|
|
Power-law scalings in weakly-interacting Bose gases at quantum criticality |
Ming-Cheng Liang1,2, Zhi-Xing Lin1, Yang-Yang Chen3,4, Xi-Wen Guan3,5, Xibo Zhang1,2,6( ) |
1. International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China 2. Collaborative Innovation Center of Quantum Matter, Beijing 100871, China 3. State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China 4. Institute of Modern Physics, Northwest University, Xi'an 710127, China 5. Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200, Australia 6. Beijing Academy of Quantum Information Sciences, Beijing 100193, China |
|
|
Abstract Weakly interacting quantum systems in low dimensions have been investigated for a long time, but there still remain a number of open questions and a lack of explicit expressions of physical properties of such systems. In this work, we find power-law scalings of thermodynamic observables in low-dimensional interacting Bose gases at quantum criticality. We present a physical picture for these systems with the repulsive interaction strength approaching zero; namely, the competition between the kinetic and interaction energy scales gives rise to power-law scalings with respect to the interaction strength in characteristic thermodynamic observables. This prediction is supported by exact Bethe ansatz solutions in one dimension, demonstrating a simple 1/3-power-law scaling of the critical entropy per particle. Our method also yields results in agreement with a non-perturbative renormalization-group computation in two dimensions. These results provide a new perspective for understanding many-body phenomena induced by weak interactions in quantum gases.
|
Keywords
power-law scaling
quantum criticality
Bose gases
weak interaction
non-perturbative methods
|
Corresponding Author(s):
Xibo Zhang
|
Issue Date: 15 July 2022
|
|
1 |
D. Lee T. , Huang K. , N. Yang C. . Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties. Phys. Rev., 1957, 106( 6): 1135
https://doi.org/10.1103/PhysRev.106.1135
|
2 |
N. Yang C. , P. Yang C. . Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction. J. Math. Phys., 1969, 10( 7): 1115
https://doi.org/10.1063/1.1664947
|
3 |
Dalfovo F. , Giorgini S. , P. Pitaevskii L. , Stringari S. . Theory of Bose−Einstein condensation in trapped gases. Rev. Mod. Phys., 1999, 71( 3): 463
https://doi.org/10.1103/RevModPhys.71.463
|
4 |
Prokof’ev N. , Ruebenacker O. , Svistunov B. . Critical point of a weakly interacting two-dimensional Bose gas. Phys. Rev. Lett., 2001, 87( 27): 270402
https://doi.org/10.1103/PhysRevLett.87.270402
|
5 |
Prokof’ev N. , Svistunov B. . Two-dimensional weakly interacting Bose gas in the fluctuation region. Phys. Rev. A, 2002, 66( 4): 043608
https://doi.org/10.1103/PhysRevA.66.043608
|
6 |
Floerchinger S. , Wetterich C. . Nonperturbative thermodynamics of an interacting Bose gas. Phys. Rev. A, 2009, 79( 6): 063602
https://doi.org/10.1103/PhysRevA.79.063602
|
7 |
Z. Jiang Y. , Y. Chen Y. , W. Guan X. . Understanding many-body physics in one dimension from the Lieb–Liniger model. Chin. Phys. B, 2015, 24( 5): 050311
https://doi.org/10.1088/1674-1056/24/5/050311
|
8 |
Chin C. . Ultracold atomic gases going strong. Natl. Sci. Rev., 2016, 3( 2): 168
https://doi.org/10.1093/nsr/nwv073
|
9 |
Bettelheim E. . The Whitham approach to the c → 0 limit of the Lieb–Liniger model and generalized hydrodynamics. J. Phys. A Math. Theor., 2020, 53( 20): 205204
https://doi.org/10.1088/1751-8121/ab8676
|
10 |
Posazhennikova A. . Colloquium: Weakly interacting, dilute Bose gases in 2D. Rev. Mod. Phys., 2006, 78( 4): 1111
https://doi.org/10.1103/RevModPhys.78.1111
|
11 |
W. Guan X. , T. Batchelor M. , Lee C. . Fermi gases in one dimension: From Bethe ansatz to experiments. Rev. Mod. Phys., 2013, 85( 4): 1633
https://doi.org/10.1103/RevModPhys.85.1633
|
12 |
Gaudin M. . Un systeme a une dimension de fermions en interaction. Phys. Lett. A, 1967, 24( 1): 55
https://doi.org/10.1016/0375-9601(67)90193-4
|
13 |
N. Yang C. . Some exact results for the many-body problem in one dimension with repulsive δ-function interaction. Phys. Rev. Lett., 1967, 19( 23): 1312
https://doi.org/10.1103/PhysRevLett.19.1312
|
14 |
Takahashi M. . Ground state energy of the one-dimensional electron system with short-range interaction (I). Prog. Theor. Phys., 1970, 44 : 348
https://doi.org/10.1143/PTP.44.348
|
15 |
Iida T. , Wadati M. . Exact analysis of a one-dimensional attractive δ-function Fermi gas with arbitrary spin polarization. J. Low Temp. Phys., 2007, 148( 3−4): 417
https://doi.org/10.1007/s10909-007-9409-7
|
16 |
W. Guan X. . Polaron, molecule and pairing in one-dimensional spin-1/2 Fermi gas with an attractive delta-function interaction. Front. Phys., 2012, 7( 1): 8
https://doi.org/10.1007/s11467-011-0213-0
|
17 |
W. Guan X. , Q. Ma Z. . One-dimensional multicomponent fermions with δ-function interaction in strong- and weak-coupling limits: Two-component Fermi gas. Phys. Rev. A, 2012, 85( 3): 033632
https://doi.org/10.1103/PhysRevA.85.033632
|
18 |
W. Guan X. , Q. Ma Z. , Wilson B. . One-dimensional multicomponent fermions with δ -function interaction in strong- and weak-coupling limits: κ-component Fermi gas. Phys. Rev. A, 2012, 85( 3): 033633
https://doi.org/10.1103/PhysRevA.85.033633
|
19 |
A. Tracy C. , Widom H. . On the ground state energy of the δ-function Bose gas. J. Phys. A Math. Theor., 2016, 49( 29): 294001
https://doi.org/10.1088/1751-8113/49/29/294001
|
20 |
A. Tracy C. , Widom H. . On the ground state energy of the δ-function Fermi gas. J. Math. Phys., 2016, 57( 10): 103301
https://doi.org/10.1063/1.4964252
|
21 |
Prolhac S. . Ground state energy of the δ-Bose and Fermi gas at weak coupling from double extrapolation. J. Phys. A Math. Theor., 2017, 50( 14): 144001
https://doi.org/10.1088/1751-8121/aa5e00
|
22 |
Sachdev S., Quantum Phase Transitions, 2nd Ed., Cambridge University Press, 2011
|
23 |
G. Batrouni G. , T. Scalettar R. , T. Zimanyi G. . Quantum critical phenomena in one-dimensional Bose systems. Phys. Rev. Lett., 1990, 65( 14): 1765
https://doi.org/10.1103/PhysRevLett.65.1765
|
24 |
Bloch I. , Dalibard J. , Zwerger W. . Many-body physics with ultracold gases. Rev. Mod. Phys., 2008, 80( 3): 885
https://doi.org/10.1103/RevModPhys.80.885
|
25 |
A. Cazalilla M. , Citro R. , Giamarchi T. , Orignac E. , Rigol M. . One dimensional bosons: From condensed matter systems to ultracold gases. Rev. Mod. Phys., 2011, 83( 4): 1405
https://doi.org/10.1103/RevModPhys.83.1405
|
26 |
Chin C. Universal Themes of Bose−Einstein Condensation in: by D. Snoke edited Proukakis N. Littlewood P., Cambridge University Press, 2017, Chapter 9, pp 175– 195
|
27 |
L. Ho T. . Universal thermodynamics of degenerate quantum gases in the unitarity limit. Phys. Rev. Lett., 2004, 92( 9): 090402
https://doi.org/10.1103/PhysRevLett.92.090402
|
28 |
L. Ho T. , Zhou Q. . Obtaining the phase diagram and thermodynamic quantities of bulk systems from the densities of trapped gases. Nat. Phys., 2010, 6( 2): 131
https://doi.org/10.1038/nphys1477
|
29 |
Pilati S. , Giorgini S. , Prokof’ev N. . Critical temperature of interacting Bose gases in two and three dimensions. Phys. Rev. Lett., 2008, 100( 14): 140405
https://doi.org/10.1103/PhysRevLett.100.140405
|
30 |
Rançon A. , Dupuis N. . Universal thermodynamics of a two-dimensional Bose gas. Phys. Rev. A, 2012, 85( 6): 063607
https://doi.org/10.1103/PhysRevA.85.063607
|
31 |
Kinast J. , Turlapov A. , E. Thomas J. , Chen Q. , Stajic J. , Levin K. . Heat capacity of a strongly interacting Fermi gas. Science, 2005, 307( 5713): 1296
https://doi.org/10.1126/science.1109220
|
32 |
Luo L. , E. Thomas J. . Thermodynamic measurements in a strongly interacting Fermi gas. J. Low Temp. Phys., 2009, 154( 1−2): 1
https://doi.org/10.1007/s10909-008-9850-2
|
33 |
Nascimbène S. , Navon N. , J. Jiang K. , Chevy F. , Salomon C. . Exploring the thermodynamics of a universal Fermi gas. Nature, 2010, 463( 7284): 1057
https://doi.org/10.1038/nature08814
|
34 |
Navon N. , Nascimbene S. , Chevy F. , Salomon C. . The equation of state of a low-temperature Fermi gas with tunable interactions. Science, 2010, 328( 5979): 729
https://doi.org/10.1126/science.1187582
|
35 |
L. Hung C. , Zhang X. , Gemelke N. , Chin C. . Observation of scale invariance and universality in two-dimensional Bose gases. Nature, 2011, 470( 7333): 236
https://doi.org/10.1038/nature09722
|
36 |
Yefsah T. , Desbuquois R. , Chomaz L. , J. Gunter K. , Dalibard J. . Exploring the thermodynamics of a two-dimensional Bose gas. Phys. Rev. Lett., 2011, 107( 13): 130401
https://doi.org/10.1103/PhysRevLett.107.130401
|
37 |
J. H. Ku M. , T. Sommer A. , W. Cheuk L. , W. Zwierlein M. . Revealing the superfluid lambda transition in the universal thermodynamics of a unitary Fermi gas. Science, 2012, 335( 6068): 563
https://doi.org/10.1126/science.1214987
|
38 |
Zhang X. , L. Hung C. , K. Tung S. , Chin C. . Observation of quantum criticality with ultracold atoms in optical lattices. Science, 2012, 335( 6072): 1070
https://doi.org/10.1126/science.1217990
|
39 |
C. Ha L. , L. Hung C. , Zhang X. , Eismann U. , K. Tung S. , Chin C. . Strongly interacting two-dimensional Bose gases. Phys. Rev. Lett., 2013, 110( 14): 145302
https://doi.org/10.1103/PhysRevLett.110.145302
|
40 |
Vogler A. Labouvie R. Stubenrauch F. Barontini G. Guarrera V. Ott H., Thermodynamics of strongly correlated one-dimensional Bose gases, Phys. Rev. A 88, 031603(R) ( 2013)
|
41 |
Yang B. , Y. Chen Y. , G. Zheng Y. , Sun H. , N. Dai H. , W. Guan X. , S. Yuan Z. , W. Pan J. . Quantum criticality and the Tomonaga−Luttinger liquid in one-dimensional Bose gases. Phys. Rev. Lett., 2017, 119( 16): 165701
https://doi.org/10.1103/PhysRevLett.119.165701
|
42 |
Zhang X. , Y. Chen Y. , X. Liu L. , J. Deng Y. , W. Guan X. . Interaction-induced particle−hole symmetry breaking and fractional exclusion statistics. Natl. Sci. Rev.,, 2022, nwac027
https://doi.org/10.1093/nsr/nwac027
|
43 |
P. A. Fisher M. , B. Weichman P. , Grinstein G. , S. Fisher D. . Boson localization and the superfluid−insulator transition. Phys. Rev. B, 1989, 40( 1): 546
https://doi.org/10.1103/PhysRevB.40.546
|
44 |
A. Khare, Fractional Statistics and Quantum Theory, World Scientific Publishing Co. Pte. Ltd., 5 Toh Tuck Link, Singapore 596224, 2005, Chapter 5, 2nd Ed
|
45 |
Grüter P. , Ceperley D. , Laloe F. . Critical temperature of Bose−Einstein condensation of hard-sphere gases. Phys. Rev. Lett., 1997, 79( 19): 3549
https://doi.org/10.1103/PhysRevLett.79.3549
|
46 |
H. Lieb E. , Liniger W. . Exact analysis of an interacting Bose gas (I): The general solution and the ground state. Phys. Rev., 1963, 130( 4): 1605
https://doi.org/10.1103/PhysRev.130.1605
|
47 |
W. Guan X. , T. Batchelor M. . Polylogs, thermodynamics and scaling functions of one-dimensional quantum many-body systems. J. Phys. A Math. Theor., 2011, 44( 10): 102001
https://doi.org/10.1088/1751-8113/44/10/102001
|
48 |
Tonks L. . The complete equation of state of one, two and three-dimensional gases of hard elastic spheres. Phys. Rev., 1936, 50( 10): 955
https://doi.org/10.1103/PhysRev.50.955
|
49 |
Girardeau M. . Relationship between systems of impenetrable bosons and fermions in one dimension. J. Math. Phys., 1960, 1( 6): 516
https://doi.org/10.1063/1.1703687
|
50 |
Paredes B. , Widera A. , Murg V. , Mandel O. , Folling S. , Cirac I. , V. Shlyapnikov G. , W. Hansch T. , Bloch I. . Tonks–Girardeau gas of ultracold atoms in an optical lattice. Nature, 2004, 429( 6989): 277
https://doi.org/10.1038/nature02530
|
51 |
Kinoshita T. , Wenger T. , S. Weiss D. . Observation of a one-dimensional Tonks−Girardeau gas. Science, 2004, 305( 5687): 1125
https://doi.org/10.1126/science.1100700
|
52 |
Supporting information is available as supplementary materials.
|
53 |
G. Wilson K. . The renormalization group: Critical phenomena and the Kondo problem. Rev. Mod. Phys., 1975, 47( 4): 773
https://doi.org/10.1103/RevModPhys.47.773
|
54 |
Costello K., Renormalization and Effective Field Theory, American Mathematical Society, Providence, Rhode Island, 2011
|
55 |
Passarino G. . Veltman, renormalizability, calculability. Acta Phys. Pol. B, 2021, 52( 6): 533
https://doi.org/10.5506/APhysPolB.52.533
|
56 |
Wolf B. , Tsui Y. , Jaiswal-Nagar D. , Tutsch U. , Honecker A. , Remović-Langer K. , Hofmann G. , Prokofiev A. , Assmus W. , Donath G. , Lang M. . Magnetocaloric effect and magnetic cooling near a field-induced quantum-critical point. Proc. Natl. Acad. Sci. USA, 2011, 108( 17): 6862
https://doi.org/10.1073/pnas.1017047108
|
57 |
Y. Chen Y. , Watanabe G. , C. Yu Y. , W. Guan X. , del Campo A. . An interaction-driven many-particle quantum heat engine and its universal behavior. npj Quantum Inf., 2019, 5 : 88
https://doi.org/10.1038/s41534-019-0204-5
|
[1] |
fop-21186-OF-zhangxibo_suppl_1
|
Download
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|