|
|
Spinning microresonator-induced chiral optical transmission |
Lu Bo1, Xiao-Fei Liu1( ), Chuan Wang2, Tie-Jun Wang1( ) |
1. State Key Laboratory of Information Photonics and Optical Communications and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China 2. School of Artificial Intelligence, Beijing Normal University, Beijing 100875, China |
|
|
Abstract Chiral quantum optics is a new research area in light-matter interaction that depends on the direction of light propagation and offers a new path for the quantum regulation of light-matter interactions. In this paper, we study a spinning Kerr-type microresonator coupled with Λ-type atom ensembles, which are driven in opposite directions to generate asymmetric photon statistics. We find that a photon blockade can only be generated by driving the spinning resonator on right side without driving the spinning microresonator from the left side, resulting in chirality. The coupling strength between system modes can be precisely controlled by adjusting the detuning amount of the atomic pump field. Because of the splitting of the resonant frequency generated by the Fizeau drag, the destructive quantum interference generated in right side drive prevents the nonresonant transition path of state |1,0⟩ to state |2,0⟩. This direction-dependent chiral quantum optics is expected to be applied to chiral optical devices, single-photon sources and nonreciprocal quantum communications.
|
Keywords
chiral quantum optics
spinning microresonator
nonreciprocal
photon blockade
|
Corresponding Author(s):
Xiao-Fei Liu,Tie-Jun Wang
|
Issue Date: 30 November 2022
|
|
1 |
R. Yennie D.. Integral quantum Hall effect for nonspecialists. Rev. Mod. Phys., 1987, 59(3): 781
https://doi.org/10.1103/RevModPhys.59.781
|
2 |
König M., Wiedmann S., Brüne C., Roth A., Buhmann H., W. Molenkamp L., L. Qi X., C. Zhang S.. Quantum spin Hall insulator state in HgTe quantum wells. Science, 2007, 318(5851): 766
https://doi.org/10.1126/science.1148047
|
3 |
X. Zhao Y.. Equivariant PT-symmetric real Chern insulators. Front. Phys., 2020, 15(1): 13603
https://doi.org/10.1007/s11467-019-0943-y
|
4 |
Serban I., Béri B., R. Akhmerov A., W. J. Beenakker C.. Domain wall in a chiral p-wave superconductor: A pathway for electrical current. Phys. Rev. Lett., 2010, 104(14): 147001
https://doi.org/10.1103/PhysRevLett.104.147001
|
5 |
Junge C., O’Shea D., Volz J., Rauschenbeutel A.. Strong coupling between single atoms and nontransversal photons. Phys. Rev. Lett., 2013, 110(21): 213604
https://doi.org/10.1103/PhysRevLett.110.213604
|
6 |
Shomroni I., Rosenblum S., Lovsky Y., Bechler O., Guendelman G., Dayan B.. All-optical routing of single photons by a one-atom switch controlled by a single photon. Science, 2014, 345(6199): 903
https://doi.org/10.1126/science.1254699
|
7 |
Mitsch R., Sayrin C., Albrecht B., Schneeweiss P., Rauschenbeutel A.. Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide. Nat. Commun., 2014, 5(1): 5713
https://doi.org/10.1038/ncomms6713
|
8 |
F. Liu X., J. Wang T., P. Gao Y., Cao C., Wang C.. Chiral microresonator assisted by Rydberg-atom ensembles. Phys. Rev. A, 2018, 98(3): 033824
https://doi.org/10.1103/PhysRevA.98.033824
|
9 |
J. Luxmoore I., A. Wasley N., J. Ramsay A., C. T. Thijssen A., Oulton R., Hugues M., Kasture S., G. Achanta V., M. Fox A., S. Skolnick M.. Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons. Phys. Rev. Lett., 2013, 110(3): 037402
https://doi.org/10.1103/PhysRevLett.110.037402
|
10 |
Holzmann D., Sonnleitner M., Ritsch H.. Self-ordering and collective dynamics of transversely illuminated pointscatterers in a 1D trap. Eur. Phys. J. D, 2014, 68(11): 352
https://doi.org/10.1140/epjd/e2014-50692-2
|
11 |
W. Shi Q., F. Wang Z., X. Li Q., L. Yang J.. Chiral selective tunneling induced graphene nanoribbon switch. Front. Phys. China, 2009, 4(3): 373
https://doi.org/10.1007/s11467-009-0027-5
|
12 |
Lodahl P., Mahmoodian S., Stobbe S., Rauschenbeutel A., Schneeweiss P., Volz J., Pichler H., Zoller P.. Chiral quantum optics. Nature, 2017, 541(7638): 473
https://doi.org/10.1038/nature21037
|
13 |
J. Kimble H.. Strong interactions of single atoms and photons in cavity QED. Phys. Scr., 1998, T76(1): 127
https://doi.org/10.1238/Physica.Topical.076a00127
|
14 |
W. Xu X., Q. Shi H., X. Chen A.. Nonreciprocal transition between two indirectly coupled energy levels. Front. Phys., 2022, 17(4): 42505
https://doi.org/10.1007/s11467-021-1138-x
|
15 |
Y. Bliokh K., J. Rodríguez-Fortuño F., Nori F., V. Zayats A.. Spin–orbit interactions of light. Nat. Photonics, 2015, 9(12): 796
https://doi.org/10.1038/nphoton.2015.201
|
16 |
Aiello A., Banzer P., Neugebauer M., Leuchs G.. From transverse angular momentum to photonic wheels. Nat. Photonics, 2015, 9(12): 789
https://doi.org/10.1038/nphoton.2015.203
|
17 |
Y. Bliokh K., Nori F.. Transverse and longitudinal angular momenta of light. Phys. Rep., 2015, 592: 1
https://doi.org/10.1016/j.physrep.2015.06.003
|
18 |
Lin Z., Ramezani H., Eichelkraut T., Kottos T., Cao H., N. Christodoulides D.. Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett., 2011, 106(21): 213901
https://doi.org/10.1103/PhysRevLett.106.213901
|
19 |
Chang L., Jiang X., Hua S., Yang C., Wen J., Jiang L., Li G., Wang G., Xiao M.. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators. Nat. Photonics, 2014, 8(7): 524
https://doi.org/10.1038/nphoton.2014.133
|
20 |
Y. Fu Y., D. Xu Y., Y. Chen H.. Negative refraction based on purely imaginary metamaterials. Front. Phys., 2018, 13(4): 134206
https://doi.org/10.1007/s11467-018-0781-3
|
21 |
Imamoḡlu A., Schmidt H., Woods G., Deutsch M.. Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett., 1997, 79(8): 1467
https://doi.org/10.1103/PhysRevLett.79.1467
|
22 |
Q. Liao J., Law C.. Correlated two-photon transport in a one-dimensional waveguide side-coupled to a nonlinear cavity. Phys. Rev. A, 2010, 82(5): 053836
https://doi.org/10.1103/PhysRevA.82.053836
|
23 |
Miranowicz A., Paprzycka M., X. Liu Y., Bajer J., Nori F.. Two-photon and three-photon blockades in driven nonlinear systems. Phys. Rev. A, 2013, 87(2): 023809
https://doi.org/10.1103/PhysRevA.87.023809
|
24 |
P. Gao Y., F. Liu X., J. Wang T., Cao C., Wang C.. Photon excitation and photon-blockade effects in optomagnonic microcavities. Phys. Rev. A, 2019, 100(4): 043831
https://doi.org/10.1103/PhysRevA.100.043831
|
25 |
L. Xu W., P. Gao Y., J. Wang T., Wang C.. Magnon-induced optical high-order sideband generation in hybrid atom-cavity optomagnonical system. Opt. Express, 2020, 28(15): 22334
https://doi.org/10.1364/OE.394488
|
26 |
Wang K., P. Gao Y., Jiao R., Wang C.. Recent progress on optomagnetic coupling and optical manipulation based on cavity-optomagnonics. Front. Phys., 2022, 17(4): 42201
https://doi.org/10.1007/s11467-022-1165-2
|
27 |
P. Gao Y., Wang C.. Hybrid coupling optomechanical assisted nonreciprocal photon blockade. Opt. Express, 2021, 29(16): 25161
https://doi.org/10.1364/OE.431211
|
28 |
Rabl P.. Photon blockade effect in optomechanical systems. Phys. Rev. Lett., 2011, 107(6): 063601
https://doi.org/10.1103/PhysRevLett.107.063601
|
29 |
Nunnenkamp A., Børkje K., M. Girvin S.. Singlephoton optomechanics. Phys. Rev. Lett., 2011, 107(6): 063602
https://doi.org/10.1103/PhysRevLett.107.063602
|
30 |
B. Yan X., L. Lu H., Gao F., Gao F., Yang L.. Perfect optical nonreciprocity in a double-cavity optomechanical system. Front. Phys., 2019, 14(5): 52601
https://doi.org/10.1007/s11467-019-0922-3
|
31 |
Armani D., Kippenberg T., Spillane S., Vahala K.. Ultra-high-Q toroid microcavity on a chip. Nature, 2003, 421(6926): 925
https://doi.org/10.1038/nature01371
|
32 |
Dayan B.S. Parkins A.Aoki T.P. Ostby E.J. Vahala K.J. Kimble H., A photon turnstile dynamically regulated by one atom, Science 319(5866), 1062 (2008)
|
33 |
Braginsky V., Gorodetsky M., Ilchenko V.. Quality factor and nonlinear properties of optical whispering gallery modes. Phys. Lett. A, 1989, 137(7-8): 393
https://doi.org/10.1016/0375-9601(89)90912-2
|
34 |
Carmon T., Yang L., J. Vahala K.. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express, 2004, 12(20): 4742
https://doi.org/10.1364/OPEX.12.004742
|
35 |
Totsuka K., Tomita M.. Optical microsphere amplification system. Opt. Lett., 2007, 32(21): 3197
https://doi.org/10.1364/OL.32.003197
|
36 |
S. Park Y., Wang H.. Resolved-sideband and cryogenic cooling of an optomechanical resonator. Nat. Phys., 2009, 5(7): 489
https://doi.org/10.1038/nphys1303
|
37 |
Weis S., Rivière R., Deléglise S., Gavartin E., Arcizet O., Schliesser A., J. Kippenberg T.. Optomechanically induced transparency. Science, 2010, 330(6010): 1520
https://doi.org/10.1126/science.1195596
|
38 |
Carmon T., Rokhsari H., Yang L., J. Kippenberg T., J. Vahala K.. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys. Rev. Lett., 2005, 94(22): 223902
https://doi.org/10.1103/PhysRevLett.94.223902
|
39 |
Monifi F., Zhang J., Ozdemir K., Peng B., Liu Y., Bo F., Nori F., Yang L.. Optomechanically induced stochastic resonance and chaos transfer between optical fields. Nat. Photonics, 2016, 10(6): 399
https://doi.org/10.1038/nphoton.2016.73
|
40 |
P. Gao Y.Cao C.F. Lu P.Wang C., Phase-controlled photon blockade in optomechanical systems, Fundamental Research (2022) (in press)
|
41 |
W. Hu Y., F. Xiao Y., C. Liu Y., Gong Q.. Optomechanical sensing with on-chip microcavities. Front. Phys., 2013, 8(5): 475
https://doi.org/10.1007/s11467-013-0384-y
|
42 |
J. Kippenberg T., Holzwarth R., A. Diddams S.. Microresonator-based optical frequency combs. Science, 2011, 332(6029): 555
https://doi.org/10.1126/science.1193968
|
43 |
Bo F., Wang J., Cui J., K. Ozdemir S., Kong Y., Zhang G., Xu J., Yang L.. Lithium-niobate–silica hybrid whispering-gallery-mode resonators. Adv. Mater., 2015, 27(48): 8075
https://doi.org/10.1002/adma.201504722
|
44 |
T. Cao Q., Wang H., H. Dong C., Jing H., S. Liu R., Chen X., Ge L., Gong Q., F. Xiao Y.. Experimental demonstration of spontaneous chirality in a nonlinear microresonator. Phys. Rev. Lett., 2017, 118(3): 033901
https://doi.org/10.1103/PhysRevLett.118.033901
|
45 |
Peng B., K. Ozdemir S., Lei F., Monifi F., Gianfreda M., L. Long G., Fan S., Nori F., M. Bender C., Yang L.. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys., 2014, 10(5): 394
https://doi.org/10.1038/nphys2927
|
46 |
Feng L., J. Wong Z., M. Ma R., Wang Y., Zhang X.. Single-mode laser by parity-time symmetry breaking. Science, 2014, 346(6212): 972
https://doi.org/10.1126/science.1258479
|
47 |
Hodaei H., A. Miri M., Heinrich M., N. Christodoulides D., Khajavikhan M.. Parity-time-symmetric microring lasers. Science, 2014, 346(6212): 975
https://doi.org/10.1126/science.1258480
|
48 |
M. Spillane S., J. Kippenberg T., J. Vahala K., W. Goh K., Wilcut E., J. Kimble H.. Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics. Phys. Rev. A, 2005, 71(1): 013817
https://doi.org/10.1103/PhysRevA.71.013817
|
49 |
Wang H.. Multi-peak solitons in PT-symmetric Bessel optical lattices with defects. Front. Phys., 2016, 11(5): 114204
https://doi.org/10.1007/s11467-016-0569-2
|
50 |
Zhu J., K. Ozdemir S., Xiao Y., Li L., He L., Chen D., Yang L.. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics, 2010, 30(2): 4,46
|
51 |
Zhi Y., C. Yu X., Gong Q., Yang L., F. Xiao Y.. Single nanoparticle detection using optical microcavities. Adv. Mater., 2017, 29(12): 1604920
https://doi.org/10.1002/adma.201604920
|
52 |
Reynolds T., Riesen N., Meldrum A., Fan X., M. M. Hall J., M. Monro T., François A.. Fluorescent and lasing whispering gallery mode microresonators for sensing applications. Laser Photonics Rev., 2017, 11(2): 1600265
https://doi.org/10.1002/lpor.201600265
|
53 |
X. Zhang L., Zhang R., Q. Li Z.. Study on a vapor sensor based on the optical properties of porous silicon microcavities. Front. Phys. China, 2007, 2(2): 166
https://doi.org/10.1007/s11467-007-0035-2
|
54 |
Maayani S., Dahan R., Kligerman Y., Moses E., U. Hassan A., Jing H., Nori F., N. Christodoulides D., Carmon T.. Flying couplers above spinning resonators generate irreversible refraction. Nature, 2018, 558(7711): 569
https://doi.org/10.1038/s41586-018-0245-5
|
55 |
Huang R., Miranowicz A., Q. Liao J., Nori F., Jing H.. Nonreciprocal photon blockade. Phys. Rev. Lett., 2018, 121(15): 153601
https://doi.org/10.1103/PhysRevLett.121.153601
|
56 |
Jiang Y., Maayani S., Carmon T., Nori F., Jing H.. Nonreciprocal phonon laser. Phys. Rev. Appl., 2018, 10(6): 064037
https://doi.org/10.1103/PhysRevApplied.10.064037
|
57 |
Jing H., Lü H., Özdemir S., Carmon T., Nori F.. Nanoparticle sensing with a spinning resonator. Optica, 2018, 5(11): 1424
https://doi.org/10.1364/OPTICA.5.001424
|
58 |
Li B., Huang R., Xu X., Miranowicz A., Jing H.. Nonreciprocal unconventional photon blockade in a spinning optomechanical system. Photon. Res., 2019, 7(6): 630
https://doi.org/10.1364/PRJ.7.000630
|
59 |
B. Malykin G.. The Sagnac effect: Correct and incorrect explanations. Phys. Uspekhi, 2000, 43(12): 1229
https://doi.org/10.1070/PU2000v043n12ABEH000830
|
60 |
C. H. Liew T., Savona V.. Single photons from coupled quantum modes. Phys. Rev. Lett., 2010, 104(18): 183601
https://doi.org/10.1103/PhysRevLett.104.183601
|
61 |
Bamba M., Imamoğlu A., Carusotto I., Ciuti C.. Origin of strong photon antibunching in weakly nonlinear photonic molecules. Phys. Rev. A, 2011, 83(2): 021802
https://doi.org/10.1103/PhysRevA.83.021802
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|