Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (6) : 62502    https://doi.org/10.1007/s11467-022-1194-x
RESEARCH ARTICLE
Saturated absorption spectroscopy of buffer-gas-cooled Barium monofluoride molecules
Wenhao Bu, Yuhe Zhang, Qian Liang, Tao Chen, Bo Yan()
Interdisciplinary Center of Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device of Physics Department, Zhejiang University, Hangzhou 310027, China
 Download: PDF(3962 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We report an experimental investigation on the Doppler-free saturated absorption spectroscopy of buffer-gas-cooled Barium monofluoride (BaF) molecules in a 4 K cryogenic cell. The obtained spectra with a resolution of 19 MHz, much smaller than previously observed in absorption spectroscopy, clearly resolve the hyperfine transitions. Moreover, we use these high-resolution spectra to fit the hyperfine splittings of excited A(v = 0) state and find the hyperfine splitting of the laser-cooling-relevant A2Π1/2(v = 0, J = 1/2,+) state is about 18 MHz, much higher than the previous theoretically predicted value. This provides important missing information for laser cooling of BaF molecules.

Keywords cold molecule      saturated spectroscopy      buffer gas cooling      BaF     
Corresponding Author(s): Bo Yan   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Issue Date: 06 September 2022
 Cite this article:   
Wenhao Bu,Yuhe Zhang,Qian Liang, et al. Saturated absorption spectroscopy of buffer-gas-cooled Barium monofluoride molecules[J]. Front. Phys. , 2022, 17(6): 62502.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1194-x
https://academic.hep.com.cn/fop/EN/Y2022/V17/I6/62502
Fig.1  A schematic illustration of the experimental setup. The three layers from outside to inside are vacuum chamber, 30K shield and 4K shield, respectively. The BaF molecules are produced by laser ablation with the Nd:YAG laser in a cell, which is attached to a 4K cryogenic head to perform effective buffer gas cooling. The relative position of the BaF 2 target and the three laser beams for the spectroscopy detections are also shown. The propagation directions of the probe, pump, and reference beams are indicated by the arrows.
Fig.2  The saturated absorption spectroscopy for the main laser cooling transition, X(ν=0,N=1,?)?A(ν=0,J= 1/2,+), of the BaF molecule. (a) shows the Doppler-broadened absorption spectra (red dots, from the reference beam) and saturated absorption spectra (blue dots, from the probe beam). The solid lines are Gaussian fittings to the two spectra, respectively. (b) The Doppler-free saturated absorption spectra. The gray solid line is the fitted curve. Each peak in our model has been plotted individually, the color is matched with that in the inset. The positions of each hyperfine level in the X(ν=0,N=1,?) are marked by the vertical black dashed lines. The inset shows the corresponding transitions and their branching ratios. The transition F=1(J=3/2) F=1 is marked by gray, for its branching ratio is negligible.
F=0 F=1
J F mF mF=0 mF=?1 mF=0 mF=1
1/2 0 0 0 2/9 2/9 2/9
?1 0.1282 0.2493 0.2493 0
1/2 1 0 0.1282 0.2493 0 0.2493
1 0.1282 0 0.2493 0.2493
?1 0.2051 0.0007 0.0007 0
3/2 1 0 0.2051 0.0007 0 0.0007
1 0.2051 0 0.0007 0.0007
?2 0 1/6 0 0
?1 0 1/12 1/12 0
3/2 2 0 0 1/36 1/9 1/36
1 0 0 1/12 1/12
2 0 0 0 1/6
Tab.1  Calculated hyperfine branching ratios for decays from |A,J=1/2,+? state to |X,N=1,?? state, also see [51, 60].
Fig.3  The hyperfine splitting Δ of states in A2Π1/2(v=0) measurement. (a) The schematic illustration for the P1 and QR12 branch transitions, which we used to measure the splitting Δ. (b) The typical data measured by the P1 branch [ X(ν=0,J=N+1/2)?A(ν=0,J=N?1/2)], the black dashed lines marks the positions of the ground states. (c) The typical data measured by QR12 branch [ X(ν=0, J=N?1/2)?A(ν=0,J=N+1/2)], the positions of the ground states is also marked by the black dashed lines. (d) Distribution of the measured Δ in different J state, the red and blue dots are obtained from P1(N) and QR12(N) branches, respectively. The solid lines show the fitting curves accordingly.
1 V. Krems R. . Cold controlled chemistry. Phys. Chem. Chem. Phys., 2008, 10( 28): 4079
https://doi.org/10.1039/b802322k
2 Ospelkaus S. , K. Ni K. , Wang D. , H. G. de Miranda M. , Neyenhuis B. , Quéméner G. , S. Julienne P. , L. Bohn J. , S. Jin D. , Ye J. . Quantum-state controlled chemical reactions of ultracold potassium−rubidium molecules. Science, 2010, 327( 5967): 853
https://doi.org/10.1126/science.1184121
3 G. Hu M. , Liu Y. , D. Grimes D. , W. Lin Y. , H. Gheorghe A. , Vexiau R. , Bouloufa-Maafa N. , Dulieu O. , Rosenband T. , K. Ni K. . Direct observation of bimolecular reactions of ultracold KRb molecules. Science, 2019, 366( 6469): 1111
https://doi.org/10.1126/science.aay9531
4 Liu Y. , Luo L. . Molecular collisions: From near-cold to ultra-cold. Front. Phys., 2021, 16( 4): 42300
https://doi.org/10.1007/s11467-020-1037-6
5 S. Safronova M. , Budker D. , DeMille D. , F. J. Kimball D. , Derevianko A. , W. Clark C. . Search for new physics with atoms and molecules. Rev. Mod. Phys., 2018, 90( 2): 025008
https://doi.org/10.1103/RevModPhys.90.025008
6 B. Cairncross W. , Ye J. . Atoms and molecules in the search for time-reversal symmetry violation. Nat. Rev. Phys., 2019, 1( 8): 510
https://doi.org/10.1038/s42254-019-0080-0
7 B. Cairncross W. , N. Gresh D. , Grau M. , C. Cossel K. , S. Roussy T. , Ni Y. , Zhou Y. , Ye J. , A. Cornell E. . Precision measurement of the electron’s electric dipole moment using trapped molecular ions. Phys. Rev. Lett., 2017, 119( 15): 153001
https://doi.org/10.1103/PhysRevLett.119.153001
8 Altuntaş E. , Ammon J. , B. Cahn S. , DeMille D. . Demonstration of a sensitive method to measure nuclear-spin-dependent parity violation. Phys. Rev. Lett., 2018, 120( 14): 142501
https://doi.org/10.1103/PhysRevLett.120.142501
9 Kozyryev I. , R. Hutzler N. . Precision measurement of time-reversal symmetry violation with laser-cooled polyatomic molecules. Phys. Rev. Lett., 2017, 119( 13): 133002
https://doi.org/10.1103/PhysRevLett.119.133002
10 Lim J. , R. Almond J. , A. Trigatzis M. , A. Devlin J. , J. Fitch N. , E. Sauer B. , R. Tarbutt M. , A. Hinds E. . Laser cooled YbF molecules for measuring the electron’s electric dipole moment. Phys. Rev. Lett., 2018, 120( 12): 123201
https://doi.org/10.1103/PhysRevLett.120.123201
11 C. Vutha A. , Horbatsch M. , A. Hessels E. . Orientation-dependent hyperfine structure of polar molecules in a rare-gas matrix: A scheme for measuring the electron electric dipole moment. Phys. Rev. A, 2018, 98( 3): 032513
https://doi.org/10.1103/PhysRevA.98.032513
12 DeMille D. . Quantum computation with trapped polar molecules. Phys. Rev. Lett., 2002, 88( 6): 067901
https://doi.org/10.1103/PhysRevLett.88.067901
13 Rabl P. , DeMille D. , M. Doyle J. , D. Lukin M. , J. Schoelkopf R. , Zoller P. . Hybrid quantum processors: Molecular ensembles as quantum memory for solid state circuits. Phys. Rev. Lett., 2006, 97( 3): 033003
https://doi.org/10.1103/PhysRevLett.97.033003
14 André A. Demille D. M. Doyle J. D. Lukin M. E. Maxwell S. Rabl P. J. Schoelkopf R. Zoller P., A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators, Nat. Phys. 2(9), 636 ( 2006)
15 W. Wang D. , D. Lukin M. , Demler E. . Quantum fluids of self-assembled chains of polar molecules. Phys. Rev. Lett., 2006, 97( 18): 180413
https://doi.org/10.1103/PhysRevLett.97.180413
16 P. Büchler H. , Micheli A. , Zoller P. . Three-body interactions with cold polar molecules. Nat. Phys., 2007, 3( 10): 726
https://doi.org/10.1038/nphys678
17 Kantrowitz A. Grey J., A high intensity source for the molecular beam (Part I): Theoretical, Rev. Sci. Instrum. 22(5), 328 ( 1951)
18 R. Hutzler N. , I. Lu H. , M. Doyle J. . The buffer gas beam: An intense, cold, and slow source for atoms and molecules. Chem. Rev., 2012, 112( 9): 4803
https://doi.org/10.1021/cr200362u
19 Y. T. van de Meerakker S. , L. Bethlem H. , Vanhaecke N. , Meijer G. . Manipulation and control of molecular beams. Chem. Rev., 2012, 112( 9): 4828
https://doi.org/10.1021/cr200349r
20 K. Ni K. Ospelkaus S. H. G. de Miranda M. Peer A. Neyenhuis B. J. Zirbel J. Kotochigova S. S. Julienne P. S. Jin D. Ye J., A high phase-space-density gas of polar molecules, Science 322(5899), 231 ( 2008)
21 D. Rosa M. . Laser-cooling molecules. Eur. Phys. J. D, 2004, 31( 2): 395
https://doi.org/10.1140/epjd/e2004-00167-2
22 K. Stuhl B. , C. Sawyer B. , Wang D. , Ye J. . Magneto-optical trap for polar molecules. Phys. Rev. Lett., 2008, 101( 24): 243002
https://doi.org/10.1103/PhysRevLett.101.243002
23 F. Barry J. , J. McCarron D. , B. Norrgard E. , H. Steinecker M. , DeMille D. . Magneto-optical trapping of a diatomic molecule. Nature, 2014, 512( 7514): 286
https://doi.org/10.1038/nature13634
24 Truppe S. , J. Williams H. , Hambach M. , Caldwell L. , J. Fitch N. , A. Hinds E. , E. Sauer B. , R. Tarbutt M. . Molecules cooled below the Doppler limit. Nat. Phys., 2017, 13( 12): 1173
https://doi.org/10.1038/nphys4241
25 Anderegg L. , L. Augenbraun B. , Chae E. , Hemmerling B. , R. Hutzler N. , Ravi A. , Collopy A. , Ye J. , Ketterle W. , M. Doyle J. . Radio frequency magneto-optical trapping of CaF with high density. Phys. Rev. Lett., 2017, 119( 10): 103201
https://doi.org/10.1103/PhysRevLett.119.103201
26 L. Collopy A. Ding S. Wu Y. A. Finneran I. Anderegg L. L. Augenbraun B. M. Doyle J. Ye J., 3D magneto-optical trap of yttrium monoxide, Phys. Rev. Lett. 121(21), 213201 ( 2018)
27 W. Cheuk L. Anderegg L. L. Augenbraun B. Bao Y. Burchesky S. Ketterle W. M. Doyle J., Λ-enhanced imaging of molecules in an optical trap, Phys. Rev. Lett. 121(8), 083201 ( 2018)
28 Caldwell L. , A. Devlin J. , J. Williams H. , J. Fitch N. , A. Hinds E. , E. Sauer B. , R. Tarbutt M. . Deep laser cooling and efficient magnetic compression of molecules. Phys. Rev. Lett., 2019, 123( 3): 033202
https://doi.org/10.1103/PhysRevLett.123.033202
29 Caldwell L. , J. Williams H. , J. Fitch N. , Aldegunde J. , M. Hutson J. , E. Sauer B. , R. Tarbutt M. . Long rotational coherence times of molecules in a magnetic trap. Phys. Rev. Lett., 2020, 124( 6): 063001
https://doi.org/10.1103/PhysRevLett.124.063001
30 J. McCarron D. , H. Steinecker M. , Zhu Y. , DeMille D. . Magnetic trapping of an ultracold gas of polar molecules. Phys. Rev. Lett., 2018, 121( 1): 013202
https://doi.org/10.1103/PhysRevLett.121.013202
31 J. Williams H. , Caldwell L. , J. Fitch N. , Truppe S. , Rodewald J. , A. Hinds E. , E. Sauer B. , R. Tarbutt M. . Magnetic trapping and coherent control of laser-cooled molecules. Phys. Rev. Lett., 2018, 120( 16): 163201
https://doi.org/10.1103/PhysRevLett.120.163201
32 Anderegg L. , L. Augenbraun B. , Bao Y. , Burchesky S. , W. Cheuk L. , Ketterle W. , M. Doyle J. . Laser cooling of optically trapped molecules. Nat. Phys., 2018, 14( 9): 890
https://doi.org/10.1038/s41567-018-0191-z
33 Ding S. , Wu Y. , A. Finneran I. , J. Burau J. , Ye J. . Sub-doppler cooling and compressed trapping of YO molecules at μK temperatures. Phys. Rev. X, 2020, 10( 2): 021049
https://doi.org/10.1103/PhysRevX.10.021049
34 Anderegg L. , W. Cheuk L. , Bao Y. , Burchesky S. , Ketterle W. , K. Ni K. , M. Doyle J. . An optical tweezer array of ultracold molecules. Science, 2019, 365( 6458): 1156
https://doi.org/10.1126/science.aax1265
35 W. Cheuk L. , Anderegg L. , Bao Y. , Burchesky S. , S. Yu S. , Ketterle W. , K. Ni K. , M. Doyle J. . Observation of collisions between two ultracold ground-state CaF molecules. Phys. Rev. Lett., 2020, 125( 4): 043401
https://doi.org/10.1103/PhysRevLett.125.043401
36 Kozyryev I. , Baum L. , Matsuda K. , L. Augenbraun B. , Anderegg L. , P. Sedlack A. , M. Doyle J. . Sisyphus laser cooling of a polyatomic molecule. Phys. Rev. Lett., 2017, 118( 17): 173201
https://doi.org/10.1103/PhysRevLett.118.173201
37 Baum L. B. Vilas N. Hallas C. L. Augenbraun B. Raval S. Mitra D. M. Doyle J., 1D magneto-optical trap of polyatomic molecules, Phys. Rev. Lett. 124(13), 133201 ( 2020)
38 L. Augenbraun B. , D. Lasner Z. , Frenett A. , Sawaoka H. , Miller C. , C. Steimle T. , M. Doyle J. . Laser-cooled polyatomic molecules for improved electron electric dipole moment searches. New J. Phys., 2020, 22( 2): 022003
https://doi.org/10.1088/1367-2630/ab687b
39 Mitra D. , B. Vilas N. , Hallas C. , Anderegg L. , Augenbraun B. , Baum L. , Miller C. , Raval S. , M. Doyle J. . Direct laser cooling of a symmetric top molecule. Science, 2020, 369( 6509): 1366
https://doi.org/10.1126/science.abc5357
40 Xu L. , Yin Y. , Wei B. , Xia Y. , Yin J. . Calculation of vibrational branching ratios and hyperfine structure of 24Mg19F and its suitability for laser cooling and magneto-optical trapping. Phys. Rev. A, 2016, 93( 1): 013408
https://doi.org/10.1103/PhysRevA.93.013408
41 Yan K. , X. Gu R. , Wu D. , Wei J. , Xia Y. , P. Yin J. . Simulation of EOM-based frequency-chirped laser slowing of MgF radicals. Front. Phys., 2022, 17( 4): 42502
https://doi.org/10.1007/s11467-021-1137-y
42 G. Tarallo M. , Z. Iwata G. , Zelevinsky T. . BaH molecular spectroscopy with relevance to laser cooling. Phys. Rev. A, 2016, 93( 3): 032509
https://doi.org/10.1103/PhysRevA.93.032509
43 B. Norrgard E. , R. Edwards E. , J. McCarron D. , H. Steinecker M. , DeMille D. , S. Alam S. , K. Peck S. , S. Wadia N. , R. Hunter L. . Hyperfine structure of the B3Π1 state and predictions of optical cycling behavior in the XB transition of TlF. Phys. Rev. A, 2017, 95( 6): 062506
https://doi.org/10.1103/PhysRevA.95.062506
44 Truppe S. , Marx S. , Kray S. , Doppelbauer M. , Hofsäss S. , C. Schewe H. , Walter N. , Pérez-Ríos J. , G. Sartakov B. , Meijer G. . Spectroscopic characterization of aluminum monofluoride with relevance to laser cooling and trapping. Phys. Rev. A, 2019, 100( 5): 052513
https://doi.org/10.1103/PhysRevA.100.052513
45 R. Daniel J. , Wang C. , Rodriguez K. , Hemmerling B. , N. Lewis T. , Bardeen C. , Teplukhin A. , K. Kendrick B. . Spectroscopy on the A1Π← X1Σ+ transition of buffer-gas-cooled AlCl. Phys. Rev. A, 2021, 104( 1): 012801
https://doi.org/10.1103/PhysRevA.104.012801
46 Chen T. , Bu W. , Yan B. . Structure, branching ratios, and a laser-cooling scheme for the 138BaF molecule. Phys. Rev. A, 2016, 94( 6): 063415
https://doi.org/10.1103/PhysRevA.94.063415
47 Bu W. , Chen T. , Lv G. , Yan B. . Cold collision and high-resolution spectroscopy of buffer-gas-cooled BaF molecules. Phys. Rev. A, 2017, 95( 3): 032701
https://doi.org/10.1103/PhysRevA.95.032701
48 Chen T. , Bu W. , Yan B. . Radiative deflection of a BaF molecular beam via optical cycling. Phys. Rev. A, 2017, 96( 5): 053401
https://doi.org/10.1103/PhysRevA.96.053401
49 Aggarwal P. , L. Bethlem H. , Borschevsky A. , Denis M. , Esajas K. , A. B. Haase P. , Hao Y. , Hoekstra S. , Jungmann K. , B. Meijknecht T. , C. Mooij M. , G. E. Timmermans R. , Ubachs W. , Willmann L. , Zapara A. . Measuring the electric dipole moment of the electron in BaF. Eur. Phys. J. D, 2018, 72( 11): 197
https://doi.org/10.1140/epjd/e2018-90192-9
50 Cournol A. , Pillet P. , Lignier H. , Comparat D. . Rovibrational optical pumping of a molecular beam. Phys. Rev. A, 2018, 97( 3): 031401
https://doi.org/10.1103/PhysRevA.97.031401
51 Albrecht R. , Scharwaechter M. , Sixt T. , Hofer L. , Langen T. . Buffer-gas cooling, high-resolution spectroscopy, and optical cycling of barium monofluoride molecules. Phys. Rev. A, 2020, 101( 1): 013413
https://doi.org/10.1103/PhysRevA.101.013413
52 Liang Q. , Chen T. , H. Bu W. , H. Zhang Y. , Yan B. . Laser cooling with adiabatic passage for type-II transitions. Front. Phys., 2021, 16( 3): 32501
https://doi.org/10.1007/s11467-020-1019-8
53 E. Ernst W. , Kandler J. , Törring T. . Hyperfine structure and electric dipole moment of BaF X2Σ+. J. Chem. Phys., 1986, 84( 9): 4769
https://doi.org/10.1063/1.449961
54 W. Hänsch T. , D. Levenson M. , L. Schawlow A. . Complete hyperfine structure of a molecular iodine line. Phys. Rev. Lett., 1971, 26( 16): 946
https://doi.org/10.1103/PhysRevLett.26.946
55 Wieman C. , W. Hänsch T. . Doppler-free laser polarization spectroscopy. Phys. Rev. Lett., 1976, 36( 20): 1170
https://doi.org/10.1103/PhysRevLett.36.1170
56 Nakayama S. . Doppler-free laser spectroscopic techniques with optical pumping in D1 lines of alkali atoms. J. Opt. Soc. Am. B, 1985, 2( 9): 1431
https://doi.org/10.1364/JOSAB.2.001431
57 M. Skoff S. , J. Hendricks R. , D. J. Sinclair C. , R. Tarbutt M. , J. Hudson J. , M. Segal D. , E. Sauer B. , A. Hinds E. . Doppler-free laser spectroscopy of buffer-gas-cooled molecular radicals. New J. Phys., 2009, 11( 12): 123026
https://doi.org/10.1088/1367-2630/11/12/123026
58 Wang D. , Bu W. , Xie D. , Chen T. , Yan B. . Compact frequency-stabilization scheme for laser cooling of polar molecules. J. Opt. Soc. Am. B, 2018, 35( 7): 1658
https://doi.org/10.1364/JOSAB.35.001658
59 F. Barry J. S. Shuman E. DeMille D., A bright, slow cryogenic molecular beam source for free radicals, Phys. Chem. Chem. Phys. 13(42), 18936 ( 2011)
60 Chen T. , Bu W. , Yan B. . Erratum: Structure, branching ratios, and a laser-cooling scheme for the 138BaF molecule [Phys. Rev. A 94, 063415 (2016)]. Phys. Rev. A, 2019, 100( 2): 029901
https://doi.org/10.1103/PhysRevA.100.029901
61 Zhang Y. , Zeng Z. , Liang Q. , Bu W. , Yan B. . Doppler cooling of buffer-gas-cooled barium monofluoride molecules. Phys. Rev. A, 2022, 105( 3): 033307
https://doi.org/10.1103/PhysRevA.105.033307
62 Ryzlewicz C. , Törring T. . Formation and microwave spectrum of the 2Σ-radical barium-monofluoride. Chem. Phys., 1980, 51( 3): 329
https://doi.org/10.1016/0301-0104(80)80107-8
63 E. Sauer B. , B. Cahn S. , G. Kozlov M. , D. Redgrave G. , A. Hinds E. . Perturbed hyperfine doubling in the A2Π1/2 and [18.6]0.5 states of YbF. J. Chem. Phys., 1999, 110( 17): 8424
https://doi.org/10.1063/1.478751
64 Bu W. , Liu M. , Xie D. , Yan B. . Note: An in situ method for measuring the non-linear response of a Fabry−Perot cavity. Rev. Sci. Instrum., 2016, 87( 9): 096102
https://doi.org/10.1063/1.4963361
[1] Qian Liang, Tao Chen, Wen-Hao Bu, Yu-He Zhang, Bo Yan. Laser cooling with adiabatic passage for type-II transitions[J]. Front. Phys. , 2021, 16(3): 32501-.
[2] Ji-Zhou Wu, Yu-Qing Li, Wen-Liang Liu, Jie Ma, Lian-Tuan Xiao, Suo-Tang Jia. Light-induced frequency shifts for the lowest vibrational levels of ultracold Cs2 in the molecular pure long-range 0g state[J]. Front. Phys. , 2020, 15(2): 22602-.
[3] R. Horchani. Laser cooling of internal degrees of freedom of molecules[J]. Front. Phys. , 2016, 11(4): 113301-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed