|
|
Enhancing thermal transport in multilayer structures: A molecular dynamics study on Lennard−Jones solids |
Cuiqian Yu, Yulou Ouyang, Jie Chen( ) |
Center for Phononics and Thermal Energy Science, China−EU Joint Lab for Nanophononics, MOE Key Laboratory of Advanced Micro-structured Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China |
|
|
Abstract We investigate the thermal transport properties of three kinds of multilayer structures: a perfect superlattice (SL) structure, a quasi-periodic multilayer structure consisted of two superlattice (2SL) structures with different periods, and a random multilayer (RML) structure. Our simulation results show that there exists a large number of aperiodic multilayer structures that have effective thermal conductivity higher than that of the SL counterpart, showing enhancement ratio in the effective thermal conductivity up to 193%. Surprisingly, some RML structures also exhibit enhanced thermal transport than the SL counterpart even in the presence of phonon localization. The detailed analysis on the underlying mechanism reveals that such peculiar enhancement is caused by the synergistic effect of coherent and incoherent phonon transport, which can be tuned by the structural configuration. Combined with molecular dynamics simulations and the machine learning technique, we further reveal that the enhancement effect of the effective thermal conductivity by 2SL structure is more significant when the period of SL structure is close to the critical transition period between the coherent and incoherent phonon transport regimes. Our study proposes a novel strategy to enhance the thermal transport in multilayer structures by regulating the wave-particle duality of phonons via the structure optimization, which might provide valuable insights to the thermal management in devices with densely packed interfaces.
|
Keywords
multilayer structures
thermal conductivity
machine learning
molecular dynamics simulation
wave-particle duality of phonon
|
Corresponding Author(s):
Jie Chen
|
Issue Date: 17 June 2022
|
|
1 |
Zhang Z., Ouyang Y., Cheng Y., Chen J., Li N., Zhang G.. Size-dependent phononic thermal transport in low-dimensional nanomaterials. Phys. Rep. , 2020, 860 : 1
https://doi.org/10.1016/j.physrep.2020.03.001
|
2 |
Ren W., Ouyang Y., Jiang P., Yu C., He J., Chen J.. The impact of interlayer rotation on thermal transport across graphene/hexagonal boron nitride van der Waals heterostructure. Nano Lett. , 2021, 21( 6): 2634
https://doi.org/10.1021/acs.nanolett.1c00294
|
3 |
Yu C. Ouyang Y. Chen J., A perspective on the hydrodynamic phonon transport in two-dimensional materials, J. Appl. Phys. 130(1), 010902 ( 2021)
|
4 |
Xie G., Ding D., Zhang G.. Phonon coherence and its effect on thermal conductivity of nanostructures. Adv. Phys. X , 2018, 3( 1): 1480417
https://doi.org/10.1080/23746149.2018.1480417
|
5 |
He J., Ouyang Y., Yu C., Jiang P., Ren W., Chen J.. Lattice thermal conductivity of β12 and χ3 borophene. Chin. Phys. B , 2020, 29( 12): 126503
https://doi.org/10.1088/1674-1056/abbbe6
|
6 |
L. Moore A., Shi L.. Emerging challenges and materials for thermal management of electronics. Mater. Today , 2014, 17( 4): 163
https://doi.org/10.1016/j.mattod.2014.04.003
|
7 |
Fu Y., Hansson J., Liu Y., Chen S., Zehri A., K. Samani M., Wang N., Ni Y., Zhang Y., Zhang Z.-B.. Graphene related materials for thermal management. 2D Mater. , 2019, 7 : 012001
https://doi.org/10.1088/2053-1583/ab48d9
|
8 |
Ouyang Y., Zhang Z., Li D., Chen J., Zhang G.. Emerging theory, materials, and screening methods: New opportunities for promoting thermoelectric performance. Ann. Phys. , 2019, 531( 4): 1800437
https://doi.org/10.1002/andp.201800437
|
9 |
He J., Hu Y., Li D., Chen J.. Ultra-low lattice thermal conductivity and promising thermoelectric figure of merit in borophene via chlorination. Nano Res. , 2022, 15( 4): 3804
https://doi.org/10.1007/s12274-021-3908-8
|
10 |
N. Luckyanova M., Garg J., Esfarjani K., Jandl A., T. Bulsara M., J. Schmidt A., J. Minnich A., Chen S., S. Dresselhaus M., Ren Z., A. Fitzgerald E., Chen G.. Coherent phonon heat conduction in superlattices. Science , 2012, 338( 6109): 936
https://doi.org/10.1126/science.1225549
|
11 |
Ravichandran J., K. Yadav A., Cheaito R., B. Rossen P., Soukiassian A., Suresha S., C. Duda J., M. Foley B., H. Lee C., Zhu Y., W. Lichtenberger A., E. Moore J., A. Muller D., G. Schlom D., E. Hopkins P., Majumdar A., Ramesh R., A. Zurbuchen M.. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nat. Mater. , 2014, 13( 2): 168
https://doi.org/10.1038/nmat3826
|
12 |
Zhu T., Ertekin E.. Phonon transport on two-dimensional graphene/boron nitride superlattices. Phys. Rev. B , 2014, 90( 19): 195209
https://doi.org/10.1103/PhysRevB.90.195209
|
13 |
Maire J., Anufriev R., Yanagisawa R., Ramiere A., Volz S., Nomura M.. Heat conduction tuning by wave nature of phonons. Sci. Adv. , 2017, 3( 8): e1700027
https://doi.org/10.1126/sciadv.1700027
|
14 |
Jiang P., Ouyang Y., Ren W., Yu C., He J., Chen J.. Total-transmission and total-reflection of individual phonons in phononic crystal nanostructures. APL Mater. , 2021, 9( 4): 040703
https://doi.org/10.1063/5.0046509
|
15 |
Yang L., Chen J., Yang N., Li B.. Significant reduction of graphene thermal conductivity by phononic crystal structure. Int. J. Heat Mass Transf. , 2015, 91 : 428
https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.111
|
16 |
K. Chen X., X. Xie Z., X. Zhou W., M. Tang L., Q. Chen K.. Phonon wave interference in graphene and boron nitride superlattice. Appl. Phys. Lett. , 2016, 109( 2): 023101
https://doi.org/10.1063/1.4958688
|
17 |
Zhang Z., Guo Y., Bescond M., Chen J., Nomura M., Volz S.. Coherent thermal transport in nano-phononic crystals: An overview. APL Mater. , 2021, 9( 8): 081102
https://doi.org/10.1063/5.0059024
|
18 |
Zhou Y., Gong X., Xu B., Hu M.. First-principles and molecular dynamics study of thermoelectric transport properties of N-type silicon-based superlattice-nanocrystalline heterostructures. J. Appl. Phys. , 2017, 122( 8): 085105
https://doi.org/10.1063/1.5000356
|
19 |
M. Felix I., F. C. Pereira L.. Thermal conductivity of graphene−hBN superlattice ribbons. Sci. Rep. , 2018, 8( 1): 2737
https://doi.org/10.1038/s41598-018-20997-8
|
20 |
Razzaghi L., Khoeini F., Rajabpour A., Khalkhali M.. Thermal transport in two-dimensional C3N/C2N superlattices: A molecular dynamics approach. Int. J. Heat Mass Transf. , 2021, 177 : 121561
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121561
|
21 |
C. Huberman S., M. Larkin J., J. McGaughey A., H. Amon C.. Disruption of superlattice phonons by interfacial mixing. Phys. Rev. B , 2013, 88( 15): 155311
https://doi.org/10.1103/PhysRevB.88.155311
|
22 |
Wang Y., Gu C., Ruan X.. Optimization of the random multilayer structure to break the random-alloy limit of thermal conductivity. Appl. Phys. Lett. , 2015, 106( 7): 073104
https://doi.org/10.1063/1.4913319
|
23 |
Juntunen T., Vänskä O., Tittonen I.. Anderson localization quenches thermal transport in aperiodic superlattices. Phys. Rev. Lett. , 2019, 122( 10): 105901
https://doi.org/10.1103/PhysRevLett.122.105901
|
24 |
Pop E.. Energy dissipation and transport in nanoscale devices. Nano Res. , 2010, 3( 3): 147
https://doi.org/10.1007/s12274-010-1019-z
|
25 |
Xiang C., W. Wu C., X. Zhou W., Xie G., Zhang G.. Thermal transport in lithium-ion battery: A micro perspective for thermal management. Front. Phys. , 2022, 17( 1): 13202
https://doi.org/10.1007/s11467-021-1090-9
|
26 |
Hu S., Zhang Z., Jiang P., Chen J., Volz S., Nomura M., Li B.. Randomness-induced phonon localization in graphene heat conduction. J. Phys. Chem. Lett. , 2018, 9( 14): 3959
https://doi.org/10.1021/acs.jpclett.8b01653
|
27 |
Luckyanova M., Mendoza J., Lu H., Song B., Huang S., Zhou J., Li M., Dong Y., Zhou H., Garlow J., Wu L., J. Kirby B., J. Grutter A., A. Puretzky A., Zhu Y., S. Dresselhaus M., Gossard A., Chen G.. Phonon localization in heat conduction. Sci. Adv. , 2018, 4( 12): eaat9460
https://doi.org/10.1126/sciadv.aat9460
|
28 |
Hu S., Zhang Z., Jiang P., Ren W., Yu C., Shiomi J., Chen J.. Disorder limits the coherent phonon transport in two-dimensional phononic crystal structures. Nanoscale , 2019, 11( 24): 11839
https://doi.org/10.1039/C9NR02548K
|
29 |
Ma T., Lin C.-T., Wang Y.. The dimensionality effect on phonon localization in graphene/hexagonal boron nitride superlattices. 2D Mater. , 2020, 7 : 035029
https://doi.org/10.1088/2053-1583/ab93e2
|
30 |
Wang Y., Huang H., Ruan X.. Decomposition of coherent and incoherent phonon conduction in superlattices and random multilayers. Phys. Rev. B , 2014, 90( 16): 165406
https://doi.org/10.1103/PhysRevB.90.165406
|
31 |
Wei H., Bao H., Ruan X.. Genetic algorithm-driven discovery of unexpected thermal conductivity enhancement by disorder. Nano Energy , 2020, 71 : 104619
https://doi.org/10.1016/j.nanoen.2020.104619
|
32 |
Chakraborty P., Liu Y., Ma T., Guo X., Cao L., Hu R., Wang Y.. Quenching thermal transport in aperiodic superlattices: A molecular dynamics and machine learning study. ACS Appl. Mater. Interfaces , 2020, 12( 7): 8795
https://doi.org/10.1021/acsami.9b18084
|
33 |
Agrawal A., Choudhary A.. Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science. APL Mater. , 2016, 4( 5): 053208
https://doi.org/10.1063/1.4946894
|
34 |
Ju S., Shiga T., Feng L., Hou Z., Tsuda K., Shiomi J.. Designing nanostructures for phonon transport via Bayesian optimization. Phys. Rev. X , 2017, 7( 2): 021024
https://doi.org/10.1103/PhysRevX.7.021024
|
35 |
Wan X., Feng W., Wang Y., Wang H., Zhang X., Deng C., Yang N.. Materials discovery and properties prediction in thermal transport via materials informatics: A mini review. Nano Lett. , 2019, 19( 6): 3387
https://doi.org/10.1021/acs.nanolett.8b05196
|
36 |
Ouyang Y., Zhang Z., Yu C., He J., Yan G., Chen J.. Accuracy of machine learning potential for predictions of multiple-target physical properties. Chin. Phys. Lett. , 2020, 37( 12): 126301
https://doi.org/10.1088/0256-307X/37/12/126301
|
37 |
Ju S., Shimizu S., Shiomi J.. Designing thermal functional materials by coupling thermal transport calculations and machine learning. J. Appl. Phys. , 2020, 128( 16): 161102
https://doi.org/10.1063/5.0017042
|
38 |
R. Chowdhury P., Reynolds C., Garrett A., Feng T., P. Adiga S., Ruan X.. Machine learning maximized Anderson localization of phonons in aperiodic superlattices. Nano Energy , 2020, 69 : 104428
https://doi.org/10.1016/j.nanoen.2019.104428
|
39 |
Ouyang Y., Yu C., Yan G., Chen J.. Machine learning approach for the prediction and optimization of thermal transport properties. Front. Phys. , 2021, 16( 4): 43200
https://doi.org/10.1007/s11467-020-1041-x
|
40 |
Yang L., Wan X., Ma D., Jiang Y., Yang N.. Maximization and minimization of interfacial thermal conductance by modulating the mass distribution of the interlayer. Phys. Rev. B , 2021, 103( 15): 155305
https://doi.org/10.1103/PhysRevB.103.155305
|
41 |
Arabha S., S. Aghbolagh Z., Ghorbani K., M. Hatam-Lee S., Rajabpour A.. Recent advances in lattice thermal conductivity calculation using machine-learning interatomic potentials. J. Appl. Phys. , 2021, 130( 21): 210903
https://doi.org/10.1063/5.0069443
|
42 |
Ouyang Y., Yu C., He J., Jiang P., Ren W., Chen J.. Accurate description of high-order phonon anharmonicity and lattice thermal conductivity from molecular dynamics simulations with machine learning potential. Phys. Rev. B , 2022, 105( 11): 115202
https://doi.org/10.1103/PhysRevB.105.115202
|
43 |
Zhang Z., Guo Y., Bescond M., Chen J., Nomura M., Volz S.. Generalized decay law for particlelike and wavelike thermal phonons. Phys. Rev. B , 2021, 103( 18): 184307
https://doi.org/10.1103/PhysRevB.103.184307
|
44 |
Zhang Z., Guo Y., Bescond M., Chen J., Nomura M., Volz S.. Heat conduction theory including phonon coherence. Phys. Rev. Lett. , 2022, 128( 1): 015901
https://doi.org/10.1103/PhysRevLett.128.015901
|
45 |
Plimpton S.. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. , 1995, 117( 1): 1
https://doi.org/10.1006/jcph.1995.1039
|
46 |
Chakraborty P., A. Chiu I., Ma T., Wang Y.. Complex temperature dependence of coherent and incoherent lattice thermal transport in superlattices. Nanotechnology , 2021, 32( 6): 065401
https://doi.org/10.1088/1361-6528/abc2ef
|
47 |
Giri A., L. Braun J., E. Hopkins P.. Implications of interfacial bond strength on the spectral contributions to thermal boundary conductance across solid, liquid, and gas interfaces: A molecular dynamics study. J. Phys. Chem. C , 2016, 120( 43): 24847
https://doi.org/10.1021/acs.jpcc.6b08124
|
48 |
Chakraborty P., Cao L., Wang Y.. Ultralow lattice thermal conductivity of the random multilayer structure with lattice imperfections. Sci. Rep. , 2017, 7( 1): 8134
https://doi.org/10.1038/s41598-017-08359-2
|
49 |
Qiu B., Chen G., Tian Z.. Effects of aperiodicity and roughness on coherent heat conduction in superlattices. Nanoscale Microscale Thermophys. Eng. , 2015, 19( 4): 272
https://doi.org/10.1080/15567265.2015.1102186
|
50 |
Zhou Y., Zhang X., Hu M.. An excellent candidate for largely reducing interfacial thermal resistance: A nano-confined mass graded interface. Nanoscale , 2016, 8( 4): 1994
https://doi.org/10.1039/C5NR06855J
|
51 |
Sääskilahti K., Oksanen J., Volz S., Tulkki J.. Frequency-dependent phonon mean free path in carbon nanotubes from nonequilibrium molecular dynamics. Phys. Rev. B , 2015, 91( 11): 115426
https://doi.org/10.1103/PhysRevB.91.115426
|
52 |
Sääskilahti K., Oksanen J., Tulkki J., Volz S.. Role of anharmonic phonon scattering in the spectrally decomposed thermal conductance at planar interfaces. Phys. Rev. B , 2014, 90( 13): 134312
https://doi.org/10.1103/PhysRevB.90.134312
|
53 |
Zhou Y., Zhang X., Hu M.. Quantitatively analyzing phonon spectral contribution of thermal conductivity based on nonequilibrium molecular dynamics simulations (I): From space Fourier transform. Phys. Rev. B , 2015, 92( 19): 195204
https://doi.org/10.1103/PhysRevB.92.195204
|
54 |
Zhou Y., Hu M.. Full quantification of frequency-dependent interfacial thermal conductance contributed by two- and three-phonon scattering processes from nonequilibrium molecular dynamics simulations. Phys. Rev. B , 2017, 95( 11): 115313
https://doi.org/10.1103/PhysRevB.95.115313
|
55 |
Ouyang Y., Zhang Z., Xi Q., Jiang P., Ren W., Li N., Zhou J., Chen J.. Effect of boundary chain folding on thermal conductivity of lamellar amorphous polyethylene. RSC Advances , 2019, 9( 57): 33549
https://doi.org/10.1039/C9RA07563A
|
56 |
K. Chen X., Pang M., Chen T., Du D., Q. Chen K.. Thermal rectification in asymmetric graphene/hexagonal boron nitride van der Waals heterostructures. ACS Appl. Mater. Interfaces , 2020, 12( 13): 15517
https://doi.org/10.1021/acsami.9b22498
|
57 |
Ma Y., Zhang Z., Chen J., Sääskilahti K., Volz S., Chen J.. Ordered water layers by interfacial charge decoration leading to an ultra-low Kapitza resistance between graphene and water. Carbon , 2018, 135 : 263
https://doi.org/10.1016/j.carbon.2018.04.030
|
58 |
Chen G., Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons, Oxford University Press, 2005
|
59 |
S. Landry E., J. McGaughey A.. Effect of film thickness on the thermal resistance of confined semiconductor thin films. J. Appl. Phys. , 2010, 107( 1): 013521
https://doi.org/10.1063/1.3275506
|
60 |
I. Tamura S., Tanaka Y., J. Maris H.. Phonon group velocity and thermal conduction in superlattices. Phys. Rev. B , 1999, 60( 4): 2627
https://doi.org/10.1103/PhysRevB.60.2627
|
61 |
Hu R., Iwamoto S., Feng L., Ju S., Hu S., Ohnishi M., Nagai N., Hirakawa K., Shiomi J.. Machine-learning-optimized aperiodic superlattice minimizes coherent phonon heat conduction. Phys. Rev. X , 2020, 10( 2): 021050
https://doi.org/10.1103/PhysRevX.10.021050
|
62 |
Jiang P., Hu S., Ouyang Y., Ren W., Yu C., Zhang Z., Chen J.. Remarkable thermal rectification in pristine and symmetric monolayer graphene enabled by asymmetric thermal contact. J. Appl. Phys. , 2020, 127( 23): 235101
https://doi.org/10.1063/5.0004484
|
63 |
Yu C., Hu Y., He J., Lu S., Li D., Chen J.. Strong four-phonon scattering in monolayer and hydrogenated bilayer BAs with horizontal mirror symmetry. Appl. Phys. Lett. , 2022, 120( 13): 132201
https://doi.org/10.1063/5.0086608
|
64 |
Lu S., Ren W., He J., Yu C., Jiang P., Chen J.. Enhancement of the lattice thermal conductivity of two-dimensional functionalized MXenes by inversion symmetry breaking. Phys. Rev. B , 2022, 105( 16): 165301
https://doi.org/10.1103/PhysRevB.105.165301
|
65 |
Zhan T., Fang L., Xu Y.. Prediction of thermal boundary resistance by the machine learning method. Sci. Rep. , 2017, 7( 1): 7109
https://doi.org/10.1038/s41598-017-07150-7
|
66 |
J. Wu Y., Sasaki M., Goto M., Fang L., Xu Y.. Electrically conductive thermally insulating Bi–Si nanocomposites by interface design for thermal management. ACS Appl. Nano Mater. , 2018, 1( 7): 3355
https://doi.org/10.1021/acsanm.8b00575
|
67 |
J. Wu Y., Fang L., Xu Y.. Predicting interfacial thermal resistance by machine learning. npj Comput. Mater. , 2019, 5 : 56
https://doi.org/10.1038/s41524-019-0193-0
|
68 |
Liu Y., Hong W., Cao B.. Machine learning for predicting thermodynamic properties of pure fluids and their mixtures. Energy , 2019, 188 : 116091
https://doi.org/10.1016/j.energy.2019.116091
|
69 |
Hou Z., Takagiwa Y., Shinohara Y., Xu Y., Tsuda K.. Machine-learning-assisted development and theoretical consideration for the Al2Fe3Si3 thermoelectric material. ACS Appl. Mater. Interfaces , 2019, 11( 12): 11545
https://doi.org/10.1021/acsami.9b02381
|
70 |
H. Friedman J.. Greedy function approximation: A gradient boosting machine. Ann. Stat. , 2001, 29( 5): 1189
https://doi.org/10.1214/aos/1013203451
|
71 |
R. Wagner M., Graczykowski B., S. Reparaz J., El Sachat A., Sledzinska M., Alzina F., M. Sotomayor Torres C.. Two-dimensional phononic crystals: Disorder matters. Nano Lett. , 2016, 16( 9): 5661
https://doi.org/10.1021/acs.nanolett.6b02305
|
[1] |
fop-21170-OF-chenjie_suppl_1
|
Download
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|