Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (1) : 12304    https://doi.org/10.1007/s11467-022-1213-y
RESEARCH ARTICLE
Unconventional photon blockade induced by the self-Kerr and cross-Kerr nonlinearities
Ling-Juan Feng1(), Li Yan2(), Shang-Qing Gong3()
1. School of Sciences, Shanghai Institute of Technology, Shanghai 201418, China
2. School of Physics and Electronic Engineering, Heze University, Heze 274015, China
3. School of Physics, East China University of Science and Technology, Shanghai 200237, China
 Download: PDF(2627 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study the use of the self-Kerr and cross-Kerr nonlinearities to realize strong photon blockade in a weakly driven, four-mode optomechanical system. According to the Born−Oppenheimer approximation, we obtain the cavity self-Kerr coupling and the inter-cavity cross-Kerr coupling, adiabatically separated from the mechanical oscillator. Through minimizing the second-order correlation function, we find out the optimal parameter conditions for the unconventional photon blockade. Under the optimal conditions, the strong photon blockade can appear in the strong or weak nonlinearities.

Keywords unconventional photon blockade      cross-Kerr nonlinearity      self-Kerr nonlinearity      optomechanical system     
Corresponding Author(s): Ling-Juan Feng,Li Yan,Shang-Qing Gong   
Issue Date: 03 November 2022
 Cite this article:   
Ling-Juan Feng,Li Yan,Shang-Qing Gong. Unconventional photon blockade induced by the self-Kerr and cross-Kerr nonlinearities[J]. Front. Phys. , 2023, 18(1): 12304.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1213-y
https://academic.hep.com.cn/fop/EN/Y2023/V18/I1/12304
Fig.1  (a) Schematic diagram of the four-mode optomechanical system, with three optical modes and a single mechanical mode. (b) Schematic diagram of the three-coupled-cavity system.
Fig.2  (a) One set of optimal detuning Δ o pt and nonlinearity U opt versus photon tunneling J normalized to κ. (b) Another set of optimal detuning Δ opt and nonlinearity Uopt versus photon tunneling J normalized to κ.
Fig.3  Energy-level diagram of the optical system under the Hamiltonian (3) with J 1=J 2=J and g1= g2=g. States are labeled | na 1n a2nc?, where nj denotes the photon number of the mode j=a1,a2, c.
Fig.4  The second-order correlation function gc(2 )(0) versus the time κt. The red circles show the exact numerical results based on the full Hamiltonian (1) and the master equation (14). The solid blue curve is the approximate numerical results based on the effective Hamiltonian (3) and the master equation (14). The parameters are J=2κ, Δ =Δopt, U=Uopt, ωm= 102κ, N t h=0, γ= 10 3κ, and Ω=10 2κ.
Fig.5  The second-order correlation function gc(2 )(0) versus the normalized detuning Δ /κ for different values of the nonlinearity U. The red (or green) circles denote the numerical results based on Eqs. (3) and (14). The solid blue (or black) curve is the analytical results based on Eq. (9). Other parameters are the same as those in Fig.4.
Fig.6  The second- and third-order correlation functions gc(2 )(0) and gc(3 )(0) versus the normalized detuning Δ /κ. The solid red curve corresponds to the analytical results of gc(2 )(0) based on Eq. (9). The solid blue curve is the analytical results of gc(3 )(0) based on Eq. (10). In (a) Uopt 13.637κ and in (b) U op t0.096κ. Other parameters are the same as those in Fig.4.
Fig.7  The second-order correlation function gc(2 )(0) versus the normalized detuning Δ /κ for different values of the pure dephasing rate γp. These circles show the numerical results based on Eqs. (3) and (14). The red, black, blue circles respectively represent γp =0, γp=0.01κ, γp =0.1κ. In (a) U o pt13.637κ and in (b) U op t0.096κ. Other parameters are the same as those in Fig.4.
1 J. Kippenberg T., J. Vahala K.. Cavity optomechanics: Back-action at the mesoscale. Science, 2008, 321(5893): 1172
https://doi.org/10.1126/science.1156032
2 Aspelmeyer M., Meystre P., Schwab K.. Quantum optomechanics. Phys. Today, 2012, 65(7): 29
https://doi.org/10.1063/PT.3.1640
3 Aspelmeyer M., J. Kippenberg T., Marquardt F.. Cavity optomechanics. Rev. Mod. Phys., 2014, 86(4): 1391
https://doi.org/10.1103/RevModPhys.86.1391
4 Rabl P.. Photon blockade effect in optomechanical systems. Phys. Rev. Lett., 2011, 107(6): 063601
https://doi.org/10.1103/PhysRevLett.107.063601
5 Nunnenkamp A., Børkje K., M. Girvin S.. Single-photon optomechanics. Phys. Rev. Lett., 2011, 107(6): 063602
https://doi.org/10.1103/PhysRevLett.107.063602
6 Li G., Wang T., S. Song H.. Amplification effects in optomechanics via weak measurements. Phys. Rev. A, 2014, 90(1): 013827
https://doi.org/10.1103/PhysRevA.90.013827
7 Y. Wang Z., H. Safavi-Naeini A.. Enhancing a slow and weak optomechanical nonlinearity with delayed quantum feedback. Nat. Commun., 2017, 8(1): 15886
https://doi.org/10.1038/ncomms15886
8 Genes C., Xuereb A., Pupillo G., Dantan A.. Enhanced optomechanical readout using optical coalescence. Phys. Rev. A, 2013, 88(3): 033855
https://doi.org/10.1103/PhysRevA.88.033855
9 T. Heikkilä T., Massel F., Tuorila J., Khan R., A. Sillanpää M.. Enhancing optomechanical coupling via the Josephson effect. Phys. Rev. Lett., 2014, 112(20): 203603
https://doi.org/10.1103/PhysRevLett.112.203603
10 M. Pirkkalainen J., U. Cho S., Massel F., Tuorila J., T. Heikkilä T., J. Hakonen P., A. Sillanpää M.. Cavity optomechanics mediated by a quantum two-level system. Nat. Commun., 2015, 6(1): 6981
https://doi.org/10.1038/ncomms7981
11 Bothner D., C. Rodrigues I., A. Steele G.. Photon-pressure strong coupling between two superconducting circuits. Nat. Phys., 2021, 17(1): 85
https://doi.org/10.1038/s41567-020-0987-5
12 Y. Lü X., Wu Y., R. Johansson J., Jing H., Zhang J., Nori F.. Squeezed optomechanics with phase-matched amplification and dissipation. Phys. Rev. Lett., 2015, 114(9): 093602
https://doi.org/10.1103/PhysRevLett.114.093602
13 A. Lemonde M., Didier N., A. Clerk A.. Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification. Nat. Commun., 2016, 7(1): 11338
https://doi.org/10.1038/ncomms11338
14 S. Yin T., Y. Lü X., L. Zheng L., Wang M., Li S., Wu Y.. Nonlinear effects in modulated quantum optomechanics. Phys. Rev. A, 2017, 95(5): 053861
https://doi.org/10.1103/PhysRevA.95.053861
15 J. Feng L., Q. Gong S.. Two-photon blockade generated and enhanced by mechanical squeezing. Phys. Rev. A, 2021, 103(4): 043509
https://doi.org/10.1103/PhysRevA.103.043509
16 L. Chen D., H. Chen Y., Liu Y., C. Shi Z., Song J., Xia Y.. Detecting a single atom in a cavity using the χ(2) nonlinear medium. Front. Phys., 2022, 17(5): 52501
https://doi.org/10.1007/s11467-021-1151-0
17 C. H. Liew T., Savona V.. Single photons from coupled quantum modes. Phys. Rev. Lett., 2010, 104(18): 183601
https://doi.org/10.1103/PhysRevLett.104.183601
18 Bamba M., Imamoğlu A., Carusotto I., Ciuti C.. Origin of strong photon antibunching in weakly nonlinear photonic molecules. Phys. Rev. A, 2011, 83(2): 021802(R)
https://doi.org/10.1103/PhysRevA.83.021802
19 Vaneph C., Morvan A., Aiello G., Féchant M., Aprili M., Gabelli J., Estéve J.. Observation of the unconventional photon blockade in the microwave domain. Phys. Rev. Lett., 2018, 121(4): 043602
https://doi.org/10.1103/PhysRevLett.121.043602
20 J. Snijders H., A. Frey J., Norman J., Flayac H., Savona V., C. Gossard A., E. Bowers J., P. van Exter M., Bouwmeester D., Löffler W.. Observation of the unconventional photon blockade. Phys. Rev. Lett., 2018, 121(4): 043601
https://doi.org/10.1103/PhysRevLett.121.043601
21 W. Xu X., J. Li Y.. Antibunching photons in a cavity coupled to an optomechanical system. J. Phys. At. Mol. Opt. Phys., 2013, 46(3): 035502
https://doi.org/10.1088/0953-4075/46/3/035502
22 Sarma B., K. Sarma A.. Unconventional photon blockade in three-mode optomechanics. Phys. Rev. A, 2018, 98(1): 013826
https://doi.org/10.1103/PhysRevA.98.013826
23 Y. Wang D., H. Bai C., T. Liu S., Zhang S., F. Wang H.. Photon blockade in a double-cavity optomechanical system with nonreciprocal coupling. New J. Phys., 2020, 22(9): 093006
https://doi.org/10.1088/1367-2630/abaa8a
24 Zou F., B. Fan L., F. Huang J., Q. Liao J.. Enhancement of few-photon optomechanical effects with cross-Kerr nonlinearity. Phys. Rev. A, 2019, 99(4): 043837
https://doi.org/10.1103/PhysRevA.99.043837
25 Q. Liao J., F. Huang J., Tian L., M. Kuang L., P. Sun C.. Generalized ultrastrong optomechanical-like coupling. Phys. Rev. A, 2020, 101(6): 063802
https://doi.org/10.1103/PhysRevA.101.063802
26 M. Wang Y., Q. Zhang G., L. You W.. Photon blockade with cross-Kerr nonlinearity in superconducting circuits. Laser Phys. Lett., 2018, 15(10): 105201
https://doi.org/10.1088/1612-202X/aad465
27 Y. Yang J., Yang Z., S. Zhao C., Peng R., L. Chao S., Zhou L.. Nonlinearity enhancement and photon blockade in hybrid optomechanical systems. Opt. Express, 2021, 29(22): 36167
https://doi.org/10.1364/OE.438227
28 B. Qian Y., G. Lai D., R. Chen M., P. Hou B.. Nonreciprocal photon transmission with quantum noise reduction via cross-Kerr nonlinearity. Phys. Rev. A, 2021, 104(3): 033705
https://doi.org/10.1103/PhysRevA.104.033705
29 R. Gong Z., Ian H., X. Liu Y., P. Sun C., Nori F.. Effective Hamiltonian approach to the Kerr nonlinearity in an optomechanical system. Phys. Rev. A, 2009, 80(6): 065801
https://doi.org/10.1103/PhysRevA.80.065801
30 Imoto N., A. Haus H., Yamamoto Y.. Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys. Rev. A, 1985, 32(4): 2287
https://doi.org/10.1103/PhysRevA.32.2287
31 F. Walls D.J. Milburn G., Quantum Optics, Springer-Verlag, Berlin, 1994
32 K. Law C.. Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation. Phys. Rev. A, 1995, 51(3): 2537
https://doi.org/10.1103/PhysRevA.51.2537
33 Ruesink F., Miri M., Alù A., Verhagen E.. Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun., 2016, 7(1): 13662
https://doi.org/10.1038/ncomms13662
34 R. Bernier N., D. Tóth L., Koottandavida A., A. Ioannou M., Malz D., Nunnenkamp A., K. Feofanov A., J. Kippenberg T.. Nonreciprocal reconfigurable microwave optomechanical circuit. Nat. Commun., 2017, 8(1): 604
https://doi.org/10.1038/s41467-017-00447-1
35 Eichenfield M., Chan J., M. Camacho R., J. Vahala K., Painter O.. Optomechanical crystals. Nature, 2009, 462(7269): 78
https://doi.org/10.1038/nature08524
36 Schliesser A., Rivière R., Anetsberger G., Arcizet O., J. Kippenberg T.. Resolved-sideband cooling of a micromechanical oscillator. Nat. Phys., 2008, 4: 415
https://doi.org/10.1038/nphys939
37 Gupta S., L. Moore K., W. Murch K., M. Stamper-Kurn D.. Cavity nonlinear optics at low photon numbers from collective atomic motion. Phys. Rev. Lett., 2007, 99(21): 213601
https://doi.org/10.1103/PhysRevLett.99.213601
38 Brennecke F., Ritter S., Donner T., Esslinger T.. Cavity optomechanics with a Bose−Einstein condensate. Science, 2008, 322(5899): 235
https://doi.org/10.1126/science.1163218
39 Sarma B., K. Sarma A.. Quantum-interference-assisted photon blockade in a cavity via parametric interactions. Phys. Rev. A, 2017, 96(5): 053827
https://doi.org/10.1103/PhysRevA.96.053827
[1] Junya Yang, Chengsong Zhao, Zhen Yang, Rui Peng, Shilei Chao, Ling Zhou. Nonreciprocal ground-state cooling of mechanical resonator in a spinning optomechanical system[J]. Front. Phys. , 2022, 17(5): 52507-.
[2] Zhi-Rong Zhong, Lei Chen, Jian-Qi Sheng, Li-Tuo Shen, Shi-Biao Zheng. Multiphonon-resonance quantum Rabi model and adiabatic passage in a cavity-optomechanical system[J]. Front. Phys. , 2022, 17(1): 12501-.
[3] Yexiong Zeng, Biao Xiong, Chong Li. Suppressing laser phase noise in an optomechanical system[J]. Front. Phys. , 2022, 17(1): 12503-.
[4] Jiu Liu, Lan Zhou, Wei Zhong, Yu-Bo Sheng. Logic Bell state concentration with parity check measurement[J]. Front. Phys. , 2019, 14(2): 21601-.
[5] Zhi-Rong Zhong, Xin Wang, Wei Qin. Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure[J]. Front. Phys. , 2018, 13(5): 130319-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed