Jiang, Y. Jiang, X. K. Zhang, J. C. Lin, M. Wang, C. Yang, X. B. Zhu, W. H. Song, and Y. P. Sun, Good comprehensive performance of Laves phase Hf1−xTaxFe2 as negative thermal expansion materials, Acta Mater. 161, 258 (2018)
https://doi.org/10.1016/j.actamat.2018.09.029
198 H. Yibole, A. K. Pathak, Y. Mudryk, F. Guillou, N. Zarkevich, S. Gupta, V. Balema, and V. K. Pecharsky, Manipulating the stability of crystallographic and magnetic sub-lattices: A first-order magnetoelastic transformation in transition metal based Laves phase, Acta Mater. 154, 365 (2018)
https://doi.org/10.1016/j.actamat.2018.05.048
199 K. Takenaka and H. Takagi, Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides, Appl. Phys. Lett. 87(23), 261902 (2005)
https://doi.org/10.1063/1.2147726
200 K. Takenaka, K. Asano, M. Misawa, and H. Takagi, Negative thermal expansion in Ge-free antiperovskite manganese nitrides: Tin-doping effect, Appl. Phys. Lett. 92(1), 011927 (2008)
https://doi.org/10.1063/1.2831715
201 C. Wang, Y. Sun, Y. C. Wen, L. H. Chu, and M. Nie, Investigation of lattice contraction in Mn3XN (X=Zn, Cu, Sn), Mater. Sci. Forum 638– 642, 2195 (2010)
https://doi.org/10.4028/www.scientific.net/MSF.638-642.2195
202 R. J. Huang, L. F. Li, F. S. Cai, X. D. Xu, and L. H. Qian, Low-temperature negative thermal expansion of the antiperovskite manganese nitride Mn3CuN codoped with Ge and Si, Appl. Phys. Lett. 93(8), 081902 (2008)
https://doi.org/10.1063/1.2970998
203 T. Hamada and K. Takenaka, Giant negative thermal expansion in antiperovskite manganese nitrides, J. Appl. Phys. 109(7), 07E309 (2011)
https://doi.org/10.1063/1.3540604
204 K. Takenaka and H. Takagi, Zero thermal expansion in a pure-form antiperovskite manganese nitride, Appl. Phys. Lett. 94(13), 131904 (2009)
https://doi.org/10.1063/1.3110046
205 C. Wang, L. H. Chu, Q. R. Yao, Y. Sun, M. M. Wu, L. Ding, J. Yan, Y. Y. Na, W. H. Tang, G. N. Li, Q. Huang, and J. W. Lynn, Tuning the range, magnitude, and sign of the thermal expansion in intermetallic Mn3(Zn, M)xN (M= Ag, Ge), Phys. Rev. B 85(22), 220103 (2012)
https://doi.org/10.1103/PhysRevB.85.220103
206 E. F. Wasserman, in: Ferromagnetic Materials, ed. K. H. J. Buschow and E. P. Wohlfartht, Elsevier Science Publishers B. V., Ch. 3, Vol. 5, pp 238–322, 1990
207 E. F. Wassermann, The Invar problem, J. Magn. Magn. Mater. 100(1–3), 346 (1991)
https://doi.org/10.1016/0304-8853(91)90828-X
208 M. Shiga, Invar alloys, Curr. Opin. Solid State Mater. Sci. 1(3), 340 (1996)
https://doi.org/10.1016/S1359-0286(96)80023-4
209 J. Chen, L. Hu, J. Deng, and X. Xing, Negative thermal expansion in functional materials: Controllable thermal expansion by chemical modifications, Chem. Soc. Rev. 44(11), 3522 (2015)
https://doi.org/10.1039/C4CS00461B
210 S. Khmelevskyi, I. Turek, and P. Mohn, Large negative magnetic contribution to the thermal expansion in ironplatinum alloys: Quantitative theory of the Invar effect, Phys. Rev. Lett. 91(3), 037201 (2003)
https://doi.org/10.1103/PhysRevLett.91.037201
211 D. D. Johnson and W. A. Shelton, in: The Invar effect: A centennial symposium, Ed. J. Wittenauer, The Minerals, Metals and Materials Society, Warrendale, PA, pp 63–74, 1997
212 M. Shiga and Y. Nakamura, Magnetovolume effects and Invar characters of (Zr1−xNbx)Fe2, J. Phys. Soc. Jpn. 47(5), 1446 (1979)
https://doi.org/10.1143/JPSJ.47.1446
213 H. Wada and M. Shigaand, Thermal expansion anomaly and Invar effect of Mn1−xCoxB, J. Magn. Magn. Mater. 104– 107, 1925 (1992)
https://doi.org/10.1016/0304-8853(92)91606-T
214 A. G. Kuchin, I. V. Medvedeva, V. S. Gaviko, and V. A. Kazantsev, Magnetovolume properties of Y2Fe17−xMx alloys (M= Si orAl), J. Alloys Compd. 289(1–2), 18 (1999)
https://doi.org/10.1016/S0925-8388(99)00158-9
215 P. Álvare, P. Gorria, J. S. Marcos, I. P. Orench, J. A. R. Velamazán, G. Cuello, J. L. S. Llamazares, and J. A. Blanco, Magnetic structure and magneto-volume anomalies in Er2Fe17 compound, J. Phys.: Conf. Ser. 325, 01 (2011)
https://doi.org/10.1088/1742-6596/325/1/012011
216 A. Shuitcev, R. N. Vasin, A. M. Balagurov, L. Li, I. A. Bobrikov, and Y. X. Tong, Thermal expansion of martensite in Ti29.7Ni50.3Hf20 shape memory alloy, Intermetalllics 125, 106889 (2020)
https://doi.org/10.1016/j.intermet.2020.106889
217 I. S. Winter, J. Montoya, K. A. Persson, and D. C. Chrzan, Ab initio calculation of thermal expansion with application to understanding Invar behavior in gum metal, Phys. Rev. Mater. 2(7), 073601 (2018)
https://doi.org/10.1103/PhysRevMaterials.2.073601
218 R. Li, R. Huang, W. Wang, H. Liu, Y. Han, C. Huang, and L. Li, Low-temperature negative thermal expansion property of Mn doped La(Fe, Si)13 compounds, J. Alloys Compd. 628, 308 (2015)
https://doi.org/10.1016/j.jallcom.2014.11.120
219 F. Shen, H. Zhou, F. Hu, J. T. Wang, S. Deng, B. Wang, H. Wu, Q. Huang, J. Wang, J. Chen, L. He, J. Hao, Z. Yu, F. Liang, T. Liang, J. Sun, and B. Shen, Cone-spiral magnetic ordering dominated lattice distortion and giantnegative thermal expansion in Fe-doped MnNiGe compounds, Mater. Horiz. 7(3), 804 (2020)
https://doi.org/10.1039/C9MH01602C
220 J. Xu, X. Zheng, S. Yang, L. Xi, S. Wang, L. Zhang, W. Yang, J. Yang, X. Ma, D. Chen, L. He, S. Deng, J. Zhang, Y. Wu, and B. Shen, Large linear negative thermal expansion in NiAs-type magnetic intermetallic Cr−Te−Se compounds, Inorg. Chem. 59(12), 8603 (2020)
https://doi.org/10.1021/acs.inorgchem.0c01048
221 L. Y. Hao, T. Yang, and M. Tan, Negative thermal expansion and spontaneous magnetostriction of Nd2Fe16.5Cr0.5 compound, Chin. Phys. Lett. 37(1), 016501 (2020)
https://doi.org/10.1088/0256-307X/37/1/016501
222 Y. Yan, J. Yang, N. Zhao, G. Yao, X. Fu, Y. Zhang, and W. Cui, Large negative thermal expansion and magnetoelastic coupling in metamagnetic tetragonal (Mn, T)2Sb (T= Cr, V) alloys, J. Supercond. Nov. Magn. 33(9), 2551 (2020)
https://doi.org/10.1007/s10948-020-05520-3
223 J. H. Belo, A. L. Pires, I. T. Gomes, V. Andrade, J. B. Sousa, R. L. Hadimani, and C. David, Giant negative thermal expansion at the nanoscale in the multifunctional material Gd5(Si, Ge)4, Phys. Rev. B 100(13), 134303 (2019)
https://doi.org/10.1103/PhysRevB.100.134303
224 Y. Z. Song, Q. Sun, T. Yokoyama, H. H. Zhu, Q. Li, R. J. Huang, Y. Ren, Q. Z. Huang, X. R. Xing, and J. Chen, Transforming thermal expansion from positive to negative: The case of cubic magnetic compounds of (Zr, Nb)Fe2, J. Phys. Chem. Lett. 11(5), 1954 (2020)
https://doi.org/10.1021/acs.jpclett.9b03880
225 Y. Z. Song, Q. Sun, M. Xu, J. Zhang, Y. Q. Hao, Y. Q. Qiao, S. T. Zhang, Q. Z. Huang, X. R. Xing, and J. Chen, Negative thermal expansion in (Sc, Ti)Fe2 induced by an unconventional magnetovolume effect, Mater. Horiz. 7(1), 275 (2020)
https://doi.org/10.1039/C9MH01025D
226 T. Yokoyama, A. Koide, and Y. Uemura, Local thermal expansions and lattice strains in Elinvar and stainless steel alloys, Phys. Rev. Mater. 2(2), 023601 (2018)
https://doi.org/10.1103/PhysRevMaterials.2.023601
227 X. Y. Song, Z. G. Sun, Q. Z. Huang, M. Rettenmayr, X. M. Liu, M. Seyring, G. N. Li, G. G. Rao, and F. X. Yin, Adjustable zero thermal expansion in antiperovskite manganese nitride, Adv. Mater. 23(40), 4690 (2011)
https://doi.org/10.1002/adma.201102552
228 M. Kobayashi and M. Mochizuki, Theory of magnetismdriven negative thermal expansion in inverse perovskite antiferromagnets, Phys. Rev. Mater. 3(2), 024407(2019)
https://doi.org/10.1103/PhysRevMaterials.3.024407
229 K. Takenaka, M. Ichigo, T. Hamada, A. Ozawa, T. Shibayama, T. Inagaki, and K. Asano, Magnetovolume effects in manganese nitrides with antiperovskite structure, Sci. Technol. Adv. Mater. 15(1), 015009 (2014)
https://doi.org/10.1088/1468-6996/15/1/015009
230 H. Lu, Y. Sun, S. Deng, K. Shi, L. Wang, W. Zhao, H. Han, S. Deng, and C. Wang, Tunable negative thermal expansion and structural evolution in antiperovskite Mn3Ga1−xGexN (0≤x≤1.0), J. Am. Ceram. Soc. 100(12), 5739 (2017)
https://doi.org/10.1111/jace.15099
231 S. Tan, C. Gao, C. Wang, T. Zhou, G. Yin, M. Sun, F. Xing, R. Cao, and Y. Sun, The tunable negative thermal expansion covering a wide temperature range around room temperature in Sn, Mn co-substituted Mn3ZnN, Dalton Trans. 49(27), 10407 (2020)
https://doi.org/10.1039/D0DT02221G
232 S. Iikubo, K. Kodama, K. Takenaka, H. Takagi, M. Takigawa, and S. Shamoto, Local lattice distortion in the giant negative thermal expansion material Mn3Cu1−xGexN, Phys. Rev. Lett. 101(20), 205901 (2008)
https://doi.org/10.1103/PhysRevLett.101.205901
233 P. Tong, D. Louca, G. King, A. Llobet, J. C. Lin, and Y. P. Sun, Magnetic transition broadening and local lattice distortion in the negative thermal expansion antiperovskite Cu1−xSnxNMn3, Appl. Phys. Lett. 102(4), 041908 (2013)
https://doi.org/10.1063/1.4790151
234 J. C. Lin, P. Tong, X. J. Zhou, H. Lin, Y. W. Ding, Y. X. Bai, L. Chen, X. G. Guo, C. Yang, B. Song, Y. Wu, S. Lin, W. H. Song, and Y. P. Sun, Giant negative thermal expansion covering room temperature in nanocrystalline- GaNxMn3,App, Phys. Lett. 107, 131902 (2015)
https://doi.org/10.1063/1.4932067
235 J. Tan, R. Huang, W. Wang, W. Li, Y. Zhao, S. Li, Y. Han, C. Huang, and L. Li, Broad negative thermal expansion operation-temperature window in antiperovskite manganese nitride with small crystallites, Nano Res. 8(7), 2302 (2015)
https://doi.org/10.1007/s12274-015-0740-z
236 B. Paul, S. Chatterjee, A. Roy, A. Midya, P. Mandal, V. Grover, and A. K. Tyagi, Geometrically frustrated GdInO3: An exotic system to study negative thermal expansion and spin-lattice coupling, Phys. Rev. B 95(5), 054103 (2017)
https://doi.org/10.1103/PhysRevB.95.054103
237 P. Miao, X. Lin, A. Koda, S. Lee, Y. Ishikawa, S. Torii, M. Yonemura, T. Mochiku, H. Sagayama, S. Itoh, K. Ikeda, T. Otomo, Y. Wang, R. Kadono, and T. Kamiyama, Large magnetovolume effect induced by embedding ferromagnetic clusters into antiferromagnetic matrix of cobaltite perovskite, Adv. Mater. 29(24), 1605991 (2017)
https://doi.org/10.1002/adma.201605991
238 B. Ranjbar and B. J. Kennedy, Unusual thermal expansion of Sr2IrO4: A variable temperature synchrotron Xray diffraction study, J. Solid State Chem. 232, 178 (2015)
https://doi.org/10.1016/j.jssc.2015.09.035
239 M. S. Senn, A. Bombardi, C. A. Murray, C. Vecchini, A. Scherillo, X. Luo, and S. W. Cheong, Negative thermal expansion in hybrid improper ferroelectric Ruddlesden– Popper perovskites by symmetry trapping, Phys. Rev. Lett. 114(3), 035701 (2015)
https://doi.org/10.1103/PhysRevLett.114.035701
240 S. C. Abrahams, S. K. Kurtz, and P. B. Jamieson, Atomic displacement relationship to Curie temperature and spontaneous polarization in displacive ferroelectrics, Phys. Rev. 172(2), 551 (1968)
https://doi.org/10.1103/PhysRev.172.551
241 J. Chen, F. Wang, Q. Huang, L. Hu, X. Song, J. Deng, R. Yu, and X. Xing, Effectively control negative thermal expansion of single-phase ferroelectrics of PbTiO3- (Bi, La)FeO3 over a giant range, Sci. Rep. 3(1), 2458 (2013)
https://doi.org/10.1038/srep02458
242 J. Chen, K. Nittala, J. S. Forrester, J. L. Jones, J. X. Deng, R. Yu, and X. R. Xing, The role of spontaneous polarization in the negative thermal expansion of tetragonal PbTiO3-based compounds, J. Am. Chem. Soc. 133(26), 11114 (2011)
https://doi.org/10.1021/ja2046292
243 P. E. Janolin, P. Bouvier, J. Kreisel, P. A. Thomas, I. A. Kornev, L. Bellaiche, W. Crichton, M. Hanfland, and B. Dkhil, High-pressure effect on PbTiO3: An investigation by Raman and X-ray scattering up to 63 GPa, Phys. Rev. Lett. 101(23), 237601 (2008)
https://doi.org/10.1103/PhysRevLett.101.237601
244 L. Wang, P. Yuan, F. Wang, E. Liang, Q. Sun, Z. Guo, and Y. Jia, First-principles study of tetragonal PbTiO3: Phonon and thermal expansion, Mater. Res. Bull. 49, 509 (2014)
https://doi.org/10.1016/j.materresbull.2013.08.075
245 H. Fang, Y. Wang, S. Shang, and Z. K. Liu, Nature of ferroelectric–paraelectric phase transition and origin of negative thermal expansion in PbTiO3, Phys. Rev. B 91(2), 024104 (2015)
https://doi.org/10.1103/PhysRevB.91.024104
246 D. Zhou, W. Tan, W. Xiao, M. Song, M. Chen, X. Xiong, and J. Xu, Structural properties of PbVO3 perovskites under hydrostatic pressure conditions up to 10.6 GPa, J. Phys.: Condens. Matter 24(43), 435403 (2012)
https://doi.org/10.1088/0953-8984/24/43/435403
247 K. Oka, T. Yamauchi, S. Kanungo, T. Shimazu, K. Ohishi, Y. Uwatoko, M. Azuma, and T. Saha-Dasgupta, Experimental and theoretical studies of the metallic conductivity in cubic PbVO3 under high pressure, J. Phys. Soc. Jpn. 87(2), 024801 (2018)
https://doi.org/10.7566/JPSJ.87.024801
248 T. Ogata, K. Oka, and M. Azuma, Negative thermal expansion in electron doped PbVO3−xFx, Appl. Phys. Express 12(2), 023005 (2019)
https://doi.org/10.7567/1882-0786/aafb9b
249 T. Ogata, Y. Sakai, H. Yamamoto, S. Patel, P. Keil, J. Koruza, S. Kawaguchi, Z. Pan, T. Nishikubo, J. Rödel, and M. Azuma, Melting of dxy orbital ordering accompanied by suppression of giant tetragonal distortion and insulator-to-metal transition in Cr-substituted PbVO3, Chem. Mater. 31(4), 1352 (2019)
https://doi.org/10.1021/acs.chemmater.8b04680
250 H. Ishizaki, Y. Sakai, T. Nishikubo, Z. Pan, K. Oka, H. Yamamoto, and M. Azuma, Negative thermal expansion in lead-free La-substituted Bi0.5Na0.5VO3, Chem. Mater. 32(11), 4832 (2020)
https://doi.org/10.1021/acs.chemmater.0c01709
251 M. Rong, M. Li, J. Chen, M. Zhou, K. Lin, L. Hu, W. Yuan, W. Duan, J. Deng, and X. Xing, Large negative thermal expansion in non-perovskitelead-free ferroelectric Sn2P2S6, Phys. Chem. Chem. Phys. 18(8), 6247 (2016)
https://doi.org/10.1039/C6CP00011H
252 T. Chattopadhyay, J. X. Boucherle, and H. G. von Schnering, Neutron diffraction study on the structural phase transition in GeTe, J. Phys. C: Solid State Phys. 20(10), 1431 (1987)
https://doi.org/10.1088/0022-3719/20/10/012
253 T. Chatterji, C. M. N. Kumar, and U. D. Wdowik, Anomalous temperature-induced volume contraction in GeTe, Phys. Rev. B 91(5), 054110 (2015)
https://doi.org/10.1103/PhysRevB.91.054110
254 Đ. Dangić, A. R. Murphy, É. D. Murray, S. Fahy, and I. Savić, Coupling between acoustic and soft transverse optical phonons leads to negative thermal expansion of GeTe near the ferroelectric phase transition, Phys. Rev. B 97(22), 224106 (2018)
https://doi.org/10.1103/PhysRevB.97.224106
255 R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides, Acta Crystallogr. A 32(5), 751 (1976)
https://doi.org/10.1107/S0567739476001551
256 J. Arvanitidis, K. Papagelis, S. Margadonna, K. Prassides, and A. N. Fitch, Temperature-induced valence transition and associated lattice collapse in samarium fulleride, Nature 425(6958), 599 (2003)
https://doi.org/10.1038/nature01994
257 S. Margadonna, J. Arvanitidis, K. Papagelis, and K. Prassides, Negative thermal expansion in the mixed valence ytterbium fulleride, Yb2.75C60, Chem. Mater. 17(17), 4474 (2005)
https://doi.org/10.1021/cm051341k
258 A. Jayaraman, P. Dernier, and L. D. Longinotti, Study of valence transition in SmS induced by alloying, temperature, and pressure,Phys. Rev. B 11(8), 2783 (1975)
https://doi.org/10.1103/PhysRevB.11.2783
259 K. Takenaka, D. Asai, R. Kaizu, Y. Mizuno, Y. Yokoyama, Y. Okamoto, N. Katayama, H. S. Suzuki, and Y. Imanaka, Giant isotropic negative thermal expansion in Y-doped samarium monosulfides by intra-atomic charge transfer, Sci. Rep. 9(1), 122 (2019)
https://doi.org/10.1038/s41598-018-36568-w
260 D. Asai, Y. Mizuno, H. Hasegawa, Y. Yokoyama, Y. Okamoto, N. Katayama, H. S. Suzuki, Y. Imanaka, and K. Takenaka, Valence fluctuations and giant isotropic negative thermal expansion in Sm1−xRxS (R= Y, La, Ce, Pr, Nd), Appl. Phys. Lett. 114(14), 141902 (2019)
https://doi.org/10.1063/1.5090546
261 D. G. Mazzone, M. Dzero, A. M. M. Abeykoon, H. Yamaoka, H. Ishii, N. Hiraoka, J. P. Rueff, J. M. Ablett, K. Imura, H. S. Suzuki, J. N. Hancock, and I. Jarrige, Kondo-induced giant isotropic negative thermal expansion, Phys. Rev. Lett. 124(12), 125701 (2020)
https://doi.org/10.1103/PhysRevLett.124.125701
262 H. Li, S. Lv, Z. Wang, Y. Xia, Y. Bai, X. Liu, and J. Meng, Machanism of A-B intersite charge transfer and negative thermal expansion in A-site-ordered perovskite LaCu3Fe4O12, J. Appl. Phys. 111(10), 103718 (2012)
https://doi.org/10.1063/1.4721408
263 K. Yamada, K. Shiro, H. Etani, S. Marukawa, N. Hayashi, M. Mizumaki, Y. Kusano, S. Ueda, H. Abe, and T. Irifune, Valence transitions in negative thermal expansion material SrCu3Fe4O12, Inorg. Chem. 53(19), 10563 (2014)
https://doi.org/10.1021/ic501665c
264 M. W. Shimakawa, M. W. Lufaso, and P. M. Woodward, Negative and positive thermal expansion-like volume changes due to intermetallic charge transfer based on an ionic crystal model of transition-metal oxides, APL Mater. 6(8), 086106 (2018)
https://doi.org/10.1063/1.5042510
265 Z. Liu, Z. Wang, D. Chang, Q. Sun, M. Chao, and Y. Jia, Charge transfer induced negative thermal expansion in perovskite BiNiO3, Comput. Mater. Sci. 113, 198 (2016)
https://doi.org/10.1016/j.commatsci.2015.11.041
266 M. Naka, H. Seo, and Y. Motome, Theory of valence transition in BiNiO3, Phys. Rev. Lett. 116(5), 056402 (2016)
https://doi.org/10.1103/PhysRevLett.116.056402
267 E. Pachoud, J. Cumby, J. Wright, B. Raguž, R. Glaum, and J. P. Attfield, Charge order and negative thermal expansion in V2OPO4, J. Am. Chem. Soc. 140(2), 636 (2018)
https://doi.org/10.1021/jacs.7b09441
268 E. Pachoud, J. Cumby, J. Wright, B. Raguz, R. Glaumc, and J. P. Attfield, Electronic origin of negative thermal expansion in V2OPO4, Chem. Commun. (Camb.) 56(48), 6523 (2020)
https://doi.org/10.1039/D0CC01920H
269 K. Nabetani, Y. Muramatsu, K. Oka, K. Nakano, H. Hojo, M. Mizumaki, A. Agui, Y. Higo, N. Hayashi, M. Takano, and M. Azuma, Suppression of temperature hysteresis in negative thermal expansion compound BiNixFexO3 and zero-thermal expansion composite, Appl. Phys. Lett. 106(6), 061912 (2015)
https://doi.org/10.1063/1.4908258
270 S. Yamada, S. Marukawa, M. Murakami, and S. Mori, “True” negative thermal expansion in Mndoped LaCu3Fe4O12 perovskite oxides, Appl. Phys. Lett. 105(23), 231906 (2014)
https://doi.org/10.1063/1.4903890
271 E. E. McCabe, E. Bousquet, C. P. J. Stockdale, C. A. Deacon, T. T. Tran, P. S. Halasyamani, M. C. Stennett, and N. C. Hyatt, Proper ferroelectricity in the Dion– Jacobson material CsBi2Ti2NbO10: Experiment and theory, Chem. Mater. 27(24), 8298 (2015)
https://doi.org/10.1021/acs.chemmater.5b03564
272 M. J. Pitcher, P. Mandal, M. S. Dyer, J. Alaria, P. Borisov, H. Niu, J. B. Claridge, and M. J. Rosseinsky, Tilt engineering of spontaneous polarization and magnetization above 300 K in a bulk layered perovskite, Science 347(6220), 420 (2015)
https://doi.org/10.1126/science.1262118
273 J. Mangeri, K. C. Pitike, S. P. Alpay, and S. Nakhmanson, Amplitudon and phason modes of electrocaloric energy interconversion, npj Comput. Mater. 2(1), 16020 (2016)
https://doi.org/10.1038/npjcompumats.2016.20
274 Y. Kimura, Y. Tomioka, H. Kuwahara, A. Asamitsu, M. Tamura, and Y. Tokura, Interplane tunneling magnetoresistance in a layered manganite crystal, Science 274(5293), 1698 (1996)
https://doi.org/10.1126/science.274.5293.1698
275 L. F. Huang, X. Z. Lu, and J. M. Rondinelli, Tunable negative thermal expansion in layered perovskites from quasi-two-dimensional vibrations, Phys. Rev. Lett. 117(11), 115901 (2016)
https://doi.org/10.1103/PhysRevLett.117.115901
276 T. Vogt and D. Buttrey, Temperature dependent structural behavior of Sr2RhO4, J. Solid State Chem. 123(1), 186 (1996)
https://doi.org/10.1006/jssc.1996.0167
277 B. Ranjbar and B. J. Kennedy, Anisotropic thermal expansion in Sr2RhO4 — A variable temperature synchrotron X-ray diffraction study, Solid State Sci. 49, 43 (2015)
https://doi.org/10.1016/j.solidstatesciences.2015.09.009
278 J. Takahashi and N. Kamegashira, X-ray structural study of calcium manganese oxide by Rietveld analysis at high temperatures, MRS Bull. 28(6), 565 (1993)
https://doi.org/10.1016/0025-5408(93)90053-G
279 M. S. Senn, A. Bombardi, C. A. Murray, C. Vecchini, A. Scherillo, X. Luo, and S. W. Cheong, Negative thermal expansion in hybrid improper ferroelectric Ruddlesden–Popper perovskites by symmetry trapping, Phys. Rev. Lett. 114(3), 035701 (2015)
https://doi.org/10.1103/PhysRevLett.114.035701
280 K. J. Cordrey, M. Stanczyk, C. A. L. Dixon, K. S. Knight, J. Gardner, F. D. Morrison, and P. Lightfoot, Structural and dielectric studies of the phase behaviour of the topological ferroelectric La1−xNdxTaO4, Dalton Trans. 44(23), 10673 (2015)
https://doi.org/10.1039/C4DT03721A
281 J. W. Zhang, A. S. McLeod, Q. Han, X. Chen, H. A. Bechtel, Z. Yao, S. N. Gilbert Corder, T. Ciavatti, T. H. Tao, M. Aronson, G. L. Carr, M. C. Martin, C. Sow, S. Yonezawa, F. Nakamura, I. Terasaki, D. N. Basov, A. J. Millis, Y. Maeno, and M. Liu, Nano-resolved currentinduced insulator–metal transition in the Mott insulator Ca2RuO4, Phys. Rev. X 9(1), 011032 (2019)
https://doi.org/10.1103/PhysRevX.9.011032
282 G. Zhang and E. Pavarini, Mott transition, spin–orbit effects, and magnetism in Ca2RuO4, Phys. Rev. B 95(7), 075145 (2017)
https://doi.org/10.1103/PhysRevB.95.075145
283 Q. Han and A. Millis, Lattice energetics and correlationdriven metal–insulator transitions: The case of Ca2RuO4, Phys. Rev. Lett. 121(6), 067601 (2018)
https://doi.org/10.1103/PhysRevLett.121.067601
284 M. Braden, G. Andre, S. Nakatsuji, and Y. Maeno, Crystal and magnetic structure of Ca2RuO4: Magnetoelastic coupling and the metal–insulator transition, Phys. Rev. B 58(2), 847 (1998)
https://doi.org/10.1103/PhysRevB.58.847
285 O. Friedt, M. Braden, G. Andre, P. Adelmann, S. Nakatsuji, and Y. Maeno, Structural and magnetic aspects of the metal–insulator transition in Ca2−xSrxRuO4, Phys. Rev. B 63(17), 174432 (2001)
https://doi.org/10.1103/PhysRevB.63.174432
286 A. S. Alexander, G. Cao, V. Dobrosavljevic, S. McCall, J. E. Crow, E. Lochner, and R. P. Guertin, Destruction of the Mott insulating ground state of Ca2RuO4 by a structural transition, Phys. Rev. B 60(12), R8422 (1999)
https://doi.org/10.1103/PhysRevB.60.R8422
287 T. F. Qi, O. B. Korneta, S. Parkin, L. E. De Long, P. Schlottmann, and G. Cao, Negative volume thermal expansion via orbital and magnetic orders in Ca2Ru1−xCrxO4 (0<x<0.13), Phys. Rev. Lett. 105(17), 177203 (2010)
https://doi.org/10.1103/PhysRevLett.105.177203
288 T. F. Qi, O. B. Korneta, S. Parkin, J. P. Hu, and G. Cao, Magnetic and orbital orders coupled to negative thermal expansion in Mott insulators Ca2Ru1−xMxO4 (M= Mn and Fe), Phys. Rev. B 85(16), 165143 (2012)
https://doi.org/10.1103/PhysRevB.85.165143
289 K. Takenaka, T. Shinoda, N. Inoue, Y. Okamoto, N. Katayama, Y. Sakai, T. Nishikubo, and M. Azuma, Giant negative thermal expansion in Fe-doped layered ruthenate ceramics, Appl. Phys. Express 10(11), 115501 (2017)
https://doi.org/10.7567/APEX.10.115501
290 Y. G. Cheng, Y. C. Mao, B. H. Yuan, X. H. Ge, J. Guo, M. J. Chao, and E. J. Liang, Enhanced negative thermal expansion and optical absorption of In0.6(HfMg)0.7Mo3O12 with oxygen vacancies, Phys. Lett. A 381(24), 2195 (2017)
https://doi.org/10.1016/j.physleta.2017.05.002
291 J. Zegkinoglou, J. Strempfer, C. S. Nelson, J. P. Hill, J. Chakhalian, C. Bernhard, J. C. Lang, G. Srajer, H. Fukazawa, S. Nakatsuji, Y. Maeno, and B. Keimer, Orbital ordering transition in Ca2RuO4 observed with resonant X-ray diffraction, Phys. Rev. Lett. 95(13), 136401 (2005)
https://doi.org/10.1103/PhysRevLett.95.136401
292 M. C. Lee, C. H. Kim, I. Kwak, J. Kim, S. Yoon, B. C. Park, B. Lee, F. Nakamura, C. Sow, Y. Maeno, T. W. Noh, and K. W. Kim, Abnormal phase flip in the coherent phonon oscillations of Ca2RuO4, Phys. Rev. B 98(16), 161115 (2018)
https://doi.org/10.1103/PhysRevB.98.161115
293 M. C. Lee, C. H. Kim, I. Kwak, C. W. Seo, C. H. Sohn, F. Nakamura, C. Sow, Y. Maeno, E. A. Kim, T. W. Noh, and K. W. Kim, Strong spin–phonon coupling unveiled by coherent phonon oscillations in Ca2RuO4, Phys. Rev. B 99(14), 144306 (2019)
https://doi.org/10.1103/PhysRevB.99.144306
294 V. Sivasubramanian, T. R. Ravindran, R. Nithya, and A. K. Arora, Structural phase transition in indium tungstate, J. Appl. Phys. 96(1), 387 (2004)
https://doi.org/10.1063/1.1757659
295 B. A. Marinkovic, M. Ari, P. M. Jardim, R. R. de Avillez, F. Rizzo, and F. F. Ferreira, In2Mo3O12: A low negative thermal expansion compound, Thermochim. Acta 499(1– 2), 48 (2010)
https://doi.org/10.1016/j.tca.2009.10.021
296 J. S. O. Evans, T. A. Mary, and A. W. Sleight, Negative thermal expansion in Sc2(WO4)3, J. Solid State Chem. 137(1), 148 (1998)
https://doi.org/10.1006/jssc.1998.7744
297 J. S. O. Evans and T. A. Mary, Structural phase transitions and negative thermal expansion in Sc2(MoO4)3, Inter. J. Inorg. Mater. 2(1), 143 (2000)
https://doi.org/10.1016/S1466-6049(00)00012-X
298 H. Liu, W. Sun, Z. Zhang, X. Zhang, Y. Zhou, J. Zhua, and X. Zeng, Tailored phase transition temperature and negative thermal expansion of Sc-substituted Al2Mo3O12 synthesized by a co-precipitation method, Inorg. Chem. Front. 6(7), 1842 (2019)
https://doi.org/10.1039/C9QI00366E
299 H. F. Liu, Z. P. Zhang, J. Ma, J. Zhu, and X. H. Zeng, Effect of isovalent substitution on phase transition and negative thermal expansion of In2−xScxW3O12 ceramics, Ceram. Int. 41(8), 9873 (2015)
https://doi.org/10.1016/j.ceramint.2015.04.062
300 Y. G. Cheng, Y. C. Mao, X. S. Liu, B. H. Yuan, M. J. Chao, and E. J. Liang, Near-zero thermal expansion of In2(1−x)(HfMg)xMo3O12 with tailored phase transition, Chin. Phys. B 25(8), 086501 (2016)
https://doi.org/10.1088/1674-1056/25/8/086501
301 W. B. Song, B. H. Yuan, X. S. Liu, Z. Y. Li, J. Q. Wang, and E. J. Liang, Tuning the monoclinic-to-orthorhombic phase transition temperature of Fe2Mo3O12 by substitutional coincorporation of Zr4+ and Mg2+, Mater. Res. 29(7), 849 (2014)
https://doi.org/10.1557/jmr.2014.63
302 W. B. Song, J. Q. Wang, Z. Y. Li, X. S. Liu, B. H. Yuan, and E. J. Liang, Phase transition and thermal expansion property of Cr2−xZr0.5xMg0.5xMo3O12 solid solution, Chin. Phys. B 23(6), 066501 (2014)
https://doi.org/10.1088/1674-1056/23/6/066501
303 K. J. Miller, C. P. Romao, M. Bieringer, B. A. Marinkovic, L. Prisco, and M. A. White, Near-zero thermal expansion in In(HfMg)0.5Mo3O12, J. Am. Ceram. Soc. 96(2), 561 (2013)
https://doi.org/10.1111/jace.12085
304 S. L. Li, X. H. Ge, H. L. Yuan, D. X. Chen, J. Guo, R. F. Shen, M. J. Chao, and E. J. Liang, Near-zero thermal expansion and phase transitions in HfMg1−xZnxMo3O12, Front. Chem. 6, 115 (2018)
https://doi.org/10.3389/fchem.2018.00115
305 A. Madrid, P. I. Ponton, F. Garcia, M. B. Johnson, M. A. White, and B. A. Marinkovic, Solubility limit of Zn2+ in low thermal expansion ZrMgMo3O12 and its influence on phase transition temperature, Ceram. Int. 46(3), 3979 (2020)
https://doi.org/10.1016/j.ceramint.2019.09.252
306 R. F. Shen, B. H. Yuan, S. L. Li, X. H. Ge, J. Guo, and E. J. Liang, Near-zero thermal expansion of ZrxHf1−xMgMo3O12 in a larger temperature range, Optik (Stuttg.) 165, 1 (2018)
https://doi.org/10.1016/j.ijleo.2018.03.035
307 S. Sumithra and A. M. Umarji, Role of crystal structure on the thermal expansion of Ln2W3O12 (Ln=La, Nd, Dy, Y, Er and Yb), Solid State Sci. 6(12), 1313 (2004)
https://doi.org/10.1016/j.solidstatesciences.2004.07.023
308 X. L. Xiao, Y. Z. Cheng, J. Peng, M. M. Wu, D. F. Chen, Z. B. Hu, R. Kiyanagi, J. S. Fieramosca, S. Short, and J. Jorgensen, Thermal expansion properties of A2(MO4)3 (A= Ho and Tm; M=W and Mo) , Solid State Sci. 10(3), 321 (2008)
https://doi.org/10.1016/j.solidstatesciences.2007.09.001
309 E. J. Liang, H. Huo, J. Wang, and M. J. Chao, Effect of water species on the phonon modes in orthorhombic Y2(MoO4)3 revealed by Raman spectroscopy, J. Phys. Chem. C 112(16), 6577 (2008)
https://doi.org/10.1021/jp8013332
310 Z. Y. Li, W. B. Song, and E. J. Liang, Structures, phase transition, and crystal water of Fe2−xYxMo3O12, J. Phys. Chem. C 115(36), 17806 (2011)
https://doi.org/10.1021/jp201962b
311 N. A. Banek, H. I. Baiz, A. Latigo, and C. Lind, Autohydration of nanosized cubic zirconium tungstate, J. Am. Chem. Soc. 132(24), 8278 (2010)
https://doi.org/10.1021/ja101475f
312 N. Duan, U. Kameswari, and A. W. Sleight, Further contraction of ZrW2O8, J. Am. Chem. Soc. 121(44), 10432 (1999)
https://doi.org/10.1021/ja992569+
313 Q. L. Gao, J. Chen, Q. Sun, D. H. Chang, Q. Z. Huang, H. Wu, A. Sanson, R. Milazzo, H. Zhu, Q. Li, Z. N. Liu, J. X. Deng, and X. R. Xing, Switching between giant positive and negative thermal expansions of a YFe(CN)6- based Prussian blue analogue induced by guest species, Angew. Chem. Int. Ed. 56(28), 9023 (2017)
https://doi.org/10.1002/anie.201702955
314 A. L. Goodwin, K. W. Chapman, and C. J. Kepert, Guest-dependent negative thermal expansion in nanoporous Prussian blue analogues MII PtIV (CN)6 · x(H2O) (0≤ x≤2; M=Zn, Cd), J. Am. Chem. Soc. 127(51), 17980 (2005)
https://doi.org/10.1021/ja056460f
315 T. Pretsch, K. W. Chapman, G. J. Halder, and C. J. Kepert, Dehydration of the nanoporous coordination framework ErIII [CoIII (CN)6]·4(H2O): Single crystal tosingle crystal transformation and negative thermal expansion in ErIII [CoIII (CN)6], Chem. Commun. (Camb.) 17(17), 1857 (2006)
https://doi.org/10.1039/B601344A
316 M. K. Gupta, R. Mittal, B. Singh, and S. L. Chaplot, Effect of hydration and ammonization on the thermal expansion behavior of ZrW2O8: Ab initio lattice dynamical perspective, Phys. Rev. B 98(22), 224303 (2018)
https://doi.org/10.1103/PhysRevB.98.224303
317 H. Liu, Z. Zhang, W. Zhang, X. Zeng, and X. Chen, Synthesis and negative thermal expansion property of Y2−xLaxW3O12 (0≤x≤2), Ceram. Int. 39(3), 2781 (2013)
https://doi.org/10.1016/j.ceramint.2012.09.045
318 Q. J. Li, B. H. Yuan, W. B. Song, E. J. Liang, and B. Yuan, Phase transition, hygroscopicity and thermal expansion properties of Yb2−xAlxMo3O12, Chin. Phys. B 21(4), 046501 (2012)
https://doi.org/10.1088/1674-1056/21/4/046501
319 X. S. Liu, Y. G. Cheng, E. J. Liang, and M. J. Chao, Interaction of crystal water with the building block in Y2Mo3O12 and the effect of Ce3+ doping, Phys. Chem. Chem. Phys. 16(22), 12848 (2014)
https://doi.org/10.1039/c4cp00144c
320 X. S. Liu, B. H. Yuan, Y. G. Cheng, X. H. Ge, E. J. Liang, and W. F. Zhang, Avoiding the invasion of H2O into Y2Mo3O12 by coating with C3N4 to improve negative thermal expansion properties, Phys. Chem. Chem. Phys. 19(21), 13443 (2017)
https://doi.org/10.1039/C7CP02262J
321 A. Sanson, On the switching between negative and positive thermal expansion in framework materials, Mater. Res. Lett. 7(10), 412 (2019)
https://doi.org/10.1080/21663831.2019.1621957
322 M. Cetinkol and A. P. Wilkinson, Pressure dependence of negative thermal expansion in Zr2(WO4)(PO4)2, Solid State Commun. 149(11–12), 421 (2009)
https://doi.org/10.1016/j.ssc.2009.01.002
323 M. Cetinkol, A. P. Wilkinson, and P. L. Lee, Structural changes accompanying negative thermal expansion in Zr2(MoO4)(PO4)2, J. Solid State Chem. 182(6), 1304 (2009)
https://doi.org/10.1016/j.jssc.2009.02.029
324 M. Y. Wu, L. Wang, Y. Jia, Z. X. Guo, and Q. Sun, Theoretical study of hydration in Y2Mo3O12: Effects on structure and negative thermal expansion, AIP Adv. 5(2), 027126 (2015)
https://doi.org/10.1063/1.4913361
325 M. Y. Wu, Y. Jia, and Q. Sun, Effects of A3+ cations on hydration in A2M3O12 family materials: A firstprinciples study, Comput. Mater. Sci. 111, 28 (2016)
https://doi.org/10.1016/j.commatsci.2015.09.010
326 G. Jefferson, T. A. Parthasarathy, and R. J. Kerans, Tailorable thermal expansion hybrid structures, Int. J. Solids Struct. 46(11–12), 2372 (2009)
https://doi.org/10.1016/j.ijsolstr.2009.01.023
327 L. Wu, B. Li, and J. Zhou, Isotropic negative thermal expansion metamaterials, ACS Appl. Mater. Interfaces 8(24), 17721 (2016)
https://doi.org/10.1021/acsami.6b05717
[1] Leilei Lan, Yimeng Gao, Xingce Fan, Mingze Li, Qi Hao, Teng Qiu. The origin of ultrasensitive SERS sensing beyond plasmonics[J]. Front. Phys. , 2021, 16(4): 43300-.
[2] Qinye Li, Siyao Qiu, Baohua Jia. Theoretical investigation of CoTa2O6/graphene heterojunctions for oxygen evolution reaction[J]. Front. Phys. , 2021, 16(1): 13503-.
[3] Zhitao Cui, Wei Du, Chengwei Xiao, Qiaohong Li, Rongjian Sa, Chenghua Sun, Zuju Ma. Enhancing hydrogen evolution of MoS2 basal planes by combining single-boron catalyst and compressive strain[J]. Front. Phys. , 2020, 15(6): 63502-.
[4] Qi-Tao Liu, De-Yu Liu, Jian-Ming Li, Yong-Bo Kuang. The impact of crystal defects towards oxide semiconductor photoanode for photoelectrochemical water splitting[J]. Front. Phys. , 2019, 14(5): 53403-.
[5] Zhen-Zhong Yan, Zhao-Han Jiang, Jun-Peng Lu, Zhen-Hua Ni. Interfacial charge transfer in WS2 monolayer/CsPbBr3 microplate heterostructure[J]. Front. Phys. , 2018, 13(4): 138115-.
[6] LI Bin, ZHAO Jin, FENG Min, ONDA Ken. Interferometric two-photon photoemission correlation technique and femtosecond wet-electron dynamics at the TiO (110) surface[J]. Front. Phys. , 2008, 3(1): 26-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed