Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (3) : 32201    https://doi.org/10.1007/s11467-020-1020-2
REVIEW ARTICLE
A new form of liquid matter: Quantum droplets
Zhi-Huan Luo1, Wei Pang2, Bin Liu3, Yong-Yao Li3(), Boris A. Malomed4,5
1. Department of Applied Physics, South China Agricultural University, Guangzhou 510642, China
2. Department of Experiment Teaching, Guangdong University of Technology, Guangzhou 510006, China
3. School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
4. Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, and Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv 69978, Israel
5. Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica, Chile
 Download: PDF(2207 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This brief review summarizes recent theoretical and experimental results which predict and establish the existence of quantum droplets (QDs), i.e., robust two- and three-dimensional (2D and 3D) selftrapped states in Bose–Einstein condensates (BECs), which are stabilized by effective self-repulsion induced by quantum fluctuations around the mean-field (MF) states [alias the Lee–Huang–Yang (LHY) effect]. The basic models are presented, taking special care of the dimension crossover, 2D→3D. Recently reported experimental results, which exhibit stable 3D and quasi-2D QDs in binary BECs, with the inter-component attraction slightly exceeding the MF self-repulsion in each component, and in single-component condensates of atoms carrying permanent magnetic moments, are presented in some detail. The summary of theoretical results is focused, chiefly, on 3D and quasi-2D QDs with embedded vorticity, as the possibility to stabilize such states is a remarkable prediction. Stable vortex states are presented both for QDs in free space, and for singular but physically relevant 2D modes pulled to the center by the inverse-square potential, with the quantum collapse suppressed by the LHY effect.

Keywords quantum droplet      Bose–Einstein condensate      Lee–Huang–Yang correction      votex state     
Corresponding Author(s): Yong-Yao Li   
Just Accepted Date: 20 October 2020   Issue Date: 25 November 2020
 Cite this article:   
Zhi-Huan Luo,Wei Pang,Bin Liu, et al. A new form of liquid matter: Quantum droplets[J]. Front. Phys. , 2021, 16(3): 32201.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-1020-2
https://academic.hep.com.cn/fop/EN/Y2021/V16/I3/32201
1 B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, Spatiotemporal optical solitons, J. Optics B 7(5), R53 (2005); B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, On multidimensional solitons and their legacy in contemporary atomic, molecular and optical physics, J. Phys. At. Mol. Opt. Phys. 49(17), 170502 (2016)
https://doi.org/10.1088/0953-4075/49/17/170502
2 B. A. Malomed, Multidimensional solitons: Wellestablished results and novel findings, Eur. Phys. J. Spec. Top. 225(13–14), 2507 (2016)
https://doi.org/10.1140/epjst/e2016-60025-y
3 D. Mihalache, Multidimensional localized structures in optical and matter-wave media: A topical survey of recent literature, Rom. Rep. Phys. 69, 403 (2017)
4 Y. Kartashov, G. Astrakharchik, B. Malomed, and L. Torner, Frontiers in multidimensional self-trapping of nonlinear fields and matter, Nat. Rev. Phys. 1(3), 185 (2019)
https://doi.org/10.1038/s42254-019-0025-7
5 B. A. Malomed, Vortex solitons: Old results and new perspectives, Physica D 399, 108 (2019)
https://doi.org/10.1016/j.physd.2019.04.009
6 M. W. Ray, E. Ruokokoski, S. Kandel, M. Möttönen, and D. S. Hall, Observation of Dirac monopoles in a synthetic magnetic field, Nature 505(7485), 657 (2014)
https://doi.org/10.1038/nature12954
7 E. Radu and M. S. Volkov, Stationary ring solitons in field theory — knots and vortons, Phys. Rep. 468(4), 101 (2008)
https://doi.org/10.1016/j.physrep.2008.07.002
8 K. Tiurev, T. Ollikainen, P. Kuopanportti, M. Nakahara, D. S. Hall, and M. Möttönen, Three-dimensional skyrmions in spin-2 Bose–Einstein condensates, New J. Phys. 20(5), 055011 (2018)
https://doi.org/10.1088/1367-2630/aac2a8
9 Y. V. Kartashov, B. A. Malomed, Y. Shnir, and L. Torner, Twisted toroidal vortex-solitons in inhomogeneous media with repulsive nonlinearity, Phys. Rev. Lett. 113(26), 264101 (2014)
https://doi.org/10.1103/PhysRevLett.113.264101
10 I. I. Smalyukh, Review: Knots and other new topological effects in liquid crystals and colloids, Rep. Prog. Phys. 83(10), 106601 (2020)
https://doi.org/10.1088/1361-6633/abaa39
11 V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Solitons: The Inverse Scattering Method, Moscow: Nauka Publishers, 1980; New York: Consultants Bureau, 1984 (English translation)
https://doi.org/10.1007/978-3-642-81448-8_7
12 G. Fibich, The Nonlinear Schrdinger Equation: Singular Solutions and Optical Collapse, Heidelberg: Springer, 2015
https://doi.org/10.1007/978-3-319-12748-4
13 D. S. Petrov, Quantum mechanical stabilization of a collapsing Bose–Bose mixture, Phys. Rev. Lett. 115(15), 155302 (2015)
https://doi.org/10.1103/PhysRevLett.115.155302
14 C. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas, P. Cheiney, and L. Tarruell, Quantum liquid droplets in a mixture of Bose–Einstein condensates, Science 359(6373), 301 (2018)
https://doi.org/10.1126/science.aao5686
15 P. Cheiney, C. R. Cabrera, J. Sanz, B. Naylor, L. Tanzi, and L. Tarruell, Bright soliton to quantum droplet transition in a mixture of Bose–Einstein condensates, Phys. Rev. Lett. 120(13), 135301 (2018)
https://doi.org/10.1103/PhysRevLett.120.135301
16 G. Semeghini, G. Ferioli, L. Masi, C. Mazzinghi, L. Wolswijk, F. Minardi, M. Modugno, G. Modugno, M. Inguscio, and M. Fattori, Self-bound quantum droplets of atomic mixtures in free space? Phys. Rev. Lett. 120(23), 235301 (2018)
https://doi.org/10.1103/PhysRevLett.120.235301
17 G. Ferioli, G. Semeghini, L. Masi, G. Giusti, G. Modugno, M. Inguscio, A. Gallemi, A. Recati, and M. Fattori, Collisions of self-bound quantum droplets,Phys. Rev. Lett. 122(9), 090401 (2019)
https://doi.org/10.1103/PhysRevLett.122.090401
18 C. D’Errico, A. Burchianti, M. Prevedelli, L. Salasnich, F. Ancilotto, M. Modugno, F. Minardi, and C. Fort, Observation of quantum droplets in a heteronuclear bosonic mixture, Phys. Rev. Research 1(3), 033155 (2019)
https://doi.org/10.1103/PhysRevResearch.1.033155
19 I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, and T. Pfau, Observation of quantum droplets in a strongly dipolar Bose gas, Phys. Rev. Lett. 116(21), 215301 (2016)
https://doi.org/10.1103/PhysRevLett.116.215301
20 H. Kadau, M. Schmitt, M. Wenzel, C. Wink, T. Maier, I. Ferrier-Barbut, and T. Pfau, Observing the Rosenzweig instability of a quantum ferrofluid, Nature 530(7589), 194 (2016)
https://doi.org/10.1038/nature16485
21 I. Ferrier-Barbut, M. Schmitt, M. Wenzel, H. Kadau, and T. Pfau, Liquid quantum droplets of ultracold magnetic atoms, J. Phys. B 49(21), 214004 (2016)
https://doi.org/10.1088/0953-4075/49/21/214004
22 M. Schmitt, M. Wenzel, F. Böttcher, I. Ferrier-Barbut, and T. Pfau, Self-bound droplets of a dilute magnetic quantum liquid, Nature 539(7628), 259 (2016)
https://doi.org/10.1038/nature20126
23 F. Böttcher, M. Wenzel, J. N. Schmidt, M. Guo, T. Langen, I. Ferrier-Barbut, T. Pfau, R. Bombín, J. Sánchez- Baena, J. Boronat, and F. Mazzanti, Dilute dipolar quantum droplets beyond the extended Gross–Pitaevskii equation, Phys. Rev. Research 1(3), 033088 (2019)
https://doi.org/10.1103/PhysRevResearch.1.033088
24 I. Ferrier-Barbut, M. Wenzel, F. Böttcher, T. Langen, M. Isoard, S. Stringari, and T. Pfau, Scissors mode of dipolar quantum droplets of dysprosium atoms, Phys. Rev. Lett. 120(16), 160402 (2018)
https://doi.org/10.1103/PhysRevLett.120.160402
25 I. Ferrier-Barbut, M. Wenzel, M. Schmitt, F. Böttcher, and T. Pfau, Onset of a modulational instability in trapped dipolar Bose–Einstein condensates, Phys. Rev. A 97(1), 011604 (2018)
https://doi.org/10.1103/PhysRevA.97.011604
26 L. Chomaz, S. Baier, D. Petter, M. J. Mark, F. Wachtler, L. Santos, and F. Ferlaino, Quantum-fluctuation-driven crossover from a dilute Bose–Einstein condensate to a macrodroplet in a dipolar quantum fluid, Phys. Rev. X 6(4), 041039 (2016)
https://doi.org/10.1103/PhysRevX.6.041039
27 M. Wenzel, F. Böttcher, T. Langen, I. Ferrier-Barbut, and T. Pfau, Striped states in a many-body system of tilted dipoles, Phys. Rev. A 96(5), 053630 (2017)
https://doi.org/10.1103/PhysRevA.96.053630
28 L. Tanzi, E. Lucioni, F. Famà, J. Catani, A. Fioretti, C. Gabbanini, R. N. Bisset, L. Santos, and G. Modugno, Observation of a dipolar quantum gas with metastable supersolid properties, Phys. Rev. Lett. 122(13), 130405 (2019)
https://doi.org/10.1103/PhysRevLett.122.130405
29 F. Böttcher, J. N. Schmidt, M. Wenzel, J. Hertkorn, M. Guo, T. Langen, and T. Pfau, Transient supersolid properties in an array of dipolar quantum droplets, Phys. Rev. X 9(1), 011051 (2019)
https://doi.org/10.1103/PhysRevX.9.011051
30 L. Chomaz, D. Petter, P. Ilzhöfer, G. Natale, A. Trautmann, C. Politi, G. Durastante, R. M. W. van Bijnen, A. Patscheider, M. Sohmen, M. J. Mark, and F. Ferlaino, Long-lived and transient supersolid behaviors in dipolar quantum gases, Phys. Rev. X 9(2), 021012 (2019)
https://doi.org/10.1103/PhysRevX.9.021012
31 M. Guo, F. Böttcher, J. Hertkorn, J. N. Schmidt, M. Wenzel, H. P. Büchler, T. Langen, and T. Pfau, The low-energy goldstone mode in a trapped dipolar supersolid, Nature 574(7778), 386 (2019)
https://doi.org/10.1038/s41586-019-1569-5
32 L. Tanzi, S. M. Roccuzzo, E. Lucioni, F. Famà, A. Fioretti, C. Gabbanini, G. Modugno, A. Recati, and S. Stringari, Supersolid symmetry breaking from compressional oscillations in a dipolar quantum gas, Nature 574(7778), 382 (2019)
https://doi.org/10.1038/s41586-019-1568-6
33 G. Natale, R. M. W. van Bijnen, A. Patscheider, D. Petter, M. J. Mark, L. Chomaz, and F. Ferlaino, Excitation spectrum of a trapped dipolar supersolid and its experimental evidence, Phys. Rev. Lett. 123(5), 050402 (2019)
https://doi.org/10.1103/PhysRevLett.123.050402
34 J. Hertkorn, F. Böttcher, M. Guo, J. N. Schmidt, T. Langen, H. P. Büchler, and T. Pfau, Fate of the amplitude mode in a trapped dipolar supersolid, Phys. Rev. Lett. 123(19), 193002 (2019)
https://doi.org/10.1103/PhysRevLett.123.193002
35 T. D. Lee, K. Huang, and C. N. Yang, Eigenvalues and eigenfunctions of a Bose system of hard spheres and its lowtemperature properties, Phys. Rev. 106(6), 1135 (1957)
https://doi.org/10.1103/PhysRev.106.1135
36 X. Zhang, X. Xu, Y. Zheng, Z. Chen, B. Liu, C. Huang, B. A. Malomed, and Y. Li, Semidiscrete quantum droplets and vortices, Phys. Rev. Lett. 123(13), 133901 (2019)
https://doi.org/10.1103/PhysRevLett.123.133901
37 E. Shamriz, Z. Chen, and B. A. Malomed, Suppression of the quasi-two-dimensional quantum collapse in the attraction field by the Lee–Huang–Yang effect, Phys. Rev. A 101(6), 063628 (2020)
https://doi.org/10.1103/PhysRevA.101.063628
38 V. P. Mineev, The theory of the solution of two near-ideal Bose gases, Zh. Eksp. Teor. Fiz. 67, 263 (1974) [Sov. Phys. - JETP 40, 132 (1974)
39 T. Mithun, A. Maluckov, K. Kasamatsu, B. Malomed, and A. Khare, Modulational instability, inter-component asymmetry, and formation of quantum droplets in onedimensional binary Bose gases, Symmetry (Basel) 12(1), 174 (2020)
https://doi.org/10.3390/sym12010174
40 Y. Li, Z. Chen, Z. Luo, C. Huang, H. Tan, W. Pang, and B. A. Malomed, Two-dimensional vortex quantum droplets, Phys. Rev. A 98(6), 063602 (2018)
https://doi.org/10.1103/PhysRevA.98.063602
41 Y. V. Kartashov, B. A. Malomed, L. Tarruell, and L. Torner, Three-dimensional droplets of swirling superfluids, Phys. Rev. A 98(1), 013612 (2018)
https://doi.org/10.1103/PhysRevA.98.013612
42 D. S. Petrov and G. E. Astrakharchik, Ultradilute lowdimensional liquids, Phys. Rev. Lett. 117(10), 100401 (2016)
https://doi.org/10.1103/PhysRevLett.117.100401
43 S. Pilati, J. Boronat, J. Casulleras, and S. Giorgini, Quantum Monte Carlo simulation of a two-dimensional Bose gas, Phys. Rev. A 71(2), 023605 (2005)
https://doi.org/10.1103/PhysRevA.71.023605
44 G. E. Astrakharchik and B. A. Malomed, Dynamics of onedimensional quantum droplets, Phys. Rev. A 98(1), 013631 (2018)
https://doi.org/10.1103/PhysRevA.98.013631
45 P. Zin, M. Pylak, T. Wasak, M. Gajda, and Z. Idziaszek, Quantum Bose–Bose droplets at a dimensional crossover, Phys. Rev. A 98, 051603(R) (2018)
https://doi.org/10.1103/PhysRevA.98.051603
46 N. M. Hugenholtz and D. Pines, Ground-state energy and excitation spectrum of a Systemv of interacting bosons, Phys. Rev. 116(3), 489 (1959)
https://doi.org/10.1103/PhysRev.116.489
47 T. Ilg, J. Kumlin, L. Santos, D. S. Petrov, and H. P. Büchler, Dimensional crossover for the beyond-mean-field correction in Bose gases, Phys. Rev. A 98(5), 051604 (2018)
https://doi.org/10.1103/PhysRevA.98.051604
48 C. D’Errico, M. Zaccanti, M. Fattori, G. Roati, M. Inguscio, G. Modugno, and A. Simoni, Feshbach resonances in ultracold 39 K, New J. Phys. 9(7), 223 (2007)
https://doi.org/10.1088/1367-2630/9/7/223
49 K. L. Pan, C. K. Law, and B. Zhou, Experimental and mechanistic description of merging and bouncing in headon binary droplet collision, J. Appl. Phys. 103(6), 064901 (2008)
https://doi.org/10.1063/1.2841055
50 A. Burchianti, C. D’Errico, M. Prevedelli, L. Salasnich, F. Ancilotto, M. Modugno, F. Minardi, and C. Fort, A dual-species Bose–Einstein condensate with attractive interspecies interactions, Cond. Matter 5(1), 21 (2020)
https://doi.org/10.3390/condmat5010021
51 A. Cidrim, F. E. A. dos Santos, E. A. L. Henn, and T. Macri, Vortices in self-bound dipolar droplets, Phys. Rev. A 98(2), 023618 (2018)
https://doi.org/10.1103/PhysRevA.98.023618
52 Kh. I. Pushkarov, D. I. Pushkarov, and I. V. Tomov, Selfaction of light beams in nonlinear media: Soliton solutions, Opt. Quant. Lectr. 11(6), 471 (1979)
https://doi.org/10.1007/BF00620372
53 Kh. I. Pushkarov and D. I. Pushkarov, Soliton solutiuons in some non-linear Schrdinger-like equations, Rep. Math. Phys. 17(1), 37 (1980)
https://doi.org/10.1016/0034-4877(80)90074-9
54 M. Brtka, A. Gammal, and B. A. Malomed, Hidden vorticity in binary Bose–Einstein condensates, Phys. Rev. A 82(5), 053610 (2010)
https://doi.org/10.1103/PhysRevA.82.053610
55 Y. Li, Z. Luo, Y. Liu, Z. Chen, C. Huang, S. Fu, H. Tan, and B. A. Malomed, Two-dimensional solitons and quantum droplets supported by competing self- and crossinteractions in spin–orbit-coupled condensates, New J. Phys. 19(11), 113043 (2017)
https://doi.org/10.1088/1367-2630/aa983b
56 H. Sakaguchi, B. Li, and B. A. Malomed, Creation of twodimensional composite solitons in spin–orbit-coupled selfattractive Bose–Einstein condensates in free space, Phys. Rev. E 89(3), 032920 (2014)
https://doi.org/10.1103/PhysRevE.89.032920
57 Y. V. Kartashov, B. A. Malomed, and L. Torner, Metastability of quantum droplet clusters, Phys. Rev. Lett. 122(19), 193902 (2019)
https://doi.org/10.1103/PhysRevLett.122.193902
58 M. N. Tengstrand, P. Stürmer, E. Ö. Karabulut, and S. M. Reimann, Rotating binary Bose–Einstein condensates and vortex clusters in quantum droplets, Phys. Rev. Lett. 123(16), 160405 (2019)
https://doi.org/10.1103/PhysRevLett.123.160405
59 L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Nonrelativistic Theory, Moscow: Nauka Publishers, 1974
60 H. Sakaguchi and B. A. Malomed, Suppression of the quantum-mechanical collapse by repulsive interactions in a quantum gas, Phys. Rev. A 83(1), 013607 (2011)
https://doi.org/10.1103/PhysRevA.83.013607
61 G. E. Astrakharchik and B. A. Malomed, Quantum versus mean-field collapse in a many-body system, Phys. Rev. A 92(4), 043632 (2015)
https://doi.org/10.1103/PhysRevA.92.043632
62 F. K. Abdullaev, A. Gammal, L. Tomio, and T. Frederico, Stability of trapped Bose–Einstein condensates, Phys. Rev. A 63, 043604 (2001)
https://doi.org/10.1103/PhysRevA.63.043604
63 E. A. Burt, R. W. Ghrist, C. J. Myatt, M. J. Holland, E. A. Cornell, and C. E. Wieman, Coherence, correlations, and collisions: What one learns about Bose–Einstein condensates from their decay, Phys. Rev. Lett. 79(3), 337 (1997)
https://doi.org/10.1103/PhysRevLett.79.337
64 N. B. Jørgensen, G. M. Bruun, and J. J. Arlt, Dilute fluid governed by quantum fluctuations, Phys. Rev. Lett. 121(17), 173403 (2018)
https://doi.org/10.1103/PhysRevLett.121.173403
65 H. Sakaguchi and B. A. Malomed, Singular solitons, Phys. Rev. E 101(1), 012211 (2020)
https://doi.org/10.1103/PhysRevE.101.012211
66 A. Cappellaro, T. Macrì, G. F. Bertacco, and L. Salasnich, Equation of state and self-bound droplet in Rabi-coupled Bose mixtures, Sci. Rep. 7(1), 13358 (2017)
https://doi.org/10.1038/s41598-017-13647-y
67 M. Tylutki, G. E. Astrakharchik, B. A. Malomed, and D. S. Petrov, Collective excitations of a one-dimensional quantum droplet, Phys. Rev. A 101, 051601(R) (2020)
https://doi.org/10.1103/PhysRevA.101.051601
68 S. K. Adhikari, Statics and dynamics of a self-bound matter-wave quantum ball, Phys. Rev. A 95(2), 023606 (2017)
https://doi.org/10.1103/PhysRevA.95.023606
69 S. Gautam and S. K. Adhikari, Self-trapped quantum balls in binary Bose–Einstein condensates, J. Phys. At. Mol. Opt. Phys. 52(5), 055302 (2019)
https://doi.org/10.1088/1361-6455/aafb92
70 X. Cui, Spin–orbit-coupling-induced quantum droplet in ultracold Bose–Fermi mixtures, Phys. Rev. A 98(2), 023630 (2018)
https://doi.org/10.1103/PhysRevA.98.023630
71 B. J. DeSalvo, K. Patel, J. Johansen, and C. Chin, Observation of a degenerate Fermi gas trapped by a Bose–Einstein condensate, Phys. Rev. Lett. 119(23), 233401 (2017)
https://doi.org/10.1103/PhysRevLett.119.233401
72 S. K. Adhikari, Fermionic bright soliton in a boson–fermion mixture, Phys. Rev. A 72(5), 053608 (2005)
https://doi.org/10.1103/PhysRevA.72.053608
73 S. K. Adhikari, A self-bound matter-wave boson–fermion quantum ball, Laser Phys. Lett. 15(9), 095501 (2018)
https://doi.org/10.1088/1612-202X/aacb0a
74 Z. Zhou, X. Yu, Y. Zou, and H. Zhong, Dynamics of quantum droplets in a one-dimensional optical lattice, Commun. Nonlinear Sci. Numer. Simul. 78, 104881 (2019)
https://doi.org/10.1016/j.cnsns.2019.104881
75 L. Dong, W. Qi, P. Peng, L. Wang, H. Zhou, and C. Huang, Multi-stable quantum droplets in optical lattices, Nonlinear Dyn. 102, 303 (2020)
https://doi.org/10.1007/s11071-020-05967-y
76 Y. Zheng, S. Chen, Z. Huang, S. Dai, B. Liu. Liu, Y. LI, and S. Wang, Quantum droplets in two-dimensional optical lattices, Front. Phys. 16(2), 22501 (2021)
https://doi.org/10.1007/s11467-020-1011-3
77 B. A. Malomed, The family of quantum droplets keeps expanding, Front. Phys. 16, 22504 (2021)
https://doi.org/10.1007/s11467-020-1024-y
78 F. Bottcher, J. N. Sčhmidt, J. Hertkorn, K. S. H. Ng, S. D. Graham, M. Guo, T. Langen, and T. Pfau, New states of matter with fine-tuned interactions: Quantum droplets and dipolar supersolids, arXiv: 2007.06391 (2020)
https://doi.org/10.1088/1361-6633/abc9ab
79 C. Staudinger, F. Mazzanti, and R. E. Zillich, Self-bound Bose mixtures, Phys. Rev. A 98(2), 023633 (2018)
https://doi.org/10.1103/PhysRevA.98.023633
80 S. Gautam and S. K. Adhikari, Limitation of the Lee– Huang–Yang interaction in forming a self-bound state in Bose–Einstein condensates, Ann. Phys. 409, 167917 (2019)
https://doi.org/10.1016/j.aop.2019.167917
81 R. Driben, Y. V. Kartashov, B. A. Malomed, T. Meier, and L. Torner, Soliton gyroscopes in media with spatially growing repulsive nonlinearity, Phys. Rev. Lett. 112(2), 020404 (2014)
https://doi.org/10.1103/PhysRevLett.112.020404
82 R. N. Bisset, L. A. Peña Ardila, and L. Santos, Quantum droplets of dipolar mixtures, arXiv: 2007.00404 (2020)
83 J. C. Smith, D. Baillie, and P. B. Blakie, Quantum droplet states of a binary magnetic gas, arXiv: 2007.00366 (2020)
84 Z. Lin, X. Xu, Z. Chen, Z. Yan, Z. Mai, and B. Liu, Twodimensional vortex quantum droplets get thick, Commun. Nonlinear Sci. Numer. Simulat. 93, 105536 (2021)
https://doi.org/10.1016/j.cnsns.2020.105536
[1] Wen-Yuan Wang, Ji Lin, Jie Liu. Cyclotron dynamics of a Bose–Einstein condensate in a quadruple-well potential with synthetic gauge fields[J]. Front. Phys. , 2021, 16(5): 52502-.
[2] Yi-Yin Zheng, Shan-Tong Chen, Zhi-Peng Huang, Shi-Xuan Dai, Bin Liu, Yong-Yao Li, Shu-Rong Wang. Quantum droplets in two-dimensional optical lattices[J]. Front. Phys. , 2021, 16(2): 22501-.
[3] Jin-Cheng Shi, Jian-Hua Zeng. Self-trapped spatially localized states in combined linear-nonlinear periodic potentials[J]. Front. Phys. , 2020, 15(1): 12602-.
[4] Yong-Kai Liu, Hong-Xia Yue, Liang-Liang Xu, Shi-Jie Yang. Vortex-pair states in spin-orbit-coupled Bose–Einstein condensates with coherent coupling[J]. Front. Phys. , 2018, 13(5): 130316-.
[5] Yu-E Li, Ju-Kui Xue. Stationary and moving solitons in spin–orbit-coupled spin-1 Bose–Einstein condensates[J]. Front. Phys. , 2018, 13(2): 130307-.
[6] Xuzhen Gao, Jianhua Zeng. Two-dimensional matter-wave solitons and vortices in competing cubic-quintic nonlinear lattices[J]. Front. Phys. , 2018, 13(1): 130501-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed