Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (6) : 64601    https://doi.org/10.1007/s11467-022-1205-y
RESEARCH ARTICLE
Machine learning-based direct solver for one-to-many problems on temporal shaping of relativistic electron beams
Jinyu Wan1,2,3, Yi Jiao1,2()
1. Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. China Spallation Neutron Source, Dongguan 523803, China
 Download: PDF(5427 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To control the temporal profile of a relativistic electron beam to meet requirements of various advanced scientific applications like free-electron-laser and plasma wakefield acceleration, a widely-used technique is to manipulate the dispersion terms which turns out to be one-to-many problems. Due to their intrinsic one-to-many property, current popular stochastic optimization approaches on temporal shaping may face the problems of long computing time or sometimes suggesting only one solution. Here we propose a real-time solver for one-to-many problems of temporal shaping, with the aid of a semi-supervised machine learning method, the conditional generative adversarial network (CGAN). We demonstrate that the CGAN solver can learn the one-to-many dynamics and is able to accurately and quickly predict the required dispersion terms for different custom temporal profiles. This machine learning-based solver is expected to have the potential for wide applications to one-to-many problems in other scientific fields.

Keywords beam shaping      one-to-many problem      machine learning     
Corresponding Author(s): Yi Jiao   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Issue Date: 28 September 2022
 Cite this article:   
Jinyu Wan,Yi Jiao. Machine learning-based direct solver for one-to-many problems on temporal shaping of relativistic electron beams[J]. Front. Phys. , 2022, 17(6): 64601.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1205-y
https://academic.hep.com.cn/fop/EN/Y2022/V17/I6/64601
Fig.1  Schematic diagram of the CGAN solver in this study. The color of the initial beam from black to white represents the charge-density from low to high. The compressed temporal profile is obtained by letting the initial beam pass through a chicane having specific R 56, T 566 and U 5666. By feeding the custom temporal profiles and noise components to the trained generator of the CGAN, the CGAN solver is able to predict the required dispersion terms to realize the input target temporal profiles.
Fig.2  Using stochastic optimization methods to solve temporal shaping problems. (a) and (b) show the grid scan results and the evolutionary trajectory of the PSO and the surrogate model-based PSO in the variable space for a cusp-shaped profile and a double-horn profile, respectively. The z-axis in (a) and (b) is −log(objective function) representing the objective performance. The contour maps of the grid scan results are plotted at the bottom, where the color from blue to yellow represent the objective performance from low to high. For each R 56-T 566 grid in (a) and (b), only one U 5666 with the highest objective performance is plotted. Two separate predictions of the CGAN solver are also shown in (a) and (b) for comparison. (c) and (d) are the final temporal profiles obtained with the optimization methods for the cusp-shaped profile and double-horn profile, respectively. R2 is the determination coefficient to the target temporal profile.
Fig.3  Longitudinal phase space distribution and temporal profiles of two separate CGAN predictions. The left two columns represent the cusp-shaped profile, and the right two columns represent the double-horn profile, respectively.
Fig.4  The average solving time with the CGAN solver, the PSO and the surrogate model-based PSO for five repeated tests.
Fig.5  Beam profiles obtained with CGAN solutions for two target profiles with CSR effect taken into account. (a) and (b) represent a cusp-shape target and a double-horn target, respectively.
Fig.6  The temporal profiles obtained with the CGAN solver for the flat-top profile (a) and the linearly-ramped profile (b). The red/blue solid line represents the results are predicted by the CGAN model without/with CSR effect considered in the training.
1 Emma P., Akre R., Arthur J., Bionta R., Bostedt C., Bozek J., Brachmann A., Bucksbaum P., Coffee R., J. Decker F., Ding Y., Dowell D., Edstrom S., Fisher A., Frisch J., Gilevich S., Hastings J., Hays G., Hering Ph., Huang Z., Iverson R., Loos H., Messerschmidt M., Miahnahri A., Moeller S., D. Nuhn H., Pile G., Ratner D., Rzepiela J., Schultz D., Smith T., Stefan P., Tompkins H., Turner J., Welch J., White W., Wu J., Yocky G., Galayda J.. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photonics , 2010, 4( 9): 641
https://doi.org/10.1038/nphoton.2010.176
2 Allaria E., Castronovo D., Cinquegrana P., Craievich P., Dal Forno M., B. Danailov M., D’Auria G., Demidovich A., De Ninno G., Di Mitri S., Diviacco B., M. Fawley W., Ferianis M., Ferrari E., Froehlich L., Gaio G., Gauthier D., Giannessi L., Ivanov R., Mahieu B., Mahne N., Nikolov I., Parmigiani F., Penco G., Raimondi L., Scafuri C., Serpico C., Sigalotti P., Spampinati S., Spezzani C., Svandrlik M., Svetina C., Trovo M., Veronese M., Zangrando D., Zangrando M.. Two-stage seeded soft-X-ray free-electron laser. Nat. Photonics , 2013, 7( 11): 913
https://doi.org/10.1038/nphoton.2013.277
3 Huang N., Deng H., Liu B., Wang D., Zhao Z.. Features and futures of X-ray free-electron lasers. The Innovation , 2021, 2 : 100097
https://doi.org/10.1016/j.xinn.2021.100097
4 Bielawski S., Evain C., Hara T., Hosaka M., Katoh M., Kimura S., Mochihashi A., Shimada M., Szwaj C., Takahashi T., Takashima Y.. Tunable narrowband terahertz emission from mastered laser–electron beam interaction. Nat. Phys. , 2008, 4( 5): 390
https://doi.org/10.1038/nphys916
5 Tang H., Zhao L., Zhu P., Zou X., Qi J., Cheng Y., Qiu J., Hu X., Song W., Xiang D., Zhang J.. Stable and scalable multistage terahertz-driven particle accelerator. Phys. Rev. Lett. , 2021, 127( 7): 074801
https://doi.org/10.1103/PhysRevLett.127.074801
6 Q. Yan X., Lin C., Y. Lu H., Zhu K., B. Zou Y., Y. Wang H., Liu B., Zhao S., Zhu J., X. Geng Y., Z. Fu H., Shang Y., Cao C., R. Shou Y., Song W., R. Lu Y., X. Yuan Z., Y. Guo Z., T. He X., E. Chen J.. Recent progress of laser driven particle acceleration at Peking University. Front. Phys. , 2013, 8( 5): 577
https://doi.org/10.1007/s11467-013-0372-2
7 Gschwendtner E., Muggli P.. Plasma wakefield accelerators. Nat. Rev. Phys. , 2019, 1( 4): 246
https://doi.org/10.1038/s42254-019-0049-z
8 E. Cole B., B. Williams J., T. King B., S. Sherwin M., R. Stanley C.. Coherent manipulation of semiconductor quantum bits with terahertz radiation. Nature , 2001, 410( 6824): 60
https://doi.org/10.1038/35065032
9 P. Hau-Riege S., A. London R., M. Bionta R., A. McKernan M., L. Baker S., Krzywinski J., Sobierajski R., Nietubyc R., B. Pelka J., Jurek M., Juha L., Chalupský J., Cihelka J., Hájková V., Velyhan A., Krása J., Kuba J., Tiedtke K., Toleikis S., Tschentscher T., Wabnitz H., Bergh M., Caleman C., Sokolowski-Tinten K., Stojanovic N., Zastrau U.. Damage threshold of inorganic solids under free-electron-laser irradiation at 32.5 nm wavelength. Appl. Phys. Lett. , 2007, 90( 17): 173128
https://doi.org/10.1063/1.2734366
10 J. Wilmink G., E. Grundt J.. Current state of research on biological effects of terahertz radiation. Int. J. Infrared Millim. Terahertz Waves , 2011, 32( 10): 1074
https://doi.org/10.1007/s10762-011-9794-5
11 L. Grünbein M., Bielecki J., Gorel A., Stricker M., Bean R., Cammarata M., Dörner K., Fröhlich L., Hartmann E., Hauf S., Hilpert M., Kim Y., Kloos M., Letrun R., Messerschmidt M., Mills G., N. Kovacs G., Ramilli M., M. Roome C., Sato T., Scholz M., Sliwa M., Sztuk-Dambietz J., Weik M., Weinhausen B., Al-Qudami N., Boukhelef D., Brockhauser S., Ehsan W., Emons M., Esenov S., Fangohr H., Kaukher A., Kluyver T., Lederer M., Maia L., Manetti M., Michelat T., Münnich A., Pallas F., Palmer G., Previtali G., Raab N., Silenzi A., Szuba J., Venkatesan S., Wrona K., Zhu J., B. Doak R., L. Shoeman R., Foucar L., Colletier J.-P., P. Mancuso A., R. M. Barends T., A. Stan C., Schlichting I.. Megahertz data collection from protein microcrystals at an X-ray free-electron laser. Nat. Commun. , 2018, 9 : 3487
https://doi.org/10.1038/s41467-018-05953-4
12 Litos M., Adli E., An W., I. Clarke C., E. Clayton C., Corde S., P. Delahaye J., J. England R., S. Fisher A., Frederico J., Gessner S., Z. Green S., J. Hogan M., Joshi C., Lu W., A. Marsh K., B. Mori W., Muggli P., Vafaei-Najafabadi N., Walz D., White G., Wu Z., Yakimenko V., Yocky G.. High-efficiency acceleration of an electron beam in a plasma wakefield accelerator. Nature , 2014, 515( 7525): 92
https://doi.org/10.1038/nature13882
13 P. Anderle D., Bertone V., Cao X., Chang L., Chang N., Chen G., Chen X., Chen Z., Cui Z., Dai L., Deng W., Ding M., Feng X., Gong C., Gui L., K. Guo F., Han C., He J., J. Hou T., Huang H., Huang Y., I. KumeričKi K., P. Kaptari L., Li D., Li H., Li M., Li X., Liang Y., Liang Z., Liu C., Liu C., Liu G., Liu J., Liu L., Liu X., Liu T., Luo X., Lyu Z., Ma B., Ma F., Ma J., Ma Y., Mao L., Mezrag C., Moutarde H., Ping J., Qin S., Ren H., D. Roberts C., Rojo J., Shen G., Shi C., Song Q., Sun H., Sznajder P., Wang E., Wang F., Wang Q., Wang R., Wang R., Wang T., Wang W., Wang X., Wang X., Wu J., Wu X., Xia L., Xiao B., Xiao G., J. Xie J., Xie Y., Xing H., Xu H., Xu N., Xu S., Yan M., Yan W., Yan W., Yan X., Yang J., B. Yang Y., Yang Z., Yao D., Ye Z., Yin P., P. Yuan C., Zhan W., Zhang J., Zhang J., Zhang P., Zhang Y., H. Chang C., Zhang Z., Zhao H., T. Chao K., Zhao Q., Zhao Y., Zhao Z., Zheng L., Zhou J., Zhou X., Zhou X., Zou B., Zou L.. Electron-ion collider in China. Front. Phys. , 2021, 16( 6): 64701
https://doi.org/10.1007/s11467-021-1062-0
14 L. F. Bane K., Chen P., B. Wilson P.. On collinear wake field acceleration. IEEE Trans. Nucl. Sci. , 1985, 32( 5): 3524
https://doi.org/10.1109/TNS.1985.4334416
15 J. England R., B. Rosenzweig J., Travish G.. Generation and measurement of relativistic electron bunches characterized by a linearly ramped current profile. Phys. Rev. Lett. , 2008, 100( 21): 214802
https://doi.org/10.1103/PhysRevLett.100.214802
16 Ding Y., L. F. Bane K., Colocho W., J. Decker F., Emma P., Frisch J., W. Guetg M., Huang Z., Iverson R., Krzywinski J., Loos H., Lutman A., J. Maxwell T., D. Nuhn H., Ratner D., Turner J., Welch J., Zhou F.. Beam shaping to improve the free-electron laser performance at the Linac coherent light source. Phys. Rev. Accel. Beams , 2016, 19( 10): 100703
https://doi.org/10.1103/PhysRevAccelBeams.19.100703
17 K. Charles T. M. Paganin D. J. Boland M. T. Dowd R., in: Proceedings of 8th International Particle Accelerator Conference, Copenhagen, Denmark, May 2017, paper MOPIK055, pp 644− 647
18 Sudar N., Musumeci P., Gadjev I., Sakai Y., Fabbri S., Polyanskiy M., Pogorelsky I., Fedurin M., Swinson C., Kusche K., Babzien M., Palmer M.. Demonstration of cascaded modulator-chicane microbunching of a relativistic electron beam. Phys. Rev. Lett. , 2018, 120( 11): 114802
https://doi.org/10.1103/PhysRevLett.120.114802
19 Shpakov V., P. Anania M., Bellaveglia M., Biagioni A., Bisesto F., Cardelli F., Cesarini M., Chiadroni E., Cianchi A., Costa G., Croia M., Del Dotto A., Di Giovenale D., Diomede M., Ferrario M., Filippi F., Giribono A., Lollo V., Marongiu M., Martinelli V., Mostacci A., Piersanti L., Di Pirro G., Pompili R., Romeo S., Scifo J., Vaccarezza C., Villa F., Zigler A.. Longitudinal phase-space manipulation with beam-driven plasma wakefields. Phys. Rev. Lett. , 2019, 122( 11): 114801
https://doi.org/10.1103/PhysRevLett.122.114801
20 L. Saldin E., A. Schneidmiller E., V. Yurkov M.. An analytical description of longitudinal phase space distortions in magnetic bunch compressors. Nucl. Instrum. Methods Phys. Res. Sect. A , 2002, 483 : 516
https://doi.org/10.1016/S0168-9002(02)00372-8
21 L. Brown K., Stanford Linear Accelerator Center: SLAC report No. 75, 1971.
22 W. Guetg M., Beutner B., Prat E., Reiche S.. Optimization of free electron laser performance by dispersion-based beam-tilt correction. Phys. Rev. Spec. Top. Accel. Beams , 2015, 18( 3): 030701
https://doi.org/10.1103/PhysRevSTAB.18.030701
23 Prat E., Dijkstal P., Ferrari E., Reiche S.. Demonstration of large bandwidth hard X-ray free-electron laser pulses at SwissFEL. Phys. Rev. Lett. , 2020, 124( 7): 074801
https://doi.org/10.1103/PhysRevLett.124.074801
24 Piot P., Behrens C., Gerth C., Dohlus M., Lemery F., Mihalcea D., Stoltz P., Vogt M.. Generation and characterization of electron bunches with ramped current profiles in a dual-frequency superconducting linear accelerator. Phys. Rev. Lett. , 2012, 108( 3): 034801
https://doi.org/10.1103/PhysRevLett.108.034801
25 K. Charles T., M. Paganin D., T. Dowd R.. Caustic-based approach to understanding bunching dynamics and current spike formation in particle bunches. Phys. Rev. Accel. Beams , 2016, 19( 10): 104402
https://doi.org/10.1103/PhysRevAccelBeams.19.104402
26 J. Dunning D. Jones J.K. M. Castaneda Cortés H., in: Proceedings of the 39th Free Electron Laser Conference, Hamburg, Germany, August 2019, pp 711– 714
27 Ding Y. L. F. Bane K. M. Nosochkov Y., in: Proceedings of the 39th Free Electron Laser Conference, Hamburg, Germany, August 2019, pp 661– 664
28 Mayet F., Assmann R., Lemery F.. Longitudinal phase space synthesis with tailored 3D-printable dielectric-lined waveguides. Phys. Rev. Accel. Beams , 2020, 23( 12): 121302
https://doi.org/10.1103/PhysRevAccelBeams.23.121302
29 Yang L., Robin D., Sannibale F., Steier C., Wan W.. Global optimization of an accelerator lattice using multiobjective genetic algorithms. Nucl. Instrum. Methods Phys. Res. Sect. A , 2009, 609 : 50
https://doi.org/10.1016/j.nima.2009.08.027
30 Wu J., Hu N., Setiawan H., Huang X., O. Raubenheimer T., Jiao Y., Yu G., Mandlekar A., Spampinati S., Fang K., Chu C., Qiang J.. Multi-dimensional optimization of a terawatt seeded tapered free electron laser with a multi-objective genetic algorithm. Nucl. Instrum. Methods Phys. Res. Sect. A , 2017, 846 : 56
https://doi.org/10.1016/j.nima.2016.11.035
31 Huang X., Safranek J.. Nonlinear dynamics optimization with particle swarm and genetic algorithms for SPEAR3 emittance upgrade. Nucl. Instrum. Methods Phys. Res. Sect. A , 2014, 757 : 48
https://doi.org/10.1016/j.nima.2014.04.078
32 Bruchon N., Fenu G., Gaio G., Lonza M., A. Pellegrino F., Saule L.. Free-electron laser spectrum evaluation and automatic optimization. Nucl. Instrum. Methods Phys. Res. Sect. A , 2017, 871 : 20
https://doi.org/10.1016/j.nima.2017.07.048
33 Takahama T. Sakai S., in: Proceedings of 2006 IEEE International Conference on Evolutionary Computation, 2006, pp 1– 8
34 Wielgosz M., Skoczeń A., Mertik M.. Using LSTM recurrent neural networks for monitoring the LHC superconducting magnets. Nucl. Instrum. Methods Phys. Res. Sect. A , 2017, 867 : 40
https://doi.org/10.1016/j.nima.2017.06.020
35 Li Y., Cheng W., Y. Li H., Rainer R.. Genetic algorithm enhanced by machine learning in dynamic aperture optimization. Phys. Rev. Accel. Beams , 2018, 21( 5): 054601
https://doi.org/10.1103/PhysRevAccelBeams.21.054601
36 Emma C., Edelen A., J. Hogan M., O’Shea B., White G., Yakimenko V.. Machine learning-based longitudinal phase space prediction of particle accelerators. Phys. Rev. Accel. Beams , 2018, 21( 11): 112802
https://doi.org/10.1103/PhysRevAccelBeams.21.112802
37 Scheinker A., Edelen A., Bohler D., Emma C., Lutman A.. Demonstration of model-independent control of the longitudinal phase space of electron beams in the Linac-coherent light source with femtosecond resolution. Phys. Rev. Lett. , 2018, 121( 4): 044801
https://doi.org/10.1103/PhysRevLett.121.044801
38 Wan J., Chu P., Jiao Y., Li Y.. Improvement of machine learning enhanced genetic algorithm for nonlinear beam dynamics optimization. Nucl. Instrum. Methods Phys. Res. Sect. A , 2019, 946 : 162683
https://doi.org/10.1016/j.nima.2019.162683
39 C. Leemann S., Liu S., Hexemer A., A. Marcus M., N. Melton C., Nishimura H., Sun C.. Demonstration of machine learning-based model-independent stabilization of source properties in synchrotron light sources. Phys. Rev. Lett. , 2019, 123( 19): 194801
https://doi.org/10.1103/PhysRevLett.123.194801
40 Xu X., Zhou Y., Leng Y.. Machine learning based image processing technology application in bunch longitudinal phase information extraction. Phys. Rev. Accel. Beams , 2020, 23( 3): 032805
https://doi.org/10.1103/PhysRevAccelBeams.23.032805
41 Edelen A., Neveu N., Frey M., Huber Y., Mayes C., Adelmann A.. Machine learning for orders of magnitude speedup in multiobjective optimization of particle accelerator systems. Phys. Rev. Accel. Beams , 2020, 23( 4): 044601
https://doi.org/10.1103/PhysRevAccelBeams.23.044601
42 Wan J., Chu P., Jiao Y.. Neural network-based multiobjective optimization algorithm for nonlinear beam dynamics. Phys. Rev. Accel. Beams , 2020, 23( 8): 081601
https://doi.org/10.1103/PhysRevAccelBeams.23.081601
43 Mirza M. Osindero S., Conditional generative adversarial nets, arXiv: 1411.1784 (2014)
44 Goodfellow I. Pouget-Abadie J. Mirza M. Xu B. Warde-Farley D. Ozair S. Courville A. Bengio Y., Generative adversarial networks, arXiv: 1406.2661 (2014)
45 L. Tuan Y., Y. Lee H.. Improving conditional sequence generative adversarial networks by stepwise evaluation. IEEE/ACM Trans. Audio Speech Lang. Process. , 2019, 27( 4): 788
https://doi.org/10.1109/TASLP.2019.2896437
46 Sandfort V., Yan K., J. Pickhardt P., M. Summers R.. Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks. Sci. Rep. , 2019, 9( 1): 16884
https://doi.org/10.1038/s41598-019-52737-x
47 L. Denton E. Chintala S. Szlam A. Fergus R., Deep generative image models using a Laplacian pyramid of adversarial networks, arXiv: 1506.05751 (2015)
48 Y. Zhu J. Park T. Isola P. A. Efros A., in: Proceedings of 2017 IEEE International Conference on Computer Vision, 2017, pp 2242– 2251
49 Ledig C. Theis L. Huszár F. Caballero J. Cunningham A. Acosta A. Aitken A. Tejani A. Totz J. Wang Z. Shi W., in: Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp 105– 114
50 Gurumurthy S. K. Sarvadevabhatla R. B. Radhakrishnan V., in Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp 4941– 4949
51 Isola P. Y. Zhu J. Zhou T. A. Efros A., Image-to-image translation with conditional adversarial networks, In: Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp 5967− 5976
52 J. England R., B. Rosenzweig J., Andonian G., Musumeci P., Travish G., Yoder R.. Sextupole correction of the longitudinal transport of relativistic beams in dispersionless translating sections. Phys. Rev. Spec. Top. Accel. Beams , 2005, 8( 1): 012801
https://doi.org/10.1103/PhysRevSTAB.8.012801
53 C. Lagarias J., A. Reeds J., H. Wright M., E. Wright P.. Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Optim. , 1998, 9( 1): 112
https://doi.org/10.1137/S1052623496303470
54 Terebilo A., in: Proceedings of the 2001 Particle Accelerator Conference, Vol. 4, 2001, pp 3203– 3205
55 Rizzo G., H. M. Van T.. Adversarial text generation with context adapted global knowledge and a self-attentive discriminator. Inf. Process. Manage. , 2020, 57( 6): 102217
https://doi.org/10.1016/j.ipm.2020.102217
56 P. Kingma D. Ba J., Adam: A method for stochastic optimization, arXiv: 1412.6980 (2014)
57 Abadi M. Agarwal A. Barham P. Brevdo E. Chen Z. Citro C. S. Corrado G. Davis A. Dean J. Devin M. Ghemawat S. Goodfellow I. Harp A. Irving G. Isard M. Jia Y. Jozefowicz R. Kaiser L. Kudlur M. Levenberg J. Mane D. Monga R. Moore S. Murray D. Olah C. Schuster M. Shlens J. Steiner B. Sutskever I. Talwar K. Tucker P. Vanhoucke V. Vasudevan V. Viegas F. Vinyals O. Warden P. Wattenberg M. Wicke M. Yu Y. Zheng X., TensorFlow: Large-scale machine learning on heterogeneous distributed systems, arXiv: 1603.04467 ( 2016)
58 M.Borland, Technical Report No. LS-287, Argonne National Laboratory, 2000
59 K. Charles T., M. Paganin D., Latina A., J. Boland M., T. Dowd R.. Current-horn suppression for reduced coherent-synchrotron-radiation-induced emittance growth in strong bunch compression. Phys. Rev. Accel. Beams , 2017, 20( 3): 030705
https://doi.org/10.1103/PhysRevAccelBeams.20.030705
[1] Cuiqian Yu, Yulou Ouyang, Jie Chen. Enhancing thermal transport in multilayer structures: A molecular dynamics study on Lennard−Jones solids[J]. Front. Phys. , 2022, 17(5): 53507-.
[2] Daryl Ryan Chong, Minhyuk Kim, Jaewook Ahn, Heejeong Jeong. Machine learning identification of symmetrized base states of Rydberg atoms[J]. Front. Phys. , 2022, 17(1): 12504-.
[3] Yulou Ouyang, Cuiqian Yu, Gang Yan, Jie Chen. Machine learning approach for the prediction and optimization of thermal transport properties[J]. Front. Phys. , 2021, 16(4): 43200-.
[4] Wen Tong, Qun Wei, Hai-Yan Yan, Mei-Guang Zhang, Xuan-Min Zhu. Accelerating inverse crystal structure prediction by machine learning: A case study of carbon allotropes[J]. Front. Phys. , 2020, 15(6): 63501-.
[5] Ce Wang, Hui Zhai. Machine learning of frustrated classical spin models (II): Kernel principal component analysis[J]. Front. Phys. , 2018, 13(5): 130507-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed