Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (5) : 52502    https://doi.org/10.1007/s11467-021-1078-5
RESEARCH ARTICLE
Cyclotron dynamics of a Bose–Einstein condensate in a quadruple-well potential with synthetic gauge fields
Wen-Yuan Wang1,2, Ji Lin3, Jie Liu4,5()
1. Beijing Computational Science Research Center, Beijing 100193, China
2. Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
3. Department of Physics, Zhejiang Normal University, Jinhua 321004, China
4. Graduate School of China Academy of Engineering Physics, Beijing 100193, China
5. HEDPS, Center for Applied Physics and Technology, and College of Engineering, Peking University, Beijing 100871, China
 Download: PDF(3079 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We investigate the cyclotron dynamics of Bose–Einstein condensate (BEC) in a quadruple-well potential with synthetic gauge fields. We use laser-assisted tunneling to generate large tunable effective magnetic fields for BEC. The mean position of BEC follows an orbit that simulated the cyclotron orbits of charged particles in a magnetic field. In the absence of atomic interaction, atom dynamics may exhibit periodic or quasi-periodic cyclotron orbits. In the presence of atomic interaction, the system may exhibit self-trapping, which depends on synthetic gauge fields and atomic interaction strength. In particular, the competition between synthetic gauge fields and atomic interaction leads to the generation of several discontinuous parameter windows for the transition to self-trapping, which is obviously different from that without synthetic gauge fields.

Keywords cyclotron dynamics      Bose–Einstein condensate      quadruple-well potential      synthetic gauge fields     
Corresponding Author(s): Jie Liu   
Issue Date: 18 June 2021
 Cite this article:   
Wen-Yuan Wang,Ji Lin,Jie Liu. Cyclotron dynamics of a Bose–Einstein condensate in a quadruple-well potential with synthetic gauge fields[J]. Front. Phys. , 2021, 16(5): 52502.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-021-1078-5
https://academic.hep.com.cn/fop/EN/Y2021/V16/I5/52502
1 I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80(3), 885 (2008)
https://doi.org/10.1103/RevModPhys.80.885
2 M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
https://doi.org/10.1103/RevModPhys.82.3045
3 Q. Niu, Advances on topological materials, Front. Phys. 15(4), 43601 (2020)
https://doi.org/10.1007/s11467-020-0979-z
4 M. Yang, X. L. Zhang, and W. M. Liu, Tunable topological quantum statesin three- and two-dimensional materials, Front. Phys. 10(2), 161 (2015)
https://doi.org/10.1007/s11467-015-0463-3
5 K. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)
https://doi.org/10.1103/PhysRevLett.45.494
6 D. C. Tsui, H. L. Stormer, and A. C. Gossard, Twodimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett. 48(22), 1559 (1982)
https://doi.org/10.1103/PhysRevLett.48.1559
7 R. B. Laughlin, Anomalous quantum hall effect: An incompressible quantum fluid with fractionally charged excitations, Phys. Rev. Lett. 50(18), 1395 (1983)
https://doi.org/10.1103/PhysRevLett.50.1395
8 D. Jaksch and P. Zoller, Creation of effective magnetic fields in optical lattices: The Hofstadter butterfly for cold neutral atoms, New J. Phys. 5, 56 (2003)
https://doi.org/10.1088/1367-2630/5/1/356
9 N. Goldman, G. Juzeliūnas, P. Öhberg, and I. B. Spielman, Light-induced gauge fields for ultracold atoms, Rep. Prog. Phys. 77(12), 126401 (2014)
https://doi.org/10.1088/0034-4885/77/12/126401
10 F. Schäfer, T. Fukuhara, S. Sugawa, Y. Takasu, and Y. Takahashi, Tools for quantum simulation with ultracold atoms in optical lattices, Nat. Rev. Phys. 2(8), 411 (2020)
https://doi.org/10.1038/s42254-020-0195-3
11 D. W. Zhang, Z. D. Wang, and S. L. Zhu, Relativistic quantum effects of Dirac particles simulated by ultracold atoms, Front. Phys. 7(1), 31 (2012)
https://doi.org/10.1007/s11467-011-0223-y
12 A. L. Fetter, Rotating trapped Bose–Einstein condensates, Rev. Mod. Phys. 81(2), 647 (2009)
https://doi.org/10.1103/RevModPhys.81.647
13 J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg, Artificial gauge potentials for neutral atoms, Rev. Mod. Phys. 83(4), 1523 (2011)
https://doi.org/10.1103/RevModPhys.83.1523
14 I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Rev. Mod. Phys. 86(1), 153 (2014)
https://doi.org/10.1103/RevModPhys.86.153
15 N. R. Cooper, J. Dalibard, and I. B. Spielman, Topological bands for ultracold atoms, Rev. Mod. Phys. 91(1), 015005 (2019)
https://doi.org/10.1103/RevModPhys.91.015005
16 K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Vortex formation in a stirred Bose–Einstein condensate, Phys. Rev. Lett. 84(5), 806 (2000)
https://doi.org/10.1103/PhysRevLett.84.806
17 J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle, Observation of vortex lattices in Bose–Einstein condensates, Science 292(5516), 476 (2001)
https://doi.org/10.1126/science.1060182
18 S. Tung, V. Schweikhard, and E. A. Cornell, Observation of vortex pinning in Bose–Einstein condensates, Phys. Rev. Lett. 97(24), 240402 (2006)
https://doi.org/10.1103/PhysRevLett.97.240402
19 R. A. Williams, S. Al-Assam, and C. J. Foot, Observation of vortex nucleation in a rotating two-dimensional lattice of Bose–Einstein condensates, Phys. Rev. Lett. 104(5), 050404 (2010)
https://doi.org/10.1103/PhysRevLett.104.050404
20 N. R. Cooper, Rapidly rotating atomic gases, Adv. Phys. 57(6), 539 (2008)
https://doi.org/10.1080/00018730802564122
21 M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y. A. Chen, and I. Bloch, Experimental realization of strong effective magnetic fields in an optical lattice, Phys. Rev. Lett. 107(25), 255301 (2011)
https://doi.org/10.1103/PhysRevLett.107.255301
22 H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton, and W. Ketterle, Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices, Phys. Rev. Lett. 111(18), 185302 (2013)
https://doi.org/10.1103/PhysRevLett.111.185302
23 M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, and I. Bloch, Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices, Phys. Rev. Lett. 111(18), 185301 (2013)
https://doi.org/10.1103/PhysRevLett.111.185301
24 M. Aidelsburger, M. Atala, S. Nascimbene, S. Trotzky, Y. A. Chen, and I. Bloch, Experimental realization of strong effective magnetic fields inoptical superlattice potentials, Appl. Phys. B 113(1), 1 (2013)
https://doi.org/10.1007/s00340-013-5418-1
25 M. Mancini, G. Pagano, G. Cappellini, L. Livi, M. Rider, J. Catani, C. Sias, P. Zoller, M. Inguscio, M. Dalmonte, and L. Fallani, Observation of chiral edge states with neutral fermions in synthetic Hall ribbons, Science 349(6255), 1510 (2015)
https://doi.org/10.1126/science.aaa8736
26 B. K. Stuhl, H. I. Lu, L. M. Aycock, D. Genkina, and I. B. Spielman, Visualizing edge states with an atomic Bose gas in the quantum Hall regime, Science 349(6255), 1514 (2015)
https://doi.org/10.1126/science.aaa8515
27 A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, Optical atomic clocks, Rev. Mod. Phys. 87(2), 637 (2015)
https://doi.org/10.1103/RevModPhys.87.637
28 A. R. Kolovsky, Creating artificial magnetic fields for cold atoms by photon-assisted tunneling, Europhys. Lett. 93(2), 20003 (2011)
https://doi.org/10.1209/0295-5075/93/20003
29 J. Struck, C. Ölschläger, M. Weinberg, P. Hauke, J. Simonet, A. Eckardt, M. Lewenstein, K. Sengstock, and P. Windpassinger, Tunable gauge potential for neutral and spinless particles in driven optical lattices, Phys. Rev. Lett. 108(22), 225304 (2012)
https://doi.org/10.1103/PhysRevLett.108.225304
30 G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, Experimental realization of the topological Haldane model with ultracold fermions, Nature 515(7526), 237 (2014)
https://doi.org/10.1038/nature13915
31 L. W. Clark, B. M. Anderson, L. Feng, A. Gaj, K. Levin, and C. Chin, Observation of density-dependent gauge fields in a Bose–Einstein condensate based on micromotion control in a shaken two-dimensional lattice, Phys. Rev. Lett. 121(3), 030402 (2018)
https://doi.org/10.1103/PhysRevLett.121.030402
32 C. Schweizer, F. Grusdt, M. Berngruber, L. Barbiero, E. Demler, N. Goldman, I. Bloch, and M. Aidelsburger, Floquet approach to Z2 lattice gauge theories with ultracold atoms in optical lattices, Nat. Phys. 15(11), 1168 (2019)
https://doi.org/10.1038/s41567-019-0649-7
33 F. Görg, K. Sandholzer, J. Minguzzi, R. Desbuquois, M. Messer, and T. Esslinger, Realization of density-dependent Peierls phases to engineer quantized gauge fields coupled to ultracold matter, Nat. Phys. 15(11), 1161 (2019)
https://doi.org/10.1038/s41567-019-0615-4
34 V. Lienhard, P. Scholl, S. Weber, D. Barredo, S. de Léséleuc, R. Bai, N. Lang, M. Fleischhauer, H. P. Büchler, T. Lahaye, and A. Browaeys, Realization of a densitydependent Peierls phase in a synthetic, spin–orbit coupled Rydberg system, Phys. Rev. X 10(2), 021031 (2020)
https://doi.org/10.1103/PhysRevX.10.021031
35 C. J. Kennedy, W. C. Burton, W. C. Chung, and W. Ketterle, Observation of Bose–Einstein condensation in a strong synthetic magnetic field, Nat. Phys. 11(10), 859 (2015)
https://doi.org/10.1038/nphys3421
36 G. J. Milburn, J. Corney, E. M. Wright, and D. F. Walls, Quantum dynamics of an atomic Bose–Einstein condensate in a double-well potential, Phys. Rev. A 55(6), 4318 (1997)
https://doi.org/10.1103/PhysRevA.55.4318
37 A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Quantum coherent atomic tunneling between two trapped Bose–Einstein condensates, Phys. Rev. Lett. 79(25), 4950 (1997)
https://doi.org/10.1103/PhysRevLett.79.4950
38 M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, and M. K. Oberthaler, Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction, Phys. Rev. Lett. 95(1), 010402 (2005)
https://doi.org/10.1103/PhysRevLett.95.010402
39 B. Wang, P. Fu, J. Liu, and B. Wu, Self-trapping of Bose–Einstein condensates in optical lattices, Phys. Rev. A 74(6), 063610 (2006)
https://doi.org/10.1103/PhysRevA.74.063610
40 L. J. LeBlanc, A. B. Bardon, J. McKeever, M. H. T. Extavour, D. Jervis, J. H. Thywissen, F. Piazza, and A. Smerzi, Dynamics of a tunable superfluid junction, Phys. Rev. Lett. 106(2), 025302 (2011)
https://doi.org/10.1103/PhysRevLett.106.025302
41 P. G. Harper, Single band motion of conduction electronsin a uniform magnetic field, Proc. Phys. Soc. A 68(10), 874 (1955)
https://doi.org/10.1088/0370-1298/68/10/304
42 D. R. Hofstadter, Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields, Phys. Rev. B 14(6), 2239 (1976)
https://doi.org/10.1103/PhysRevB.14.2239
43 A. X. Zhang, Y. Zhang, Y. F. Jiang, Z. F. Yu, L. X. Cai, and J. K. Xue, Cyclotron dynamics of neutral atoms in optical lattices with additional magnetic field and harmonic trap potential, Chin. Phys. B 29(1), 010307 (2020)
https://doi.org/10.1088/1674-1056/ab5efc
44 J. Liu, L. Fu, B. Y. Ou, S. G. Chen, D. I. Choi, B. Wu, and Q. Niu, Theory of nonlinear Landau–Zener tunneling, Phys. Rev. A 66(2), 023404 (2002)
https://doi.org/10.1103/PhysRevA.66.023404
45 D. F. Ye, L. B. Fu, and J. Liu, Rosen–Zener transition in a nonlinear two-level system, Phys. Rev. A 77(1), 013402 (2008)
https://doi.org/10.1103/PhysRevA.77.013402
46 G. F. Wang, L. B. Fu, and J. Liu, Periodic modulation effect on self-trapping of two weakly coupled Bose–Einstein condensates, Phys. Rev. A 73(1), 013619 (2006)
https://doi.org/10.1103/PhysRevA.73.013619
47 J. Liu, L. B. Fu, B. Liu, and B. Wu, Role of particle interactions in the Feshbach conversion of fermionic atoms to bosonic molecules, New J. Phys. 10(12), 123018 (2008)
https://doi.org/10.1088/1367-2630/10/12/123018
48 J. Liu, B. Liu, and L. B. Fu, Many-body effects on nonadiabatic Feshbach conversion in bosonic systems, Phys. Rev. A 78(1), 013618 (2008)
https://doi.org/10.1103/PhysRevA.78.013618
49 S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, Coherent oscillations between two weakly coupled Bose–Einstein condensates: Josephson effects, π oscillations, and macroscopic quantum self-trapping, Phys. Rev. A 59(1), 620 (1999)
https://doi.org/10.1103/PhysRevA.59.620
50 L. Fu and J. Liu, Quantum entanglement manifestation of transition to nonlinear self-trapping for Bose–Einstein condensates in a symmetric double well, Phys. Rev. A 74(6), 063614 (2006)
https://doi.org/10.1103/PhysRevA.74.063614
[1] Zhi-Huan Luo, Wei Pang, Bin Liu, Yong-Yao Li, Boris A. Malomed. A new form of liquid matter: Quantum droplets[J]. Front. Phys. , 2021, 16(3): 32201-.
[2] Jin-Cheng Shi, Jian-Hua Zeng. Self-trapped spatially localized states in combined linear-nonlinear periodic potentials[J]. Front. Phys. , 2020, 15(1): 12602-.
[3] Yong-Kai Liu, Hong-Xia Yue, Liang-Liang Xu, Shi-Jie Yang. Vortex-pair states in spin-orbit-coupled Bose–Einstein condensates with coherent coupling[J]. Front. Phys. , 2018, 13(5): 130316-.
[4] Yu-E Li, Ju-Kui Xue. Stationary and moving solitons in spin–orbit-coupled spin-1 Bose–Einstein condensates[J]. Front. Phys. , 2018, 13(2): 130307-.
[5] Xuzhen Gao, Jianhua Zeng. Two-dimensional matter-wave solitons and vortices in competing cubic-quintic nonlinear lattices[J]. Front. Phys. , 2018, 13(1): 130501-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed