Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (1) : 12305    https://doi.org/10.1007/s11467-022-1212-z
RESEARCH ARTICLE
Spinning microresonator-induced chiral optical transmission
Lu Bo1, Xiao-Fei Liu1(), Chuan Wang2, Tie-Jun Wang1()
1. State Key Laboratory of Information Photonics and Optical Communications and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
2. School of Artificial Intelligence, Beijing Normal University, Beijing 100875, China
 Download: PDF(9277 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Chiral quantum optics is a new research area in light-matter interaction that depends on the direction of light propagation and offers a new path for the quantum regulation of light-matter interactions. In this paper, we study a spinning Kerr-type microresonator coupled with Λ-type atom ensembles, which are driven in opposite directions to generate asymmetric photon statistics. We find that a photon blockade can only be generated by driving the spinning resonator on right side without driving the spinning microresonator from the left side, resulting in chirality. The coupling strength between system modes can be precisely controlled by adjusting the detuning amount of the atomic pump field. Because of the splitting of the resonant frequency generated by the Fizeau drag, the destructive quantum interference generated in right side drive prevents the nonresonant transition path of state |1,0⟩ to state |2,0⟩. This direction-dependent chiral quantum optics is expected to be applied to chiral optical devices, single-photon sources and nonreciprocal quantum communications.

Keywords chiral quantum optics      spinning microresonator      nonreciprocal      photon blockade     
Corresponding Author(s): Xiao-Fei Liu,Tie-Jun Wang   
Issue Date: 30 November 2022
 Cite this article:   
Lu Bo,Xiao-Fei Liu,Chuan Wang, et al. Spinning microresonator-induced chiral optical transmission[J]. Front. Phys. , 2023, 18(1): 12305.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1212-z
https://academic.hep.com.cn/fop/EN/Y2023/V18/I1/12305
Fig.1  (a) Illustration of a spinning resonator coupled atom ensemble. The spinning resonator rotates counterclockwise at angular velocity Ω, and both CW and CCW modes are excited simultaneously in the microcavity. When a probe signal is input from port 1 (or port 2) or a transmission is detected from port 4 (or port 3), the intrinsic dissipation of the resonator is κ 0, and the dissipation of coupling with the fibers on both sides is κ1ext and κ2ext. (b) Fizeau drag ΔF versus angular velocity Ω of the resonator for the CCW (red line) and CW (blue line) cases. (c) The Λ-type energy level of the atom and its interaction with the cavity mode and external control field. The parameters are as follows: the optical wavelength is λ = 1550 nm, the radius of the resonator is r=100μm, the coupling strength between cavity modes (CW and CCW) is J, and the linear refractive index of the resonator is n = 1.4.
Fig.2  Equal-time second-order correlation functions g(2 )(0) as functions of the couple strength, detuning Δ, and rotation speed Ω. (a) The change in second-order coherence functions gL(2 )(0) with coupling strength when the system is driven on the left. (b) The change in second-order correlation functions g (2)(0 ) with the effective detuning Δ /κ under different driving directions. At Δ/κ 0.085, by driving the resonator on the left or right side, different properties will appear, with the right side driving for photon blockade and the left side for photon bunching. A nonspinning resonator is represented by a green line. (c) The second-order correlation functions g (2)(0 ) plotted as functions of the rotation speed Ω. The blue and red solid lines represent g(2 )(0) of the system driven by the left and the right when Ω= 5kHz, and the dotted line represents the case of Ω= 10 kHz. The parameters are chosen as the coupling strength g 12 and g21=3κ, ε=0.01κ, n=1.4, r=100 μm, Q=2.5×108,Ω= 5 kHz (Δ F/κ=0.3), κ=5 MHz, U=0.05κ and λ =1550 nm.
Fig.3  (a) Dependence of parameter Γ on the effective detuning Δ /κ and the spinning speed Ω. Other parameters, the nonlinear interaction strength U /κ =0.05 and the coupling strength |g|=3κ. (b) The equal-time second-order correlation functions g(2 )(0) as functions of the spinning speed Ω. Other parameters are consistent with (a), and the amount of detuning increases from top to bottom. The red and blue lines are driven on the right side and left side, respectively.
Fig.4  The changes of the equal-time second-order correlation function gL (2)0 as the coupling strength g with the Kerr nonlinearity U. The marked line is the optical U opt calculated from above. The detuning Δ is chosen as 0.105κ. The values of the other parameters are ε=0.01 κ and Δ F=0.3κ.
Fig.5  The energy level diagram shows the zero-photon, single-photon and two-photon states and transition path leading to quantum interference responsible for the photon blockade (the solid green line with arrows is the transition path that is allowed to occur, the dashed red line is the transition path that is not allowed to occur, and the gray lines indicate quantum transition pathways with interference). (a) and (b) represent the photon blockade from the right drive and the photon bunching caused by the left drive, respectively.
1 R. Yennie D.. Integral quantum Hall effect for nonspecialists. Rev. Mod. Phys., 1987, 59(3): 781
https://doi.org/10.1103/RevModPhys.59.781
2 König M., Wiedmann S., Brüne C., Roth A., Buhmann H., W. Molenkamp L., L. Qi X., C. Zhang S.. Quantum spin Hall insulator state in HgTe quantum wells. Science, 2007, 318(5851): 766
https://doi.org/10.1126/science.1148047
3 X. Zhao Y.. Equivariant PT-symmetric real Chern insulators. Front. Phys., 2020, 15(1): 13603
https://doi.org/10.1007/s11467-019-0943-y
4 Serban I., Béri B., R. Akhmerov A., W. J. Beenakker C.. Domain wall in a chiral p-wave superconductor: A pathway for electrical current. Phys. Rev. Lett., 2010, 104(14): 147001
https://doi.org/10.1103/PhysRevLett.104.147001
5 Junge C., O’Shea D., Volz J., Rauschenbeutel A.. Strong coupling between single atoms and nontransversal photons. Phys. Rev. Lett., 2013, 110(21): 213604
https://doi.org/10.1103/PhysRevLett.110.213604
6 Shomroni I., Rosenblum S., Lovsky Y., Bechler O., Guendelman G., Dayan B.. All-optical routing of single photons by a one-atom switch controlled by a single photon. Science, 2014, 345(6199): 903
https://doi.org/10.1126/science.1254699
7 Mitsch R., Sayrin C., Albrecht B., Schneeweiss P., Rauschenbeutel A.. Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide. Nat. Commun., 2014, 5(1): 5713
https://doi.org/10.1038/ncomms6713
8 F. Liu X., J. Wang T., P. Gao Y., Cao C., Wang C.. Chiral microresonator assisted by Rydberg-atom ensembles. Phys. Rev. A, 2018, 98(3): 033824
https://doi.org/10.1103/PhysRevA.98.033824
9 J. Luxmoore I., A. Wasley N., J. Ramsay A., C. T. Thijssen A., Oulton R., Hugues M., Kasture S., G. Achanta V., M. Fox A., S. Skolnick M.. Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons. Phys. Rev. Lett., 2013, 110(3): 037402
https://doi.org/10.1103/PhysRevLett.110.037402
10 Holzmann D., Sonnleitner M., Ritsch H.. Self-ordering and collective dynamics of transversely illuminated pointscatterers in a 1D trap. Eur. Phys. J. D, 2014, 68(11): 352
https://doi.org/10.1140/epjd/e2014-50692-2
11 W. Shi Q., F. Wang Z., X. Li Q., L. Yang J.. Chiral selective tunneling induced graphene nanoribbon switch. Front. Phys. China, 2009, 4(3): 373
https://doi.org/10.1007/s11467-009-0027-5
12 Lodahl P., Mahmoodian S., Stobbe S., Rauschenbeutel A., Schneeweiss P., Volz J., Pichler H., Zoller P.. Chiral quantum optics. Nature, 2017, 541(7638): 473
https://doi.org/10.1038/nature21037
13 J. Kimble H.. Strong interactions of single atoms and photons in cavity QED. Phys. Scr., 1998, T76(1): 127
https://doi.org/10.1238/Physica.Topical.076a00127
14 W. Xu X., Q. Shi H., X. Chen A.. Nonreciprocal transition between two indirectly coupled energy levels. Front. Phys., 2022, 17(4): 42505
https://doi.org/10.1007/s11467-021-1138-x
15 Y. Bliokh K., J. Rodríguez-Fortuño F., Nori F., V. Zayats A.. Spin–orbit interactions of light. Nat. Photonics, 2015, 9(12): 796
https://doi.org/10.1038/nphoton.2015.201
16 Aiello A., Banzer P., Neugebauer M., Leuchs G.. From transverse angular momentum to photonic wheels. Nat. Photonics, 2015, 9(12): 789
https://doi.org/10.1038/nphoton.2015.203
17 Y. Bliokh K., Nori F.. Transverse and longitudinal angular momenta of light. Phys. Rep., 2015, 592: 1
https://doi.org/10.1016/j.physrep.2015.06.003
18 Lin Z., Ramezani H., Eichelkraut T., Kottos T., Cao H., N. Christodoulides D.. Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett., 2011, 106(21): 213901
https://doi.org/10.1103/PhysRevLett.106.213901
19 Chang L., Jiang X., Hua S., Yang C., Wen J., Jiang L., Li G., Wang G., Xiao M.. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators. Nat. Photonics, 2014, 8(7): 524
https://doi.org/10.1038/nphoton.2014.133
20 Y. Fu Y., D. Xu Y., Y. Chen H.. Negative refraction based on purely imaginary metamaterials. Front. Phys., 2018, 13(4): 134206
https://doi.org/10.1007/s11467-018-0781-3
21 Imamoḡlu A., Schmidt H., Woods G., Deutsch M.. Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett., 1997, 79(8): 1467
https://doi.org/10.1103/PhysRevLett.79.1467
22 Q. Liao J., Law C.. Correlated two-photon transport in a one-dimensional waveguide side-coupled to a nonlinear cavity. Phys. Rev. A, 2010, 82(5): 053836
https://doi.org/10.1103/PhysRevA.82.053836
23 Miranowicz A., Paprzycka M., X. Liu Y., Bajer J., Nori F.. Two-photon and three-photon blockades in driven nonlinear systems. Phys. Rev. A, 2013, 87(2): 023809
https://doi.org/10.1103/PhysRevA.87.023809
24 P. Gao Y., F. Liu X., J. Wang T., Cao C., Wang C.. Photon excitation and photon-blockade effects in optomagnonic microcavities. Phys. Rev. A, 2019, 100(4): 043831
https://doi.org/10.1103/PhysRevA.100.043831
25 L. Xu W., P. Gao Y., J. Wang T., Wang C.. Magnon-induced optical high-order sideband generation in hybrid atom-cavity optomagnonical system. Opt. Express, 2020, 28(15): 22334
https://doi.org/10.1364/OE.394488
26 Wang K., P. Gao Y., Jiao R., Wang C.. Recent progress on optomagnetic coupling and optical manipulation based on cavity-optomagnonics. Front. Phys., 2022, 17(4): 42201
https://doi.org/10.1007/s11467-022-1165-2
27 P. Gao Y., Wang C.. Hybrid coupling optomechanical assisted nonreciprocal photon blockade. Opt. Express, 2021, 29(16): 25161
https://doi.org/10.1364/OE.431211
28 Rabl P.. Photon blockade effect in optomechanical systems. Phys. Rev. Lett., 2011, 107(6): 063601
https://doi.org/10.1103/PhysRevLett.107.063601
29 Nunnenkamp A., Børkje K., M. Girvin S.. Singlephoton optomechanics. Phys. Rev. Lett., 2011, 107(6): 063602
https://doi.org/10.1103/PhysRevLett.107.063602
30 B. Yan X., L. Lu H., Gao F., Gao F., Yang L.. Perfect optical nonreciprocity in a double-cavity optomechanical system. Front. Phys., 2019, 14(5): 52601
https://doi.org/10.1007/s11467-019-0922-3
31 Armani D., Kippenberg T., Spillane S., Vahala K.. Ultra-high-Q toroid microcavity on a chip. Nature, 2003, 421(6926): 925
https://doi.org/10.1038/nature01371
32 Dayan B.S. Parkins A.Aoki T.P. Ostby E.J. Vahala K.J. Kimble H., A photon turnstile dynamically regulated by one atom, Science 319(5866), 1062 (2008)
33 Braginsky V., Gorodetsky M., Ilchenko V.. Quality factor and nonlinear properties of optical whispering gallery modes. Phys. Lett. A, 1989, 137(7-8): 393
https://doi.org/10.1016/0375-9601(89)90912-2
34 Carmon T., Yang L., J. Vahala K.. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express, 2004, 12(20): 4742
https://doi.org/10.1364/OPEX.12.004742
35 Totsuka K., Tomita M.. Optical microsphere amplification system. Opt. Lett., 2007, 32(21): 3197
https://doi.org/10.1364/OL.32.003197
36 S. Park Y., Wang H.. Resolved-sideband and cryogenic cooling of an optomechanical resonator. Nat. Phys., 2009, 5(7): 489
https://doi.org/10.1038/nphys1303
37 Weis S., Rivière R., Deléglise S., Gavartin E., Arcizet O., Schliesser A., J. Kippenberg T.. Optomechanically induced transparency. Science, 2010, 330(6010): 1520
https://doi.org/10.1126/science.1195596
38 Carmon T., Rokhsari H., Yang L., J. Kippenberg T., J. Vahala K.. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys. Rev. Lett., 2005, 94(22): 223902
https://doi.org/10.1103/PhysRevLett.94.223902
39 Monifi F., Zhang J., Ozdemir K., Peng B., Liu Y., Bo F., Nori F., Yang L.. Optomechanically induced stochastic resonance and chaos transfer between optical fields. Nat. Photonics, 2016, 10(6): 399
https://doi.org/10.1038/nphoton.2016.73
40 P. Gao Y.Cao C.F. Lu P.Wang C., Phase-controlled photon blockade in optomechanical systems, Fundamental Research (2022) (in press)
41 W. Hu Y., F. Xiao Y., C. Liu Y., Gong Q.. Optomechanical sensing with on-chip microcavities. Front. Phys., 2013, 8(5): 475
https://doi.org/10.1007/s11467-013-0384-y
42 J. Kippenberg T., Holzwarth R., A. Diddams S.. Microresonator-based optical frequency combs. Science, 2011, 332(6029): 555
https://doi.org/10.1126/science.1193968
43 Bo F., Wang J., Cui J., K. Ozdemir S., Kong Y., Zhang G., Xu J., Yang L.. Lithium-niobate–silica hybrid whispering-gallery-mode resonators. Adv. Mater., 2015, 27(48): 8075
https://doi.org/10.1002/adma.201504722
44 T. Cao Q., Wang H., H. Dong C., Jing H., S. Liu R., Chen X., Ge L., Gong Q., F. Xiao Y.. Experimental demonstration of spontaneous chirality in a nonlinear microresonator. Phys. Rev. Lett., 2017, 118(3): 033901
https://doi.org/10.1103/PhysRevLett.118.033901
45 Peng B., K. Ozdemir S., Lei F., Monifi F., Gianfreda M., L. Long G., Fan S., Nori F., M. Bender C., Yang L.. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys., 2014, 10(5): 394
https://doi.org/10.1038/nphys2927
46 Feng L., J. Wong Z., M. Ma R., Wang Y., Zhang X.. Single-mode laser by parity-time symmetry breaking. Science, 2014, 346(6212): 972
https://doi.org/10.1126/science.1258479
47 Hodaei H., A. Miri M., Heinrich M., N. Christodoulides D., Khajavikhan M.. Parity-time-symmetric microring lasers. Science, 2014, 346(6212): 975
https://doi.org/10.1126/science.1258480
48 M. Spillane S., J. Kippenberg T., J. Vahala K., W. Goh K., Wilcut E., J. Kimble H.. Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics. Phys. Rev. A, 2005, 71(1): 013817
https://doi.org/10.1103/PhysRevA.71.013817
49 Wang H.. Multi-peak solitons in PT-symmetric Bessel optical lattices with defects. Front. Phys., 2016, 11(5): 114204
https://doi.org/10.1007/s11467-016-0569-2
50 Zhu J., K. Ozdemir S., Xiao Y., Li L., He L., Chen D., Yang L.. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics, 2010, 30(2): 4,46
51 Zhi Y., C. Yu X., Gong Q., Yang L., F. Xiao Y.. Single nanoparticle detection using optical microcavities. Adv. Mater., 2017, 29(12): 1604920
https://doi.org/10.1002/adma.201604920
52 Reynolds T., Riesen N., Meldrum A., Fan X., M. M. Hall J., M. Monro T., François A.. Fluorescent and lasing whispering gallery mode microresonators for sensing applications. Laser Photonics Rev., 2017, 11(2): 1600265
https://doi.org/10.1002/lpor.201600265
53 X. Zhang L., Zhang R., Q. Li Z.. Study on a vapor sensor based on the optical properties of porous silicon microcavities. Front. Phys. China, 2007, 2(2): 166
https://doi.org/10.1007/s11467-007-0035-2
54 Maayani S., Dahan R., Kligerman Y., Moses E., U. Hassan A., Jing H., Nori F., N. Christodoulides D., Carmon T.. Flying couplers above spinning resonators generate irreversible refraction. Nature, 2018, 558(7711): 569
https://doi.org/10.1038/s41586-018-0245-5
55 Huang R., Miranowicz A., Q. Liao J., Nori F., Jing H.. Nonreciprocal photon blockade. Phys. Rev. Lett., 2018, 121(15): 153601
https://doi.org/10.1103/PhysRevLett.121.153601
56 Jiang Y., Maayani S., Carmon T., Nori F., Jing H.. Nonreciprocal phonon laser. Phys. Rev. Appl., 2018, 10(6): 064037
https://doi.org/10.1103/PhysRevApplied.10.064037
57 Jing H., Lü H., Özdemir S., Carmon T., Nori F.. Nanoparticle sensing with a spinning resonator. Optica, 2018, 5(11): 1424
https://doi.org/10.1364/OPTICA.5.001424
58 Li B., Huang R., Xu X., Miranowicz A., Jing H.. Nonreciprocal unconventional photon blockade in a spinning optomechanical system. Photon. Res., 2019, 7(6): 630
https://doi.org/10.1364/PRJ.7.000630
59 B. Malykin G.. The Sagnac effect: Correct and incorrect explanations. Phys. Uspekhi, 2000, 43(12): 1229
https://doi.org/10.1070/PU2000v043n12ABEH000830
60 C. H. Liew T., Savona V.. Single photons from coupled quantum modes. Phys. Rev. Lett., 2010, 104(18): 183601
https://doi.org/10.1103/PhysRevLett.104.183601
61 Bamba M., Imamoğlu A., Carusotto I., Ciuti C.. Origin of strong photon antibunching in weakly nonlinear photonic molecules. Phys. Rev. A, 2011, 83(2): 021802
https://doi.org/10.1103/PhysRevA.83.021802
[1] Cui Kong, Jibing Liu, Hao Xiong. Nonreciprocal microwave transmission under the joint mechanism of phase modulation and magnon Kerr nonlinearity effect[J]. Front. Phys. , 2023, 18(1): 12501-.
[2] Ling-Juan Feng, Li Yan, Shang-Qing Gong. Unconventional photon blockade induced by the self-Kerr and cross-Kerr nonlinearities[J]. Front. Phys. , 2023, 18(1): 12304-.
[3] Junya Yang, Chengsong Zhao, Zhen Yang, Rui Peng, Shilei Chao, Ling Zhou. Nonreciprocal ground-state cooling of mechanical resonator in a spinning optomechanical system[J]. Front. Phys. , 2022, 17(5): 52507-.
[4] Xun-Wei Xu, Hai-Quan Shi, Ai-Xi Chen. Nonreciprocal transition between two indirectly coupled energy levels[J]. Front. Phys. , 2022, 17(4): 42505-.
[5] Xiao-Bo Yan, He-Lin Lu, Feng Gao, Feng Gao, Liu Yang. Perfect optical nonreciprocity in a double-cavity optomechanical system[J]. Front. Phys. , 2019, 14(5): 52601-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed