Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (2) : 21503    https://doi.org/10.1007/s11467-021-1144-z
RESEARCH ARTICLE
Sender-controlled measurement-device-independent multiparty quantum communication
Yuyan Wei1, Siying Wang1, Yajing Zhu1, Tao Li1,2()
1. School of Science, Nanjing University of Science and Technology, Nanjing 210094, China
2. MIIT Key Laboratory of Semiconductor Microstructure, Nanjing University of Science and Technology, Nanjing 210094, China
 Download: PDF(745 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Multiparty quantum communication is an important branch of quantum networks. It enables private information transmission with information-theoretic security among legitimate parties. We propose a sender-controlled measurement-device-independent multiparty quantum communication protocol. The sender Alice divides a private message into several parts and delivers them to different receivers for secret sharing with imperfect measurement devices and untrusted ancillary nodes. Furthermore, Alice acts as an active controller and checks the security of quantum channels and the reliability of each receiver before she encodes her private message for secret sharing, which makes the protocol convenient for multiparity quantum communication.

Keywords measurement-device-independent      sender-controlled      deterministic multiparty quantum communication     
Corresponding Author(s): Tao Li   
Issue Date: 03 March 2022
 Cite this article:   
Yuyan Wei,Siying Wang,Yajing Zhu, et al. Sender-controlled measurement-device-independent multiparty quantum communication[J]. Front. Phys. , 2022, 17(2): 21503.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-021-1144-z
https://academic.hep.com.cn/fop/EN/Y2022/V17/I2/21503
1 N. Gisin , G. Ribordy , W. Tittel , and H. Zbinden , Quantum cryptography, Rev. Mod. Phys. 74 (1), 145 (2002)
https://doi.org/10.1103/RevModPhys.74.145
2 Z. X. Cui , W. Zhong , L. Zhou , and Y. B. Sheng , Measurement-device-independent quantum key distribution with hyper-encoding, Sci. China Phys. Mech. Astron. 62 (11), 110311 (2019)
https://doi.org/10.1007/s11433-019-1438-6
3 T. Shang , Y. Tang , R. Chen , and J. Liu , Full quantum oneway function for quantum cryptography, Quantum Eng. 2 (1), e32 (2020)
https://doi.org/10.1002/que2.32
4 Y. F. Yan , L. Zhou , W. Zhong , and Y. B. Sheng , Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon, Front. Phys. 16 (1), 11501 (2021)
https://doi.org/10.1007/s11467-020-1005-1
5 Y. Zhang and Q. Ni , Design and analysis of random multiple access quantum key distribution, Quantum Eng. 2 (1), e31 (2020)
https://doi.org/10.1002/que2.31
6 G. L. Long and X. S. Liu , Theoretically efficient high-capacity quantum-key-distribution scheme, Phys. Rev. A 65 (3), 032302 (2002)
https://doi.org/10.1103/PhysRevA.65.032302
7 F. G. Deng , G. L. Long , and X. S. Liu , Two-step quantum direct communication protocol using the Einstein-Podolsky–Rosen pair block, Phys. Rev. A 68 (4), 042317 (2003)
https://doi.org/10.1103/PhysRevA.68.042317
8 C. Wang , F. G. Deng , Y. S. Li , X. S. Liu , and G. L. Long , Quantum secure direct communication with high-dimension quantum superdense coding, Phys. Rev. A 71 (4), 044305 (2005)
https://doi.org/10.1103/PhysRevA.71.044305
9 J. Y. Hu , B. Yu , M. Y. Jing , L. T. Xiao , S. T. Jia , G. Q. Qin , and G. L. Long , Experimental quantum secure direct communication with single photons, Light Sci. Appl. 5 (9), e16144 (2016)
https://doi.org/10.1038/lsa.2016.144
10 W. Zhang , D. S. Ding , Y. B. Sheng , L. Zhou , B. S. Shi , and G. C. Guo , Quantum secure direct communication with quantum memory, Phys. Rev. Lett. 118 (22), 220501 (2017)
https://doi.org/10.1103/PhysRevLett.118.220501
11 S. S. Chen , L. Zhou , W. Zhong , and Y. B. Sheng , Threestep three-party quantum secure direct communication, Sci. China Phys. Mech. Astron. 61 (9), 90312 (2018)
https://doi.org/10.1007/s11433-018-9224-5
12 L. Y. Li , T. J. Wang , and C. Wang , The analysis of high-capacity quantum secure direct communication using polarization and orbital angular momentum of photons, Mod. Phys. Lett. B 34 (02), 2050017 (2020)
https://doi.org/10.1142/S0217984920500177
13 T. Li and G. L. Long , Quantum secure direct communication based on single-photon Bell-state measurement, New J. Phys. 22 (6), 063017 (2020)
https://doi.org/10.1088/1367-2630/ab8ab5
14 Z. D. Ye , D. Pan , Z. Sun , C. G. Du , L. G. Yin , and G. L. Long , Generic security analysis framework for quantum secure direct communication, Front. Phys. 16 (2), 21503 (2021)
https://doi.org/10.1007/s11467-020-1025-x
15 M. Hillery , V. Buzek , and A. Berthiaume , Quantum secret sharing, Phys. Rev. A 59 (3), 1829 (1999)
https://doi.org/10.1103/PhysRevA.59.1829
16 R. Cleve , D. Gottesman , and H. K. Lo , How to share a quantum secret, Phys. Rev. Lett. 83 (3), 648 (1999)
https://doi.org/10.1103/PhysRevLett.83.648
17 W. Tittel , H. Zbinden , and N. Gisin , Experimental demonstration of quantum secret sharing, Phys. Rev. A 63 (4), 042301 (2001)
https://doi.org/10.1103/PhysRevA.63.042301
18 Y. A. Chen , A. N. Zhang , Z. Zhao , X. Q. Zhou , C. Y. Lu , C. Z. Peng , T. Yang , and J. W. Pan , Experimental quantum secret sharing and third-man quantum cryptography, Phys. Rev. Lett. 95 (20), 200502 (2005)
https://doi.org/10.1103/PhysRevLett.95.200502
19 T. Gao , F. L. Yan , and Z. X. Wang , Deterministic secure direct communication using GH Z states and swapping quantum entanglement, J. Phys. A 38 (25), 5761 (2005)
https://doi.org/10.1088/0305-4470/38/25/011
20 C. H. Bennett and G. Brassard , in: Proceedings of the IE EE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984, pp 175- 179 (IEEE, New York, 1984)
21 H. K. Lo , M. Curty , and K. Tamaki , Secure quantum key distribution, Nat. Photonics 8 (8), 595 (2014)
https://doi.org/10.1038/nphoton.2014.149
22 F. Xu , X. Ma , Q. Zhang , H. K. Lo , and J. W. Pan , Secure quantum key distribution with realistic devices, Rev. Mod. Phys. 92 (2), 025002 (2020)
https://doi.org/10.1103/RevModPhys.92.025002
23 T. Li , Z. Gao , and Z. Li , Measurement-device-independent quantum secure direct communication: Direct quantum communication with imperfect measurement device and untrusted operator, EPL 131 (6), 60001 (2020)
https://doi.org/10.1209/0295-5075/131/60001
24 A. Acín , N. Brunner , N. Gisin , S. Massar , S. Pironio , and V. Scarani , Device-independent security of quantum cryptography against collective attacks, Phys. Rev. Lett. 98 (23), 230501 (2007)
https://doi.org/10.1103/PhysRevLett.98.230501
25 C. C. W. Lim , C. Portmann , M. Tomamichel , R. Renner , and N. Gisin , Device-independent quantum key distribution with local Bell test, Phys. Rev. X 3 (3), 031006 (2013)
https://doi.org/10.1103/PhysRevX.3.031006
26 L. Zhou , Y. B. Sheng , and G. L. Long , Device-independent quantum secure direct communication against collective attacks, Sci. Bull. (Beijing) 65 (1), 12 (2020)
https://doi.org/10.1016/j.scib.2019.10.025
27 H. K. Lo , M. Curty , and B. Qi , Measurement-device-independent quantum key distribution, Phys. Rev. Lett. 108 (13), 130503 (2012)
https://doi.org/10.1103/PhysRevLett.108.130503
28 P. H. Niu , Z. R. Zhou , Z. S. Lin , Y. B. Sheng , L. G. Yin , and G. L. Long , Measurement-device-independent quantum communication without encryption, Sci. Bull. (Beijing) 63 (20), 1345 (2018)
https://doi.org/10.1016/j.scib.2018.09.009
29 Z. R. Zhou , Y. B. Sheng , P. H. Niu , L. G. Yin , G. L. Long , and L. Hanzo , Measurement-device-independent quantum secure direct communication, Sci. China Phys. Mech. Astron. 63 (3), 230362 (2020)
https://doi.org/10.1007/s11433-019-1450-8
30 Z. Gao , T. Li , and Z. Li , Long-distance measurement-device-independent quantum secure direct communication, EPL 125 (4), 40004 (2019)
https://doi.org/10.1209/0295-5075/125/40004
31 Z. K. Zou , L. Zhou , W. Zhong , and Y. B. Sheng , Measurement-device-independent quantum secure direct communication of multiple degrees of freedom of a single photon, EPL 131 (4), 40005 (2020)
https://doi.org/10.1209/0295-5075/131/40005
32 S. Wehner , D. Elkouss , and R. Hanson , Quantum internet: A vision for the road ahead, Science 362, eaam928 (2018)
https://doi.org/10.1126/science.aam9288
33 W. Qin and F. Nori , Controllable single-photon transport between remote coupled-cavity arrays, Phys. Rev. A 93 (3), 032337 (2016)
https://doi.org/10.1103/PhysRevA.93.032337
34 Z. Qi , Y. Li , Y. Huang , J. Feng , Y. Zheng , and X. Chen , A 15-user quantum secure direct communication network, Light Sci. Appl. 10 (1), 183 (2021)
https://doi.org/10.1038/s41377-021-00634-2
35 A. Karlsson , M. Koashi , and N. Imoto , Quantum entanglement for secret sharing and secret splitting, Phys. Rev. A 59 (1), 162 (1999)
https://doi.org/10.1103/PhysRevA.59.162
36 L. Xiao , G. L. Long , F. G. Deng , and J. W. Pan , Efficient multiparty quantum-secret-sharing schemes, Phys. Rev. A 69 (5), 052307 (2004)
https://doi.org/10.1103/PhysRevA.69.052307
37 H. K. Lo , H. F. Chau , and M. Ardehali , Efficient quantum key distribution scheme and a proof of its unconditional security, J. Cryptol. 18 (2), 133 (2005)
https://doi.org/10.1007/s00145-004-0142-y
38 P. Xue , K. Wang , and X. Wang , Efficient multiuser quantum cryptography network based on entanglement, Sci. Rep. 7 (1), 45928 (2017)
https://doi.org/10.1038/srep45928
39 Y. Li , K. Zhang , and K. Peng , Multiparty secret sharing of quantum information based on entanglement swapping, Phys. Lett. A 324 (5–6), 420 (2004)
https://doi.org/10.1016/j.physleta.2004.03.034
40 Z. J. Zhang , Y. Li , and Z. X. Man , Multiparty quantum secret sharing, Phys. Rev. A 71 (4), 044301 (2005)
https://doi.org/10.1103/PhysRevA.71.044301
41 Z. J. Zhang , Multiparty quantum secret sharing of secure direct communication, Phys. Lett. A 342 (1-2), 60 (2005)
https://doi.org/10.1016/j.physleta.2005.05.049
42 X. Yang , K. Wei , H. Ma , H. Liu , Z. Yin , Z. Cao , and L. Wu , Detector-device-independent quantum secret sharing with source flaws, Sci. Rep. 8 (1), 5728 (2018)
https://doi.org/10.1038/s41598-018-23876-4
43 C. Y. Huang , N. Lambert , C. M. Li , Y. T. Lu , and F. Nori , Securing quantum networking tasks with multipartite Einstein–Podolsky–Rosen steering, Phys. Rev. A 99 (1), 012302 (2019)
https://doi.org/10.1103/PhysRevA.99.012302
44 Y. Xiang , I. Kogias , G. Adesso , and Q. He , Multi-partite Gaussian steering: Monogamy constraints and quantum cryptography applications, Phys. Rev. A 95 (1), 010101 (2017)
https://doi.org/10.1103/PhysRevA.95.010101
45 I. Kogias , Y. Xiang , Q. He , and G. Adesso , Unconditional security of entanglement-based continuous-variable quantum secret sharing, Phys. Rev. A 95 (1), 012315 (2017)
https://doi.org/10.1103/PhysRevA.95.012315
46 M. Habibidavijani , and B. C. Sanders , Continuous-variable ramp quantum secret sharing with Gaussian states and operations, New J. Phys. 21 (11), 113023 (2019)
https://doi.org/10.1088/1367-2630/ab4d9c
47 Y. Fu , H. L. Yin , T. Y. Chen , and Z. B. Chen , Long-distance measurement-device-independent multiparty quantum communication, Phys. Rev. Lett. 114 (9), 090501 (2015)
https://doi.org/10.1103/PhysRevLett.114.090501
48 Z. Gao , T. Li , and Z. Li , Deterministic measurementdevice-independent quantum secret sharing, Sci. China Phys. Mech. Astron. 63 (12), 120311 (2020)
https://doi.org/10.1007/s11433-020-1603-7
49 J. W. Pan and A. Zeilinger , Greenberger–Horne–Zeilingerstate analyzer, Phys. Rev. A 57 (3), 2208 (1998)
https://doi.org/10.1103/PhysRevA.57.2208
50 C. Y. Lu , T. Yang , and J. W. Pan , Experimental multiparticle entanglement swapping for quantum networking, Phys. Rev. Lett. 103 (2), 020501 (2009)
https://doi.org/10.1103/PhysRevLett.103.020501
51 P. Kok , W. J. Munro , K. Nemoto , T. C. Ralph , J. P. Dowling , and G. J. Milburn , Linear optical quantum computing with photonic qubits, Rev. Mod. Phys. 79 (1), 135 (2007)
https://doi.org/10.1103/RevModPhys.79.135
52 F. G. Deng , X. H. Li , H. Y. Zhou , and Z. J. Zhang , Improving the security of multiparty quantum secret sharing against Trojan horse attack, Phys. Rev. A 72 (4), 044302 (2005)
https://doi.org/10.1103/PhysRevA.72.044302
53 Y. G. Yang , Y. C. Wang , Y. L. Yang , X. B. Chen , D. Li , Y. H. Zhou , and W. M. Shi , Participant attack on the deterministic measurement-device-independent quantum secret sharing protocol, Sci. China Phys. Mech. Astron. 64 (6), 260321 (2021)
https://doi.org/10.1007/s11433-021-1692-5
54 Y. G. Yang , X. X. Liu , S. Gao , X. B. Chen , D. Li , Y. H. Zhou , and W. M. Shi , A stronger participant attack on the measurement-device-independent protocol for deterministic quantum secret sharing, Quantum Inform. Process. 20 (7), 223 (2021)
https://doi.org/10.1007/s11128-021-03141-w
55 T. Gao , F. L. Yan , and Z. X. Wang , Controlled quantum teleportation and secure direct communication, Chin. Phys. (Beijing) 14 (5), 893 (2005)
https://doi.org/10.1088/1009-1963/14/5/006
56 H. S. Zhong , Y. Li , W. Li , L. C. Peng , Z. E. Su , Y. Hu , Y. M. He , X. Ding , W. Zhang , H. Li , L. Zhang , Z. Wang , L. You , X. L. Wang , X. Jiang , L. Li , Y. A. Chen , N. L. Liu , C. Y. Lu , and J. W. Pan , 12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion, Phys. Rev. Lett. 121 (25), 250505 (2018)
https://doi.org/10.1103/PhysRevLett.121.250505
57 T. Li , A. Miranowicz , K. Xia , and F. Nori , Resource-efficient analyzer of Bell and Greenberger–Horne–Zeilinger states of multiphoton systems, Phys. Rev. A 100 (5), 052302 (2019)
https://doi.org/10.1103/PhysRevA.100.052302
58 J. Qian , X. L. Feng , and S. Q. Gong , Universal Greenberger–Horne–Zeilinger-state analyzer based on twophoton polarization parity detection, Phys. Rev. A 72 (5), 052308 (2005)
https://doi.org/10.1103/PhysRevA.72.052308
59 Y. Xia , Y. H. Kang , and P. M. Lu , Complete polarized photons Bell-states and Greenberger–Horne–Zeilingerstates analysis assisted by atoms, J. Opt. Soc. Am. B 31 (9), 2077 (2014)
https://doi.org/10.1364/JOSAB.31.002077
60 D. E. Chang , V. Vuletić , and M. D. Lukin , Quantum nonlinear optics — photon by photon, Nat. Photonics 8 (9), 685 (2014)
https://doi.org/10.1038/nphoton.2014.192
61 T. Li , A. Miranowicz , X. Hu , K. Xia , and F. Nori , Quantum memory and gates using a Λ-type quantum emitter coupled to a chiral waveguide, Phys. Rev. A 97 (6), 062318 (2018)
https://doi.org/10.1103/PhysRevA.97.062318
62 G. Z. Song , E. Munro , W. Nie , L. C. Kwek , F. G. Deng , and G. L. Long , Photon transport mediated by an atomic chain trapped along a photonic crystal waveguide, Phys. Rev. A 98 (2), 023814 (2018)
https://doi.org/10.1103/PhysRevA.98.023814
63 W. Qin , A. Miranowicz , P. B. Li , X. Y. Lü , J. Q. You , and F. Nori , Exponentially enhanced light–matter interaction, cooperativities, and steady-state entanglement using parametric amplification, Phys. Rev. Lett. 120 (9), 093601 (2018)
https://doi.org/10.1103/PhysRevLett.120.093601
64 P. L. Guo , C. Y. Gao , T. Li , X. H. Li , and F. G. Deng , Quantum error rejection for faithful quantum communication over noise channels, Sci. China Phys. Mech. Astron. 62 (11), 110301 (2019)
https://doi.org/10.1007/s11433-019-9396-8
65 L. Aolita and S. P. Walborn , Quantum communication without alignment using multiple-qubit single-photon states, Phys. Rev. Lett. 98 (10), 100501 (2007)
https://doi.org/10.1103/PhysRevLett.98.100501
66 W. Qin , C. Wang , and X. Zhang , Protected quantum-state transfer in decoherence-free subspaces, Phys. Rev. A 91 (4), 042303 (2015)
https://doi.org/10.1103/PhysRevA.91.042303
67 N. Shammah , S. Ahmed , N. Lambert , S. De Liberato , and F. Nori , Open quantum systems with local and collective incoherent processes: Efficient numerical simulations using permutational invariance, Phys. Rev. A 98 (6), 063815 (2018)
https://doi.org/10.1103/PhysRevA.98.063815
68 R. Qi , Z. Sun , Z. Lin , P. Niu , W. Hao , L. Song , Q. Huang , J. Gao , L. Yin , and G. L. Long , Implementation and security analysis of practical quantum secure direct communication, Light Sci. Appl. 8 (1), 22 (2019)
https://doi.org/10.1038/s41377-019-0132-3
69 F. Massa , A. Moqanaki , Ä. Baumeler , F. Del Santo , J. A. Kettlewell , B. Dakić , and P. Walther , Experimental two-way communication with one photon, Adv. Quantum Technol. 2 (11), 1900050 (2019)
https://doi.org/10.1002/qute.201900050
70 Z. Gao , M. Ma , T. Liu , J. Long , T. Li , and Z. Li , Free-space quantum secure direct communication based on decoherence-free space, J. Opt. Soc. Am. B 37 (10), 3028 (2020)
https://doi.org/10.1364/JOSAB.397973
71 F. G. Deng and G. L. Long , Secure direct communication with a quantum one-time pad, Phys. Rev. A 69 (5), 052319 (2004)
https://doi.org/10.1103/PhysRevA.69.052319
72 J. Wu , Z. Lin , L. Yin , and G. L. Long , Security of quantum secure direct communication based on Wyner’s wiretap channel theory, Quantum Eng. 1 (4), e26 (2019)
https://doi.org/10.1002/que2.26
[1] Yu-Fei Yan, Lan Zhou, Wei Zhong, Yu-Bo Sheng. Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon[J]. Front. Phys. , 2021, 16(1): 11501-.
[2] Xiao-Dong Wu, Yi-Jun Wang, Duan Huang, Ying Guo. Simultaneous measurement-device-independent continuous variable quantum key distribution with realistic detector compensation[J]. Front. Phys. , 2020, 15(3): 31601-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed