Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (2) : 22501    https://doi.org/10.1007/s11467-020-1011-3
RESEARCH ARTICLE
Quantum droplets in two-dimensional optical lattices
Yi-Yin Zheng, Shan-Tong Chen, Zhi-Peng Huang, Shi-Xuan Dai, Bin Liu, Yong-Yao Li(), Shu-Rong Wang
School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
 Download: PDF(1611 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study the stability of zero-vorticity and vortex lattice quantum droplets (LQDs), which are described by a two-dimensional (2D) Gross–Pitaevskii (GP) equation with a periodic potential and Lee– Huang–Yang (LHY) term. The LQDs are divided in two types: onsite-centered and offsite-centered LQDs, the centers of which are located at the minimum and the maximum of the potential, respectively. The stability areas of these two types of LQDs with different number of sites for zero-vorticity and vorticity with S = 1 are given. We found that the μ–N relationship of the stable LQDs with a fixed number of sites can violate the Vakhitov–Kolokolov (VK) criterion, which is a necessary stability condition for nonlinear modes with an attractive interaction. Moreover, the μ–N relationship shows that two types of vortex LQDs with the same number of sites are degenerated, while the zero-vorticity LQDs are not degenerated. It is worth mentioning that the offsite-centered LQDs with zero-vorticity and vortex LQDs with S = 1 are heterogeneous.

Keywords lattice quantum droplets      optical lattices      vortex     
Corresponding Author(s): Yong-Yao Li   
Just Accepted Date: 24 September 2020   Issue Date: 23 October 2020
 Cite this article:   
Yi-Yin Zheng,Shan-Tong Chen,Zhi-Peng Huang, et al. Quantum droplets in two-dimensional optical lattices[J]. Front. Phys. , 2021, 16(2): 22501.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-1011-3
https://academic.hep.com.cn/fop/EN/Y2021/V16/I2/22501
1 L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Nonrelativistic Theory, Moscow: Nauka publishers, 1974
2 W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, Observation of two-dimensional spatial solitary waves in a quadratic medium, Phys. Rev. Lett. 74(25), 5036 (1995)
https://doi.org/10.1103/PhysRevLett.74.5036
3 X. Liu, K. Beckwitt, and F. Wise, Two-dimensional optical spatiotemporal solitons in quadratic media, Phys. Rev. E 62(1), 1328 (2000)
https://doi.org/10.1103/PhysRevE.62.1328
4 D. Mihalache, D. Mazilu, L. C. Crasovan, B. A. Malomed, and F. Lederer, Three-dimensional spinning solitons in the cubic–quintic nonlinear medium, Phys. Rev. E 61(6), 7142 (2000)
https://doi.org/10.1103/PhysRevE.61.7142
5 S. Konar, M. Mishra, and S. Jana, Nonlinear evolution of cosh-Gaussian laser beams and generation of flat top spatial solitons in cubic–quintic nonlinear media, Phys. Lett. A 362(5–6), 505 (2007)
https://doi.org/10.1016/j.physleta.2006.11.025
6 E. L. Falcão-Filho, C. B. de Araújo, G. Boudebs, H. Leblond, and V. Skarka, Robust two-dimensional spatial solitons in liquid carbon disulfide, Phys. Rev. Lett. 110(1), 013901 (2013)
https://doi.org/10.1103/PhysRevLett.110.013901
7 Y. Y. Wang, L. Chen, C. Q. Dai, J. Zheng, and Y. Fan, Exact vector multipole and vortex solitons in the media with spatially modulated cubic–quintic nonlinearity, Nonlinear Dyn. 90(2), 1269 (2017)
https://doi.org/10.1007/s11071-017-3725-5
8 C. Q. Dai, R. P. Chen, Y. Y. Wang, and Y. Fan, Dynamics of light bullets in inhomogeneous cubic–quanticseptimal nonlinear media with PT-symmetric potentials, Nonlinear Dyn. 87(3), 1675 (2017)
https://doi.org/10.1007/s11071-016-3143-0
9 Y. Chen, L. Zheng, and F. Xu, Spatiotemporal vector and scalar solitons of the coupled nonlinear Schringer equation with spatially modulated cubic–quantic-septimal nonlinearities, Nonlinear Dyn. 93(4), 2379 (2018)
https://doi.org/10.1007/s11071-018-4330-y
10 J. Li, Y. Zhu, J. Han, W. Qin, C. Dai, and S. Wang, Scalar and vector multipole and vortex solitons in the spatially modulated cubic–quintic nonlinear media, Nonlinear Dyn. 91(2), 757 (2018)
https://doi.org/10.1007/s11071-017-3744-2
11 M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, Steady-state spatial screening solitons in photorefractive materials with external applied field, Phys. Rev. Lett. 73(24), 3211 (1994)
https://doi.org/10.1103/PhysRevLett.73.3211
12 M. Peccianti, K. A. Brzdakiewicz, and G. Assanto, Nonlocal spatial soliton interactions in nematic liquid crystals,Opt. Lett. 27(16), 1460 (2002)
https://doi.org/10.1364/OL.27.001460
13 P. Pedri and L. Santos, Two-dimensional bright solitons in dipolar Bose–Einstein condensates, Phys. Rev. Lett. 95(20), 200404 (2005)
https://doi.org/10.1103/PhysRevLett.95.200404
14 I. Tikhonenkov, B. A. Malomed, and A. Vardi, Anisotropic solitons in dipolar Bose–Einstein condensates, Phys. Rev. Lett. 100(9), 090406 (2008)
https://doi.org/10.1103/PhysRevLett.100.090406
15 J. Huang, X. Jiang, H. Chen, Z. Fan, W. Pang, and Y. Li, Quadrupolar matter-wave soliton in two-dimensional free space, Front. Phys. 10(4), 100507 (2015)
https://doi.org/10.1007/s11467-015-0501-1
16 F. Maucher, N. Henkel, M. Saffman, W. Królikowski, S. Skupin, and T. Pohl, Rydberg-induced solitons: Threedimensional self-trapping of matter waves, Phys. Rev. Lett. 106(17), 170401 (2011)
https://doi.org/10.1103/PhysRevLett.106.170401
17 Y. Xu, Y. Zhang, and C. Zhang, Bright solitons in a two-dimensional spin–orbit-coupled dipolar Bose– Einstein condensate, Phys. Rev. A 92(1), 013633 (2015)
https://doi.org/10.1103/PhysRevA.92.013633
18 X. Jiang, Z. Fan, Z. Chen, W. Pang, Y. Li, and B. A. Malomed, Two-dimensional solitons in dipolar Bose–Einstein condensates with spin–orbit coupling, Phys. Rev. A 93(2), 023633 (2016)
https://doi.org/10.1103/PhysRevA.93.023633
19 Y. Li, Y. Liu, Z. Fan, W. Pang, S. Fu, and B. A. Malomed, Two-dimensional dipolar gap solitons in free space with spin–orbit coupling, Phys. Rev. A 95(6), 063613 (2017)
https://doi.org/10.1103/PhysRevA.95.063613
20 X. Chen, Z. Deng, X. Xu, S. Li, Z. Fan, Z. Chen, B. Liu, and Y. Li, Nonlinear modes in spatially confined spin–orbit-coupled Bose–Einstein condensates with repulsive nonlinearity, Nonlinear Dyn. 101(1), 569 (2020)
https://doi.org/10.1007/s11071-020-05692-6
21 Z. Ye, Y. Chen, Y. Zheng, X. Chen, and B. Liu, Symmetry breaking of a matter-wave soliton in a double-well potential formed by spatially confined spin–orbit coupling, Chaos Solitons Fractals 130, 109418 (2020)
https://doi.org/10.1016/j.chaos.2019.109418
22 B. Liu, R. Zhong, Z. Chen, X. Qin, H. Zhong, Y. Li, and B. A. Malomed, Holding and transferring matter-wave solitons against gravity by spin–orbit-coupling tweezers, New J. Phys. 22(4), 043004 (2020)
https://doi.org/10.1088/1367-2630/ab7cb1
23 B. Liao, S. Li, C. Huang, Z. Luo, W. Pang, H. Tan, B. A. Malomed, and Y. Li, Anisotropic semi-vortices in dipolar spinor condensates controlled by Zeeman splitting, Phys. Rev. A 96(4), 043613 (2017)
https://doi.org/10.1103/PhysRevA.96.043613
24 B. Liao, Y. Ye, J. Zhuang, C. Huang, H. Deng, W. Pang, B. Liu, and Y. Li, Anisotropic solitary semivortices in dipolar spinor condensates controlled by the two-dimensional anisotropic spin–orbit coupling, Chaos Solitons Fractals 116, 424 (2018)
https://doi.org/10.1016/j.chaos.2018.10.001
25 S. Liu, B. Liao, J. Kong, P. Chen, J. Lü, Y. Li, C. Huang, and Y. Li, Anisotropic semi vortices in spinor dipolar Bose–Einstein condensates induced by mixture of Rashba–Dresselhaus coupling, J. Phys. Soc. Jpn. 87(9), 094005 (2018)
https://doi.org/10.7566/JPSJ.87.094005
26 W. Pang, H. Deng, B. Liu, J. Xu, and Y. Li, Twodimensional vortex solitons in spin–orbit-coupled dipolar Bose–Einstein condensates, Appl. Sci. (Basel) 8(10), 1771 (2018)
https://doi.org/10.3390/app8101771
27 X. Cui, Spin–orbit-coupling-induced quantum droplet in ultracold Bose–Fermi mixtures, Phys. Rev. A 98(2), 023630 (2018)
https://doi.org/10.1103/PhysRevA.98.023630
28 M. Schmitt, M. Wenzel, F. Böttcher, I. Ferrier-Barbut, and T. Pfau, Self-bound droplets of a dilute magnetic quantum liquid, Nature 539(7628), 259 (2016)
https://doi.org/10.1038/nature20126
29 L. Chomaz, S. Baier, D. Petter, M. J. Mark, F. Wächtler, L. Santos, and F. Ferlaino, Quantum-fluctuation-driven crossover from a dilute Bose–Einstein condensate to a macrodroplet in a dipolar quantum fluid, Phys. Rev. X 6(4), 041039 (2016)
https://doi.org/10.1103/PhysRevX.6.041039
30 C. R. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas, P. Cheiney, and L. Tarruell, Quantum liquid droplets in a mixture of Bose–Einstein condensates, Science 359(6373), 301 (2018)
https://doi.org/10.1126/science.aao5686
31 D. S. Petrov, Quantum mechanical stabilization of a collapsing Bose–Bose mixture, Phys. Rev. Lett. 115(15), 155302 (2015)
https://doi.org/10.1103/PhysRevLett.115.155302
32 D. S. Petrov and G. E. Astrakharchik, Ultradilute lowdimensional liquids, Phys. Rev. Lett. 117(10), 100401 (2016)
https://doi.org/10.1103/PhysRevLett.117.100401
33 P. Zin, M. Pylak, T. Wasak, M. Gajda, and Z. Idziaszek, Quantum Bose–Bose droplets at a dimensional crossover, Phys. Rev. A 98, 051603(R) (2018)
https://doi.org/10.1103/PhysRevA.98.051603
34 Y. Li, Z. Luo, Y. Liu, Z. Chen, C. Huang, S. Fu, H. Tan, and B. A. Malomed, Two-dimensional solitons and quantum droplets supported by competing self- and crossinteractions in spin–orbit-coupled condensates, New J. Phys. 19(11), 113043 (2017)
https://doi.org/10.1088/1367-2630/aa983b
35 T. Ilg, J. Kumlin, L. Santos, D. S. Petrov, and H. P. Büchler, Dimensional crossover for the beyond-mean-field correction in Bose gases, Phys. Rev. A 98(5), 051604 (2018)
https://doi.org/10.1103/PhysRevA.98.051604
36 Y. Li, Z. Chen, Z. Luo, C. Huang, H. Tan, W. Pang, and B. A. Malomed, Two-dimensional vortex quantum droplets, Phys. Rev. A 98(6), 063602 (2018)
https://doi.org/10.1103/PhysRevA.98.063602
37 X. Zhang, X. Xu, Y. Zheng, Z. Chen, B. Liu, Ch. Huang, B. A. Malomed, and Y. Li, Semidiscrete quantum droplets and vortices, Phys. Rev. Lett. 123(13), 133901 (2019)
https://doi.org/10.1103/PhysRevLett.123.133901
38 Z. Lin, X. Xu, Z. Chen, Z. Yan, Z. Mai, and B. Liu, Twodimensional vortex quantum droplets get thick, Commun. Nonlinear Sci. Numer. Simul. 93, 105536 (2020)
https://doi.org/10.1016/j.cnsns.2020.105536
39 B. Liu, H. Zhang, R. Zhong, X. Zhang, X. Qin, X. Huang, Y. Li, and B. A. Malomed, Symmetry breaking of quantum droplets in a dual-core trap, Phys. Rev. A 99(5), 053602 (2019)
https://doi.org/10.1103/PhysRevA.99.053602
40 G. E. Astrakharchik and B. A. Malomed, Dynamics of one-dimensional quantum droplets, Phys. Rev. A 98(1), 013631 (2018)
https://doi.org/10.1103/PhysRevA.98.013631
41 Zh. Zhou, X. Yu, Y. Zou, and H. Zhong, Dynamics of quantum droplets in a one-dimensional optical lattice, Commun. Nonlinear Sci. Numer. Simul. 78, 104881 (2019)
https://doi.org/10.1016/j.cnsns.2019.104881
42 Zh. Zhou, B. Zhu, H. Wang, and H. Zhong, Stability and collisions of quantum droplets in PT-symmetric dualcore couplers, Commun. Nonlinear Sci. Numer. Simul. 91, 105424 (2020)
https://doi.org/10.1016/j.cnsns.2020.105424
43 F. Wächtler and L. Santos, Quantum filaments in dipolar Bose–Einstein condensates, Phys. Rev. A 93, 061603(R) (2016)
https://doi.org/10.1103/PhysRevA.93.061603
44 F. Wächtler and L. Santos, Ground-state properties and elementary excitations of quantum droplets in dipolar Bose–Einstein condensates, Phys. Rev. A 94(4), 043618 (2016)
https://doi.org/10.1103/PhysRevA.94.043618
45 D. Baillie, R. M. Wilson, R. N. Bisset, and P. B. Blakie, Self-bound dipolar droplet: A localized matter wave in free space, Phys. Rev. A 94, 021602(R) (2016)
https://doi.org/10.1103/PhysRevA.94.021602
46 D. Edler, C. Mishra, F. Wächtler, R. Nath, S. Sinha, and L. Santos, Quantum fluctuations in quasi-onedimensional dipolar Bose–Einstein condensates, Phys. Rev. Lett. 119(5), 050403 (2017)
https://doi.org/10.1103/PhysRevLett.119.050403
47 I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, and T. Pfau, Observation of quantum droplets in a strongly dipolar Bose gas, Phys. Rev. Lett. 116(21), 215301 (2016)
https://doi.org/10.1103/PhysRevLett.116.215301
48 I. Ferrier-Barbut, M. Wenze, F. Böttcher, T. Langen, M. Isoard, S. Stringari, and T. Pfau, Scissors mode of dipolar quantum droplets of dysprosium atoms, Phys. Rev. Lett. 120(16), 160402 (2018)
https://doi.org/10.1103/PhysRevLett.120.160402
49 A. Cidrim, F. E. A. dos Santos, E. A. L. Henn, and T. Macrí, Vortices in self-bound dipolar droplets, Phys. Rev. A 98(2), 023618 (2018)
https://doi.org/10.1103/PhysRevA.98.023618
50 R. N. Bisset, R. M. Wilson, D. Baillie, and P. B. Blakie, Ground-state phase diagram of a dipolar condensate with quantum fluctuations, Phys. Rev. A 94(3), 033619 (2016)
https://doi.org/10.1103/PhysRevA.94.033619
51 Y. Sekino and Y. Nishida, Quantum droplet of onedimensional bosons with a three-body attraction, Phys. Rev. A 97, 011602(R) (2018)
https://doi.org/10.1103/PhysRevA.97.011602
52 C. Staudinger, F. Mazzanti, and R. E. Zillich, Self-bound Bose mixtures, Phys. Rev. A 98(2), 023633 (2018)
https://doi.org/10.1103/PhysRevA.98.023633
53 V. Cikojević, K. Dželalija, P. Stipanović, and L. V. Markić, Ultradilute quantum liquid drops, Phys. Rev. B 97, 140502(R) (2018)
https://doi.org/10.1103/PhysRevB.97.140502
54 P. Cheiney, C. R. Cabrera, J. Sanz, B. Naylor, L. Tanzi, and L. Tarruell, Bright soliton to quantum droplet transition in a mixture of Bose–Einstein condensates, Phys. Rev. Lett. 120(13), 135301 (2018)
https://doi.org/10.1103/PhysRevLett.120.135301
55 G. Semeghini, G. Ferioli, L. Masi, C. Mazzinghi, L. Wolswijk, F. Minardi, M. Modugno, G. Modugno, M. Inguscio, and M. Fattori, Self-bound quantum droplets in atomic mixtures, Phys. Rev. Lett. 120(23), 235301 (2018)
https://doi.org/10.1103/PhysRevLett.120.235301
56 A. Cappellaro, T. Macrì, and L. Salasnich, Collective modes across the soliton–droplet crossover in binary Bose mixtures, Phys. Rev. A 97(5), 053623 (2018)
https://doi.org/10.1103/PhysRevA.97.053623
57 A. Pricoupenko and D. S. Petrov, Dimer–dimer zero crossing and dilute dimerized liquid in a one-dimensional mixture, Phys. Rev. A 97(6), 063616 (2018)
https://doi.org/10.1103/PhysRevA.97.063616
58 A. Cappellaro, T. Macrí, G. F. Bertacco, and L. Salasnich, Equation of state and self-bound droplet in Rabicoupled Bose mixtures, Sci. Rep. 7(1), 13358 (2017)
https://doi.org/10.1038/s41598-017-13647-y
59 N. Westerberg, K. E. Wilson, C. W. Duncan, D. Faccio, E. M. Wright, P. Öhberg, and M. Valiente, Self-bound droplets of light with orbital angular momentum, Phys. Rev. A 98(5), 053835 (2018)
https://doi.org/10.1103/PhysRevA.98.053835
60 E. Shamriz, Zh. Chen, B. A. Malomed, and H. Sakaguchi, Singular mean-field states: A brief review of recent results,Condens. Matter 5, 20 (2020)
https://doi.org/10.3390/condmat5010020
61 Z. Luo, W. Pang, B. Liu, Y. Li, and A. B. Malomed, A new form of liquid matter: Quantum droplets, Front. Phys. (2021) (submitted), arXiv: 2009.01061
62 T. D. Lee, K. S. Huang, and C. N. Yang, Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties, Phys. Rev. 106(6), 1135 (1957)
https://doi.org/10.1103/PhysRev.106.1135
63 O. Morsch and M. Oberthaler, Dynamics of Bose– Einstein condensates in optical lattices, Rev. Mod. Phys. 78(1), 179 (2006)
https://doi.org/10.1103/RevModPhys.78.179
64 H. Zhang, F. Chen, C. Yu, L. Sun, and D. Xu, Tunable ground-state solitons in spin–orbit coupling Bose– Einstein condensates in the presence of optical lattices, Chin. Phys. B 26(8), 080304 (2017)
https://doi.org/10.1088/1674-1056/26/8/080304
65 R. Campbell, and G. L. Oppo, Stationary and traveling solitons via local dissipation in Bose–Einstein condensates in ring optical lattices, Phys. Rev. A 94(4), 043626 (2016)
https://doi.org/10.1103/PhysRevA.94.043626
66 X. Zhu, H. Li, Z. Shi, Y. Xiang, and Y. He, Gap solitons in spin–orbit-coupled Bose–Einstein condensates in mixed linear–nonlinear optical lattices, J. Phys. At. Mol. Opt. Phys. 50(15), 155004 (2017)
https://doi.org/10.1088/1361-6455/aa7ba1
67 F. Li, F. Zong, and Y. Wang, Vortical solitons of threedimensional Bose–Einstein condensates under both a bichromatic optical lattice and anharmonic potentials, Chin. Phys. Lett. 30(6), 060306 (2013)
https://doi.org/10.1088/0256-307X/30/6/060306
68 Sh. Chen, Q. Guo, S. Xu, M. R. Belić, Y. Zhao, D. Zhao, and J. He, Vortex solitons in Bose–Einstein condensates with spin–orbit coupling and Gaussian optical lattices, Appl. Math. Lett. 92, 15 (2019)
https://doi.org/10.1016/j.aml.2018.12.023
69 Z. He, Z. Zhang, Sh. Zhu, and W. Liu, Oscillation and fission behavior of bright–bright solitons in two-species Bose–Einstein condensates trapped in an optical potential, Acta Physica Sinica 63, 190502 (2014)
70 Z. Li and Q. Li, Dark soliton interaction of spinor Bose–Einstein condensates in an optical lattice, Ann. Phys. 322(8), 1961 (2007)
https://doi.org/10.1016/j.aop.2006.11.004
71 Ch. Song, J. Li, and F. Zong, Dynamic stability and manipulation of bright matter-wave solitons by optical lattices in Bose–Einstein condensates, Chin. Phys. B 21(2), 020306 (2012)
https://doi.org/10.1088/1674-1056/21/2/020306
72 Z. D. Li, P. B. He, L. Li, J. Q. Liang, and W. M. Liu, Magnetic soliton and soliton collisions of spinor Bose– Einstein condensates in an optical lattice, Phys. Rev. A 71(5), 053611 (2005)
https://doi.org/10.1103/PhysRevA.71.053611
73 A. Muñoz Mateo, V. Delgado, M. Guilleumas, R. Mayol, and J. Brand, Nonlinear waves of Bose–Einstein condensates in rotating ring-lattice potentials, Phys. Rev. A 99(2), 023630 (2019)
https://doi.org/10.1103/PhysRevA.99.023630
74 X. Zhao, Y. Zhang, and W. Liu, Magnetic excitation of ultra-cold atoms trapped in optical lattice, Acta Physica Sinica 68, 043703 (2019)
75 G. Verma, U. D. Rapol, and R. Nath, Generation of dark solitons and their instability dynamics in two-dimensional condensates, Phys. Rev. A 95(4), 043618 (2017)
https://doi.org/10.1103/PhysRevA.95.043618
76 Z. Fan, J. Mai, Z. Chen, M. Xie, and Z. Luo, Matterwave soliton buffer realized by a tailored one-dimensional lattice, Mod. Phys. Lett. B 32(06), 1850070 (2018)
https://doi.org/10.1142/S0217984918500707
77 H. Li, S. Xu, M. R. Belić, and J. Cheng, Threedimensional solitons in Bose–Einstein condensates with spin–orbit coupling and Bessel optical lattices, Phys. Rev. A 98(3), 033827 (2018)
https://doi.org/10.1103/PhysRevA.98.033827
78 Z. Zhou, H. Zhong, B. Zhu, F. Xiao, K. Zhu, and J. Tan, Collision dynamics of dissipative matter-wave solitons in a perturbed optical lattice, Chin. Phys. Lett. 33(11), 110301 (2016)
https://doi.org/10.1088/0256-307X/33/11/110301
79 L. Dong, W. Qi, P. Peng, L. Wang, H. Zhou, and C. Huang, Multi-stable quantum droplets in optical lattice, Nonlinear Dynamics, 2020
https://doi.org/10.1007/s11071-020-05967-y
80 A. Mock, Paritytime-symmetry breaking in two-dimensional photonic crystals: Square lattice, Phys. Rev. A 93(6), 063812 (2016)
https://doi.org/10.1103/PhysRevA.93.063812
81 L. Salasnich and F. Toigo, Pair condensation in the BCS– BEC crossover of ultracold atoms loaded onto a twodimensional square lattice, Phys. Rev. A 86(2), 023619 (2012)
https://doi.org/10.1103/PhysRevA.86.023619
82 R. Zaera, J. Vila, J. Fernandez-Saez, and M. Ruzzene, Propagation of solitons in a two-dimensional nonlinear square lattice, Int. J. Non-linear Mech. 106, 188 (2018)
https://doi.org/10.1016/j.ijnonlinmec.2018.08.002
83 Zh. Niu, Y. Tai, J. Shi, and W. Zhang, Bose–Einstein condensates in an eightfold symmetric optical lattice, Chin. Phys. B 29(5), 056103 (2020)
https://doi.org/10.1088/1674-1056/ab8211
84 H. Chen, Y. Liu, Q. Zhang, Y. Shi, W. Pang, and Y. Li, Dipolar matter-wave solitons in two-dimensional anisotropic discrete lattices, Phys. Rev. A 93(5), 053608 (2016)
https://doi.org/10.1103/PhysRevA.93.053608
85 Y. Gao and S. Chu, Optical induction of non-diffracting discrete photonic lattice, Superlattices Microstruct. 78, 163 (2015)
https://doi.org/10.1016/j.spmi.2014.11.040
86 K. Xie, A. D. Boardman, Q. Li, Z. Shi, H. Jiang, H. Xia, Z. Hu, J. Zhang, W. Zhang, Q. Mao, L. Hu, T. Yang, F. Wen, and E. Wang, Spatial algebraic solitons at the Dirac point in optically induced nonlinear photonic lattices, Opt. Express 25(24), 30349 (2017)
https://doi.org/10.1364/OE.25.030349
87 M. Metcalf, G. Chern, M. D. Ventra, and C. Chien, Matter-wave propagation in optical lattices: Geometrical and flat-band effects, J. Phys. At. Mol. Opt. Phys. 49(7), 075301 (2016)
https://doi.org/10.1088/0953-4075/49/7/075301
88 D. Zhang, Y. Zhang, Z. Zhang, N. Ahmed, Y. Zhang, F. Li, M. R. Belić, and M. Xiao, Unveiling the link between fractional Schrödinger equation and light propagation in honeycomb lattice, Ann. Phys. (Berlin) 529(9), 1700149 (2017)
https://doi.org/10.1002/andp.201700149
89 Q. E. Hoq, P. G. Kevrekidis, and A. R. Bishop, Discrete solitons and vortices in anisotropic hexagonal and honeycomb lattices, J. Opt. 18(2), 024008 (2016)
https://doi.org/10.1088/2040-8978/18/2/024008
90 L. H. Haddad, C. M. Weaver, and L. D. Carr, The nonlinear Dirac equation in Bose–Einstein condensates (I): Relativistic solitons in armchair nanoribbon optical lattices, New J. Phys. 17(6), 063033 (2015)
https://doi.org/10.1088/1367-2630/17/6/063033
91 V. E. Vekslerchik, Solitons of a vector model on the honeycomb lattice, J. Phys. A Math. Theor. 49(45), 455202 (2016)
https://doi.org/10.1088/1751-8113/49/45/455202
92 R. Zhong, N. Huang, H. Li, H. He, J. Lü, C. Huang, and Z. P. Chen, Matter-wave solitons supported by quadrupole quadrupole interactions and anisotropic discrete lattices, Int. J. Mod. Phys. B 32(09), 1850107 (2018)
https://doi.org/10.1142/S0217979218501072
93 Q. Wang and Z. Deng, Multi-pole solitons in nonlocal nonlinear media with fourth-order diffraction, Results in Physics 17, 103056 (2020)
https://doi.org/10.1016/j.rinp.2020.103056
94 H. Wang, X. Ren, J. Huang, and Y. Weng, Evolution of vortex and quadrupole solitons in the complex potentials with saturable nonlinearity, J. Opt. 20(12), 125504 (2018)
https://doi.org/10.1088/2040-8986/aaef26
95 G. Chen, Y. Liu, and H. Wang, Mixed-mode solitons in quadrupolar BECs with spin–orbit coupling, Commun. Nonlinear Sci. Numer. Simul. 48, 318 (2017)
https://doi.org/10.1016/j.cnsns.2016.12.028
96 Y. V. Kartashov and D. A. Zezyulin, Stable multiring and rotating solitons in two-dimensional spin–orbit-coupled, Bose–Einstein condensates with a radially periodic potential, Phys. Rev. Lett. 122(12), 123201 (2019)
https://doi.org/10.1103/PhysRevLett.122.123201
97 C. J. Pethick and H. Smith, Bose–Einstein Condensation in Dilute Gases, New York: Cambridge University Press, 2002
https://doi.org/10.1017/CBO9780511755583
98 L. M. Chiofalo, S. Succi, and P. M. Tosi, Ground state of trapped interacting Bose–Einstein condensates by an explicit imaginary time algorithm, Phys. Rev. E 62(5), 7438 (2000)
https://doi.org/10.1103/PhysRevE.62.7438
99 J. Yang and T. I. Lakoba, Accelerated imaginary-time evolution methods for the computation of solitary waves, Stud. Appl. Math. 120, 265 (2008)
https://doi.org/10.1111/j.1467-9590.2008.00398.x
100 I. M. Merhasin, B. V. Gisin, R. Driben, and B. A. Malomed, Finite-band solitons in the Kronig–Penney model with the cubic–quintic nonlinearity, Phys. Rev. E 71, 016613 (2005)
https://doi.org/10.1103/PhysRevE.71.016613
101 R. Driben, B. A. Malomed, A. Gubeskys, and J. Zyss, Cubic–quintic solitons in the checkerboard potential, Phys. Rev. E 76, 066604 (2007)
https://doi.org/10.1103/PhysRevE.76.066604
[1] Chang-Da Zhou, Zhen Mou, Rui Bao, Zhong Li, Shu-Yun Teng. Compound plasmonic vortex generation based on spiral nanoslits[J]. Front. Phys. , 2021, 16(3): 33503-.
[2] Ya-Nan Qin, Min Li, Yudi Feng, Siqiang Luo, Yueming Zhou, Peixiang Lu. Extracting the phase distribution of the electron wave packet ionized by an elliptically polarized laser pulse[J]. Front. Phys. , 2021, 16(3): 32502-.
[3] Yong-Kai Liu, Hong-Xia Yue, Liang-Liang Xu, Shi-Jie Yang. Vortex-pair states in spin-orbit-coupled Bose–Einstein condensates with coherent coupling[J]. Front. Phys. , 2018, 13(5): 130316-.
[4] Rong-Xuan Zhong, Zhao-Pin Chen, Chun-Qing Huang, Zhi-Huan Luo, Hai-Shu Tan, Boris A. Malomed, Yong-Yao Li. Self-trapping under two-dimensional spin-orbit coupling and spatially growing repulsive nonlinearity[J]. Front. Phys. , 2018, 13(4): 130311-.
[5] Xuzhen Gao, Jianhua Zeng. Two-dimensional matter-wave solitons and vortices in competing cubic-quintic nonlinear lattices[J]. Front. Phys. , 2018, 13(1): 130501-.
[6] Yao-Wu Guo, Wei Li, Yan Chen. Impurity- and magnetic-field-induced quasiparticle states in chiral p-wave superconductors[J]. Front. Phys. , 2017, 12(5): 127403-.
[7] Gui-Hua Chen, Hong-Cheng Wang, Zi-Fa Chen. Discrete vortices on anisotropic lattices[J]. Front. Phys. , 2015, 10(4): 104206-.
[8] Shu-Wei Song, Lin Wen, Chao-Fei Liu, S.-C. Gou, Wu-Ming Liu. Ground states, solitons and spin textures in spin-1 Bose–Einstein condensates[J]. Front. Phys. , 2013, 8(3): 302-318.
[9] A. M. Mounce, S. Oh, W. P. Halperin. Nuclear magnetic resonance studies of vortices in high temperature superconductors[J]. Front. Phys. , 2011, 6(4): 450-462.
[10] Morten Ring Eskildsen. Vortex lattices in type-II superconductors studied by small-angle neutron scattering[J]. Front. Phys. , 2011, 6(4): 398-409.
[11] Aron J. Beekman, Jan Zaanen. Electrodynamics of Abrikosov vortices: the field theoretical formulation[J]. Front. Phys. , 2011, 6(4): 357-369.
[12] LIU Xiong-jun, LIU Xin, KWEK Leong-Chuan, OH ChooHiap. Manipulating atomic states via optical orbital angular-momentum[J]. Front. Phys. , 2008, 3(2): 113-125.
[13] XU Zhu-an, SHEN Jing-qin, ZHU Zeng-wei. The vortex-like excitations detected by Nernst signals in high-Tc superconductors[J]. Front. Phys. , 2006, 1(3): 344-350.
[14] WANG Wei-xian, ZHANG Yu-heng. Experimental demonstration of vortex pancake in high temperature superconductor[J]. Front. Phys. , 2006, 1(3): 357-361.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed