Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (1) : 13602    https://doi.org/10.1007/s11467-022-1217-7
TOPICAL REVIEW
Magnetic anisotropy, exchange coupling and Dzyaloshinskii–Moriya interaction of two-dimensional magnets
Qirui Cui1, Liming Wang1, Yingmei Zhu1, Jinghua Liang1, Hongxin Yang1,2,3()
1. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
2. School of Physics, Nanjing University, Nanjing 210093, China
3. Center of Materials Science and Optoeledctronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(9666 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The two-dimensional (2D) magnets provide novel opportunities for understanding magnetism and investigating spin related phenomena in several atomic thickness. Multiple features of 2D magnets, such as critical temperatures, magnetoelectric/magneto-optic responses, and spin configurations, depend on the basic magnetic terms that describe various spins interactions and cooperatively determine the spin Hamiltonian of studied systems. In this review, we present a comprehensive survey of three types of basic terms, including magnetic anisotropy that is intimately related with long-range magnetic order, exchange coupling that normally dominates the spin interactions, and Dzyaloshinskii−Moriya interaction (DMI) that favors the noncollinear spin configurations, from the theoretical aspect. We introduce not only the physical features and origin of these crucial terms in 2D magnets but also many correlated phenomena, which may lead to the advance of 2D spintronics.

Keywords magnetic anisotropy      exchange coupling      Dzyaloshinskii–Moriya interaction      two-dimensional magnets     
Corresponding Author(s): Hongxin Yang   
Issue Date: 30 November 2022
 Cite this article:   
Qirui Cui,Liming Wang,Yingmei Zhu, et al. Magnetic anisotropy, exchange coupling and Dzyaloshinskii–Moriya interaction of two-dimensional magnets[J]. Front. Phys. , 2023, 18(1): 13602.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1217-7
https://academic.hep.com.cn/fop/EN/Y2023/V18/I1/13602
Fig.1  The schematics of (a) magnetic anisotropy, (b) exchange interaction, and (c) Dzyaloshinskii−Moriya interaction in two-dimensional magnets. (a) When spins are aligned parallelly, there is always a preferred orientation of spin vectors, which is referred as the magnetic anisotropy. (b) Exchange coupling between two spins arises from electrons’ antisymmetric wave function and can be classified as direct (blue dashed line) and indirect (green and yellow dashed lines) types. The indirect exchange couplings can be established through connecting anion (green balls) or itinerant electrons (yellow balls). (c) For magnets lacking inversion symmetry, Dzyaloshinskii−Moriya interaction is allowed between neighboring spin sites, which favors the noncollinear spin configurations. The spin tilting is due to the spin−orbit scattering of the nonmagnetic electrons from the mediated site (the red ball). Left and middle panel is produced from Ref. [39].
Fig.2  (a) Schematics of magnetic anisotropy induced magnon excitation gap for an isotropic Heisenberg model. (b−e) Four most-widely applied models for describing the two-dimensional magnetism. (b) Heisenberg model: The spin vector can be along any directions in 3D space. This model is applied for describing ferromagnetism in 2D magnets with weak magnetic anisotropy, such as Cr2Ge2Te6 (left panel) and V5Se8 (right panel). (c) Ising model: The spin is either up or down along a given direction. This model is applied for describing magnetism in 2D magnets with strong magnetic anisotropy, such as CrI3 (left panel) and FePS3 (right panel). (d) 2D XY model: The spin is constrained in the XY plane due to the in-plane magnetic anisotropy. CrCl3 monolayer grown on Graphene/6H-SiC (0001) has been demonstrated as a 2D XY magnet. (e) Stoner model: Magnets exhibit the metallic feature and ferromagnetic order can be described by Stoner criteria. Stoner model is applied for describing magnetism in Fe3GeTe2 which even possesses the room-temperature ferromagnetism under ionic doping (left and middle panels). The left panel is the density of states of Fe3GeTe2 applied for calculating the Stoner criteria. (a) is produced from Ref. [39]. (b) is produced from Refs. [2, 20]. (c) is produced from Refs. [3, 7]. (d) is produced from Ref. [9]. (e) is produced from Refs. [6, 29].
Fig.3  Bilinear exchange coupling in 2D magnets. (a) Ferromagnetism in 2D magnets with octahedral crystal field, such as CrI3, normally arises from the indirect exchange coupling. Via tuning energy splitting between t2g and eg orbitals to decrease the electron hopping barrier, the FM exchange coupling could be obviously enhanced resulting in the enhancement of Curie temperature as shown in (d). (b) Some 2D magnets, such as NiI2 monolayer, possess strong spin frustration that the first-neighboring and second (third)-neighboring exchange coupling has the similar magnitude but opposite sign. Spin frustration could give rise the noncollinear spin configurations as shown in (e). (f) Moreover, the ferroelectricity probably originates from the specific noncollinear spin configurations, which thus makes system possess multiferroelectricity. (c) For vdW magnets, the bilinear exchange coupling also emerges between magnetic atoms in different layers, in other word, determining the interlayer magnetism. (g) Therefore, changing stacking configurations to modulate electron hopping path can results in the interlayer ferromagnetism-antiferromagnetism phases transition. The phenomena have been observed in CrI3 and CrBr3 bilayers by the spin polarized STM. (a) is produced from Ref. [64]. (b, d) is produced from Ref. [73]. (c) is produced from Ref. [86]. (e) is produced from Ref. [72]. (f) is produced from Ref. [77]. (g) is produced from Ref. [88].
Fig.4  High-order exchange coupling indicates that the superexchange process through the non-magnetic atom and the Coulomb repulsion at neighboring spin-sites involving more than one electron. (a, b) Biquadratic exchange coupling, which is also called as two-body fourth order interactions, belongs to two involving two electrons hopping between MA and MB sites. (c, d) Besides two-body fourth order interactions, three-body and four-body fourth order interactions also play crucial roles in determine magnetic features of materials such as Fe3GeTe2 monolayer. (e) Sizable biquadratic exchange coupling could favor the collinear spin configurations. For CrI3 monolayer, the model without considering the biquadratic underestimate the Curie temperature. (f) Monte Carlo simulations show that in NiCl2 monolayer, strong biquadratic exchange coupling transform the spin spiral ground state into the uniform ferromagnetic state. (g) Four-body fourth order effectively increase the energy barrier of skyrmion collapse, thus favoring the formation of non-collinear magnetism. (h) The high-order interactions, including two-body, three-body, and four-body interactions, play crucial roles in stabilizing topological magnetism in Fe3GeTe2 monolayer. (a, b, e) are produced from Ref. [96]. (c, d, h) are produced from Ref. [105]. (f) is produced from Ref. [73]. (g) is produced from Ref. [102].
Fig.5  DMI-induced topological quasiparticles. (a) The inversion symmetry breaking in 2D Janus magnets allows the isotropic DMI between neighboring spin sites as indicated by orange arrows. The Monte Carlo simulations show that topological magnetism, such as skyrmion lattice, is stabilized by the DMI. (b) P4¯m2 symmetry results in the anisotropic DMI as indicated by orange arrows. This anisotropic DMI could favor the formation of novel topological quasiparticles such as antiskyrmion. The inversion symmetry breaking and electric field-controllable magnetic properties in (c) multiferroic monolayer and (d) multiferroic materials based on transition-metal dichalcogenides open the opportunities for using electric field to manipulate the topological magnetism. The skyrmion particles is experimentally observed in vdW heterostructures based on the 2D magnets, (e) oxidized Fe3GeTe2/Fe3GeTe2 heterostructure and (f) Cr2Ge2Te6/Fe3GeTe2 heterostructure, by Lorenz transmission electron microscope and topological Hall effects, where noncollinear magnetism is stabilized by the interfacial DMI. (g) The next-neighboring DMI as indicated in (h) opens the non-trivial gap in magnon spectrum, which thus gives rise the topological magnon. (i) The non-trivial magnon gap is first observed in vdW magnets CrI3 by neutron-scattering microscopy. (a) is produced from Ref. [126]. (b) is produced from Ref. [142]. (c) is produced from Ref. [149]. (d) is produced from Ref. [150]. (e) is produced from Ref. [152]. (g) is produced from Ref. [153]. (g) is produced from Ref. [163]. (h, i) are produced from Ref. [97].
1 D. Mermin N., Wagner H.. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett., 1966, 17(22): 1133
https://doi.org/10.1103/PhysRevLett.17.1133
2 Gong C., Li L., Li Z., Ji H., Stern A., Xia Y., Cao T., Bao W., Wang C., Wang Y., Q. Qiu Z., J. Cava R., G. Louie S., Xia J., Zhang X.. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546(7657): 265
https://doi.org/10.1038/nature22060
3 Huang B., Clark G., Navarro-Moratalla E., R. Klein D., Cheng R., L. Seyler K., Zhong D., Schmidgall E., A. McGuire M., H. Cobden D., Yao W., Xiao D., Jarillo-Herrero P., Xu X.. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546(7657): 270
https://doi.org/10.1038/nature22391
4 Bonilla M., Kolekar S., Ma Y., C. Diaz H., Kalappattil V., Das R., Eggers T., R. Gutierrez H., H. Phan M., Batzill M.. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol., 2018, 13(4): 289
https://doi.org/10.1038/s41565-018-0063-9
5 J. O’Hara D., Zhu T., H. Trout A., S. Ahmed A., K. Luo Y., H. Lee C., R. Brenner M., Rajan S., A. Gupta J., W. McComb D., K. Kawakami R.. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett., 2018, 18(5): 3125
https://doi.org/10.1021/acs.nanolett.8b00683
6 Deng Y., Yu Y., Song Y., Zhang J., Z. Wang N., Sun Z., Yi Y., Z. Wu Y., Wu S., Zhu J., Wang J., H. Chen X., Zhang Y.. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018, 563(7729): 94
https://doi.org/10.1038/s41586-018-0626-9
7 Lee J., Lee S., H. Ryoo J., Kang S., Y. Kim T., Kim P., H. Park C., G. Park J., Cheong H.. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett., 2016, 16(12): 7433
https://doi.org/10.1021/acs.nanolett.6b03052
8 Long G., Henck H., Gibertini M., Dumcenco D., Wang Z., Taniguchi T., Watanabe K., Giannini E., F. Morpurgo A.. Persistence of magnetism in atomically thin MnPS3 crystals. Nano Lett., 2020, 20(4): 2452
https://doi.org/10.1021/acs.nanolett.9b05165
9 Bedoya-Pinto A., R. Ji J., K. Pandeya A., Gargiani P., Valvidares M., Sessi P., M. Taylor J., Radu F., Chang K., S. P. Parkin S.. Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science, 2021, 374(6567): 616
https://doi.org/10.1126/science.abd5146
10 Song T., Cai X., W. Tu M., Zhang X., Huang B., P. Wilson N., L. Seyler K., Zhu L., Taniguchi T., Watanabe K., A. McGuire M., H. Cobden D., Xiao D., Yao W., Xu X.. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science, 2018, 360(6394): 1214
https://doi.org/10.1126/science.aar4851
11 Wang X., Tang J., Xia X., He C., Zhang J., Liu Y., Wan C., Fang C., Guo C., Yang W., Guang Y., Zhang X., Xu H., Wei J., Liao M., Lu X., Feng J., Li X., Peng Y., Wei H., Yang R., Shi D., Zhang X., Han Z., Zhang Z., Zhang G., Yu G., Han X.. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. Sci. Adv., 2019, 5(8): eaaw8904
https://doi.org/10.1126/sciadv.aaw8904
12 Fu H., Liu C., Yan B.. Exchange bias and quantum anomalous Hall effect in the MnBi2Te4/CrI3 heterostructure. Sci. Adv., 2020, 6(10): eaaz0948
https://doi.org/10.1126/sciadv.aaz0948
13 Li Y., Li J., Li Y., Ye M., Zheng F., Zhang Z., Fu J., Duan W., Xu Y.. High-temperature quantum anomalous Hall insulators in lithium-decorated iron-based superconductor materials. Phys. Rev. Lett., 2020, 125(8): 086401
https://doi.org/10.1103/PhysRevLett.125.086401
14 Zhong D., L. Seyler K., Linpeng X., Cheng R., Sivadas N., Huang B., Schmidgall E., Taniguchi T., Watanabe K., A. McGuire M., Yao W., Xiao D., M. C. Fu K., Xu X.. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv., 2017, 3(5): e1603113
https://doi.org/10.1126/sciadv.1603113
15 Zollner K., E. Faria Junior P., Fabian J.. Proximity exchange effects in MoSe2 and WSe2 heterostructures with CrI3: Twist angle, layer, and gate dependence. Phys. Rev. B, 2019, 100(8): 085128
https://doi.org/10.1103/PhysRevB.100.085128
16 Ai L., Zhang E., Yang J., Xie X., Yang Y., Jia Z., Zhang Y., Liu S., Li Z., Leng P., Cao X., Sun X., Zhang T., Kou X., Han Z., Xiu F., Dong S.. Van der Waals ferromagnetic Josephson junctions. Nat. Commun., 2021, 12(1): 6580
https://doi.org/10.1038/s41467-021-26946-w
17 Zhao W., Fei Z., Song T., K. Choi H., Palomaki T., Sun B., Malinowski P., A. McGuire M., H. Chu J., Xu X., H. Cobden D.. Magnetic proximity and nonreciprocal current switching in a monolayer WTe2 helical edge. Nat. Mater., 2020, 19(5): 503
https://doi.org/10.1038/s41563-020-0620-0
18 H. Wang Q., Bedoya-Pinto A., Blei M., H. Dismukes A., Hamo A., Jenkins S., Koperski M., Liu Y., C. Sun Q., J. Telford E., H. Kim H., Augustin M., Vool U., X. Yin J., H. Li L., Falin A., R. Dean C., Casanova F., F. L. Evans R., Chshiev M., Mishchenko A., Petrovic C., He R., Zhao L., W. Tsen A., D. Gerardot B., Brotons-Gisbert M., Guguchia Z., Roy X., Tongay S., Wang Z., Z. Hasan M., Wrachtrup J., Yacoby A., Fert A., Parkin S., S. Novoselov K., Dai P., Balicas L., J. G. Santos E.. The magnetic genome of two-dimensional van der Waals materials. ACS Nano, 2022, 16(5): 6960
https://doi.org/10.1021/acsnano.1c09150
19 Soriano D., I. Katsnelson M., Fernández-Rossier J.. Magnetic two-dimensional chromium trihalides: A theoretical perspective. Nano Lett., 2020, 20(9): 6225
https://doi.org/10.1021/acs.nanolett.0c02381
20 Nakano M., Wang Y., Yoshida S., Matsuoka H., Majima Y., Ikeda K., Hirata Y., Takeda Y., Wadati H., Kohama Y., Ohigashi Y., Sakano M., Ishizaka K., Iwasa Y.. Intrinsic 2D ferromagnetism in V5Se8 epitaxial thin films. Nano Lett., 2019, 19(12): 8806
https://doi.org/10.1021/acs.nanolett.9b03614
21 Tang C., Zhang L., Du A.. Tunable magnetic anisotropy in 2D magnets via molecular adsorption. J. Mater. Chem. C, 2020, 8(42): 14948
https://doi.org/10.1039/D0TC04049E
22 Tang C., Ostrikov K., Sanvito S., Du A.. Prediction of room-temperature ferromagnetism and large perpendicular magnetic anisotropy in a planar hypercoordinate FeB3 monolayer. Nanoscale Horiz., 2021, 6(1): 43
https://doi.org/10.1039/D0NH00598C
23 Alsubaie M., Tang C., Wijethunge D., Qi D., Du A.. First-principles study of the enhanced magnetic anisotropy and transition temperature in a CrSe2 monolayer via hydrogenation. ACS Appl. Electron. Mater., 2022, 4(7): 3240
https://doi.org/10.1021/acsaelm.2c00476
24 L. Berezinskii V.. Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group (I): Classical systems. Sov. Phys. JETP, 1971, 32: 493
25 L. Berezinskii V.. Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group (II): Quantum systems. Sov. Phys. JETP, 1972, 34: 610
26 M. Kosterlitz J., J. Thouless D.. Long range order and metastability in two dimensional solids and superfluids (application of dislocation theory). J. Phys. C, 1972, 5(11): L124
https://doi.org/10.1088/0022-3719/5/11/002
27 M. Kosterlitz J., J. Thouless D.. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C, 1973, 6(7): 1181
https://doi.org/10.1088/0022-3719/6/7/010
28 M. Kosterlitz J.. The critical properties of the two-dimensional xy model. J. Phys. C, 1974, 7(6): 1046
https://doi.org/10.1088/0022-3719/7/6/005
29 L. Zhuang H., R. C. Kent P., G. Hennig R.. Strong anisotropy and magnetostriction in the two-dimensional Stoner ferromagnet Fe3GeTe2. Phys. Rev. B, 2016, 93(13): 134407
https://doi.org/10.1103/PhysRevB.93.134407
30 L. Lado J., F. Rossier J.. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater., 2017, 4 035002
https://doi.org/10.1088/2053-1583/aa75ed
31 Webster L., A. Yan J., Strain-tunable magnetic anisotropy in monolayer CrCl3. CrBr3, and CrI3. Phys. Rev. B, 2018, 98(14): 144411
https://doi.org/10.1103/PhysRevB.98.144411
32 Yang B., Zhang X., Yang H., Han X., Yan Y.. Nonmetallic atoms induced magnetic anisotropy in monolayer chromium trihalides. J. Phys. Chem. C, 2019, 123(1): 691
https://doi.org/10.1021/acs.jpcc.8b09939
33 Yang B., Zhang X., Yang H., Han X., Yan Y.. Strain controlling transport properties of heterostructure composed of monolayer CrI3. Appl. Phys. Lett., 2019, 114(19): 192405
https://doi.org/10.1063/1.5091958
34 J. Dyson F.. General theory of spin-wave interactions. Phys. Rev., 1956, 102(5): 1217
https://doi.org/10.1103/PhysRev.102.1217
35 Xue F., Hou Y., Wang Z., Wu R.. Two-dimensional ferromagnetic van der Waals CrCl3 monolayer with enhanced anisotropy and Curie temperature. Phys. Rev. B, 2019, 100(22): 224429
https://doi.org/10.1103/PhysRevB.100.224429
36 Li Y., Jiang Z., Li J., Xu S., Duan W.. Magnetic anisotropy of the two-dimensional ferromagnetic insulator MnBi2Te4. Phys. Rev. B, 2019, 100(13): 134438
https://doi.org/10.1103/PhysRevB.100.134438
37 Xu C., Feng J., Xiang H., Bellaiche L.. Interplay between Kitaev interaction and single ion anisotropy in ferromagnetic CrI3 and CrGeTe3 monolayers. npj Comput. Mater., 2018, 4: 57
https://doi.org/10.1038/s41524-018-0115-6
38 Cui Q., Liang J., Yang B., Wang Z., Li P., Cui P., Yang H.. Giant enhancement of perpendicular magnetic anisotropy and induced quantum anomalous Hall effect in graphene/NiI2 heterostructures via tuning the van der Waals interlayer distance. Phys. Rev. B, 2020, 101(21): 214439
https://doi.org/10.1103/PhysRevB.101.214439
39 Gong C., Zhang X.. Two-dimensional magnetic crystals and emergent heterostructure devices. Science, 2019, 363(6428): eaav4450
https://doi.org/10.1126/science.aav4450
40 Y. Park S., S. Kim D., Liu Y., Hwang J., Kim Y., Kim W., Y. Kim J., Petrovic C., Hwang C., K. Mo S., Kim H., C. Min B., C. Koo H., Chang J., Jang C., W. Choi J., Ryu H.. Controlling the magnetic anisotropy of the van der Waals ferromagnet Fe3GeTe2 through hole doping. Nano Lett., 2020, 20(1): 95
https://doi.org/10.1021/acs.nanolett.9b03316
41 P. Wang Y., Y. Chen X., Q. Long M.. Modifications of magnetic anisotropy of Fe3GeTe2 by the electric field effect. Appl. Phys. Lett., 2020, 116(9): 092404
https://doi.org/10.1063/1.5144032
42 G. Ye X., F. Zhu P., Z. Xu W., Z. Shang N., H. Liu K., M. Liao Z.. Orbit-transfer torque driven field-free switching of perpendicular magnetization chin. Phys. Lett., 2022, 39: 037303
https://doi.org/10.1088/0256-307X/39/3/037303
43 Seo J., S. An E., Park T., Y. Hwang S., Y. Kim G., Song K., Noh W., Y. Kim J., S. Choi G., Choi M., Oh E., Watanabe K., Taniguchi T., H. Park J., J. Jo Y., W. Yeom H., Y. Choi S., H. Shim J., S. Kim J.. Tunable high-temperature itinerant antiferromagnetism in a van der Waals magnet. Nat. Commun., 2021, 12(1): 2844
https://doi.org/10.1038/s41467-021-23122-y
44 Zhang X., Lu Q., Liu W., Niu W., Sun J., Cook J., Vaninger M., F. Miceli P., J. Singh D., W. Lian S., R. Chang T., He X., Du J., He L., Zhang R., Bian G., Xu Y.. Room-temperature intrinsic ferromagnetism in epitaxial CrTe2 ultrathin films. Nat. Commun., 2021, 12(1): 2492
https://doi.org/10.1038/s41467-021-22777-x
45 Wang Y., E. Ziebel M., Sun L., T. Gish J., J. Pearson T., Z. Lu X., E. Thorarinsdottir A., C. Hersam M., R. Long J., E. Freedman D., M. Rondinelli J., Puggioni D., D. Harris T.. Strong magnetocrystalline anisotropy arising from metal–ligand covalency in a metal–organic candidate for 2D magnetic order. Chem. Mater., 2021, 33(22): 8712
https://doi.org/10.1021/acs.chemmater.1c02670
46 Kitaev A.. Fault-tolerant quantum computation by anyons. Ann. Phys., 2003, 303(1): 2
https://doi.org/10.1016/S0003-4916(02)00018-0
47 Kitaev A.. Anyons in an exactly solved model and beyond. Ann. Phys., 2006, 321(1): 2
https://doi.org/10.1016/j.aop.2005.10.005
48 Xu C., Feng J., Kawamura M., Yamaji Y., Nahas Y., Prokhorenko S., Qi Y., Xiang H., Bellaiche L.. Possible Kitaev quantum spin liquid state in 2D materials with S = 3/2. Phys. Rev. Lett., 2020, 124(8): 087205
https://doi.org/10.1103/PhysRevLett.124.087205
49 J. Sandilands L., Tian Y., W. Plumb K., J. Kim Y., S. Burch K.. Scattering continuum and possible fractionalized excitations in α-RuCl3. Phys. Rev. Lett., 2015, 114(14): 147201
https://doi.org/10.1103/PhysRevLett.114.147201
50 Kim H.-S., Vijay Shankar V., Catuneanu A., Y. Kee H.. Kitaev magnetism in honeycomb RuCl3 with intermediate spin−orbit coupling. Phys. Rev. B, 2015, 91: 241110(R)
https://doi.org/10.1103/PhysRevB.91.241110
51 Banerjee A., A. Bridges C., Q. Yan J., A. Aczel A., Li L., B. Stone M., E. Granroth G., D. Lumsden M., Yiu Y., Knolle J., Bhattacharjee S., L. Kovrizhin D., Moessner R., A. Tennant D., G. Mandrus D., E. Nagler S.. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. Nat. Mater., 2016, 15(7): 733
https://doi.org/10.1038/nmat4604
52 M. Winter S., Li Y., O. Jeschke H., Valentí R.. Challenges in design of Kitaev materials: Magnetic interactions from competing energy scales. Phys. Rev. B, 2016, 93(21): 214431
https://doi.org/10.1103/PhysRevB.93.214431
53 S. Kim H., Y. Kee H.. Crystal structure and magnetism in α-RuCl3: An ab initio study. Phys. Rev. B, 2016, 93(15): 155143
https://doi.org/10.1103/PhysRevB.93.155143
54 Hermanns M., Kimchi I., Knolle J.. Physics of the Kitaev model: Fractionalization, dynamic correlations, and material connections. Annu. Rev. Condens. Matter Phys., 2018, 9(1): 17
https://doi.org/10.1146/annurev-conmatphys-033117-053934
55 Banerjee A., Lampen-Kelley P., Knolle J., Balz C., A. Aczel A., Winn B., Liu Y., Pajerowski D., Yan J., A. Bridges C., T. Savici A., C. Chakoumakos B., D. Lumsden M., A. Tennant D., Moessner R., G. Mandrus D., E. Nagler S.. Excitations in the field-induced quantum spin liquid state of α-RuCl3. npj Quant. Mater., 2018, 3: 8
https://doi.org/10.1038/s41535-018-0079-2
56 Kasahara Y., Sugii K., Ohnishi T., Shimozawa M., Yamashita M., Kurita N., Tanaka H., Nasu J., Motome Y., Shibauchi T., Matsuda Y.. Unusual thermal Hall effect in a Kitaev spin liquid candidate α-RuCl3. Phys. Rev. Lett., 2018, 120(21): 217205
https://doi.org/10.1103/PhysRevLett.120.217205
57 Takagi H., Takayama T., Jackeli G., Khaliullin G., E. Nagler S.. Concept and realization of Kitaev quantum spin liquids. Nat. Rev. Phys., 2019, 1(4): 264
https://doi.org/10.1038/s42254-019-0038-2
58 A. Sears J., E. Chern L., Kim S., J. Bereciartua P., Francoual S., B. Kim Y., J. Kim Y.. Ferromagnetic Kitaev interaction and the origin of large magnetic anisotropy in α-RuCl3. Nat. Phys., 2020, 16(8): 837
https://doi.org/10.1038/s41567-020-0874-0
59 Zhou Y., Kanoda K., K. Ng T.. Quantum spin liquid states. Rev. Mod. Phys., 2017, 89(2): 025003
https://doi.org/10.1103/RevModPhys.89.025003
60 J. Xiang H., J. Kan E., H. Wei S., H. Whangbo M., G. Gong X.. Predicting the spin-lattice order of frustrated systems from first principles. Phys. Rev. B, 2011, 84(22): 224429
https://doi.org/10.1103/PhysRevB.84.224429
61 Goodenough B.. Theory of the role of covalence in the perovskite-type manganites [La,M(II)] MnO3. Phys. Rev., 1955, 100(2): 564
https://doi.org/10.1103/PhysRev.100.564
62 Kanamori J.. Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Solids, 1959, 10(2−3): 87
https://doi.org/10.1016/0022-3697(59)90061-7
63 W. Anderson P.. New approach to the theory of superexchange interactions. Phys. Rev., 1959, 115(1): 2
https://doi.org/10.1103/PhysRev.115.2
64 Huang C., Feng J., Wu F., Ahmed D., Huang B., Xiang H., Deng K., Kan E.. Toward intrinsic room-temperature ferromagnetism in two-dimensional semiconductors. J. Am. Chem. Soc., 2018, 140(36): 11519
https://doi.org/10.1021/jacs.8b07879
65 Sivadas N., W. Daniels M., H. Swendsen R., Okamoto S., Xiao D.. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers. Phys. Rev. B, 2015, 91(23): 235425
https://doi.org/10.1103/PhysRevB.91.235425
66 Pei Q., Mi W.. Electrical control of magnetic behavior and valley polarization of monolayer antiferromagnetic MnPSe3 on an insulating ferroelectric substrate from first principle. Phys. Rev. Appl., 2019, 11(1): 014011
https://doi.org/10.1103/PhysRevApplied.11.014011
67 Olsen T., Magnetic anisotropy, exchange interactions of two-dimensional FePS3. NiPS3 and MnPS3 from first principles calculations. J. Phys. D, 2021, 54(31): 314001
https://doi.org/10.1088/1361-6463/ac000e
68 Li J., Y. Ni J., Y. Li X., J. Koo H., H. Whangbo M., S. Feng J., J. Xiang H.. Intralayer ferromagnetism between S = 5/2 ions in MnBi2Te4: Role of empty Bi p states. Phys. Rev. B, 2020, 101(20): 201408
https://doi.org/10.1103/PhysRevB.101.201408
69 Huang C., Feng J., Zhou J., Xiang H., Deng K., Kan E.. Ultra-high-temperature ferromagnetism in intrinsic tetrahedral semiconductors. J. Am. Chem. Soc., 2019, 141(31): 12413
https://doi.org/10.1021/jacs.9b06452
70 Cui Q., Zhu Y., Ga Y., Liang J., Li P., Yu D., Cui P., Yang H.. Anisotropic Dzyaloshinskii–Moriya interaction and topological magnetism in two-dimensional magnets protected by P4¯m2 crystal symmetry. Nano Lett., 2022, 22(6): 2334
https://doi.org/10.1021/acs.nanolett.1c04803
71 J. Zhang J., Lin L., Zhang Y., Wu M., I. Yakobson B., Dong S.. Type-II multiferroic Hf2VC2F2 MXene monolayer with high transition temperature. J. Am. Chem. Soc., 2018, 140(30): 9768
https://doi.org/10.1021/jacs.8b06475
72 Amoroso D., Barone P., Picozzi S.. Spontaneous skyrmionic lattice from anisotropic symmetric exchange in a Ni-halide monolayer. Nat. Commun., 2020, 11(1): 5784
https://doi.org/10.1038/s41467-020-19535-w
73 Y. Ni J., Y. Li X., Amoroso D., He X., S. Feng J., J. Kan E., Picozzi S., J. Xiang H.. Giant biquadratic exchange in 2D magnets and its role in stabilizing ferromagnetism of NiCl2 monolayers. Phys. Rev. Lett., 2021, 127(24): 247204
https://doi.org/10.1103/PhysRevLett.127.247204
74 Katsura H., Nagaosa N., V. Balatsky A.. Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett., 2005, 95(5): 057205
https://doi.org/10.1103/PhysRevLett.95.057205
75 Khomskii D.. Classifying multiferroics: Mechanisms and effects. Physics (College Park Md.), 2009, 2: 20
https://doi.org/10.1103/Physics.2.20
76 Tokura Y., Seki S., Nagaosa N.. Multiferroics of spin origin. Rep. Prog. Phys., 2014, 77(7): 076501
https://doi.org/10.1088/0034-4885/77/7/076501
77 Song Q., A. Occhialini C., Ergeçen E., Ilyas B., Amoroso D., Barone P., Kapeghian J., Watanabe K., Taniguchi T., S. Botana A., Picozzi S., Gedik N., Comin R.. Evidence for a single-layer van der Waals multiferroic. Nature, 2022, 602(7898): 601
https://doi.org/10.1038/s41586-021-04337-x
78 R. Klein D., MacNeill D., L. Lado J., Soriano D., Navarro-Moratalla E., Watanabe K., Taniguchi T., Manni S., Canfield P., Fernández-Rossier J., Jarillo-Herrero P.. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science, 2018, 360(6394): 1218
https://doi.org/10.1126/science.aar3617
79 Wang Z., Gutiérrez-Lezama I., Ubrig N., Kroner M., Gibertini M., Taniguchi T., Watanabe K., Imamoğlu A., Giannini E., F. Morpurgo A.. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun., 2018, 9(1): 2516
https://doi.org/10.1038/s41467-018-04953-8
80 H. Kim H., Yang B., Patel T., Sfigakis F., Li C., Tian S., Lei H., W. Tsen A.. One million percent tunnel magnetoresistance in a magnetic van der Waals heterostructure. Nano Lett., 2018, 18(8): 4885
https://doi.org/10.1021/acs.nanolett.8b01552
81 Jiang S., Li L., Wang Z., F. Mak K., Shan J.. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol., 2018, 13(7): 549
https://doi.org/10.1038/s41565-018-0135-x
82 Jiang S., Shan J., F. Mak K.. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater., 2018, 17(5): 406
https://doi.org/10.1038/s41563-018-0040-6
83 Huang B., Clark G., R. Klein D., MacNeill D., Navarro-Moratalla E., L. Seyler K., Wilson N., A. McGuire M., H. Cobden D., Xiao D., Yao W., Jarillo-Herrero P., Xu X.. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol., 2018, 13(7): 544
https://doi.org/10.1038/s41565-018-0121-3
84 H. Kim H., Yang B., Li S., Jiang S., Jin C., Tao Z., Nichols G., Sfigakis F., Zhong S., Li C., Tian S., G. Cory D., X. Miao G., Shan J., F. Mak K., Lei H., Sun K., Zhao L., W. Tsen A.. Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides. Proc. Natl. Acad. Sci. USA, 2019, 116(23): 11131
https://doi.org/10.1073/pnas.1902100116
85 Xu R., Zhou X.. Electric field-modulated magnetic phase transition in van der Waals CrI3 bilayers. J. Phys. Chem. Lett., 2020, 11(8): 3152
https://doi.org/10.1021/acs.jpclett.0c00567
86 Sivadas N., Okamoto S., Xu X., J. Fennie C., Xiao D.. Stacking-dependent magnetism in bilayer CrI3. Nano Lett., 2018, 18(12): 7658
https://doi.org/10.1021/acs.nanolett.8b03321
87 Jiang P., Wang C., Chen D., Zhong Z., Yuan Z., Y. Lu Z., Ji W.. Stacking tunable interlayer magnetism in bilayer CrI3. Phys. Rev. B, 2019, 99(14): 144401
https://doi.org/10.1103/PhysRevB.99.144401
88 Chen W., Sun Z., Wang Z., Gu L., Xu X., Wu S., Gao C.. Direct observation of van der Waals stacking-dependent interlayer magnetism. Science, 2019, 366(6468): 983
https://doi.org/10.1126/science.aav1937
89 Xiao J., Yan B.. An electron-counting rule to determine the interlayer magnetic coupling of the van der Waals materials. 2D Mater., 2020, 7: 045010
https://doi.org/10.1088/2053-1583/ab9ea4
90 Li T., Jiang S., Sivadas N., Wang Z., Xu Y., Weber D., E. Goldberger J., Watanabe K., Taniguchi T., J. Fennie C., Fai Mak K., Shan J.. Pressure-controlled interlayer magnetism in atomically thin CrI3. Nat. Mater., 2019, 18(12): 1303
https://doi.org/10.1038/s41563-019-0506-1
91 Xu Y., Ray A., T. Shao Y., Jiang S., Lee K., Weber D., E. Goldberger J., Watanabe K., Taniguchi T., A. Muller D., F. Mak K., Shan J.. Coexisting ferromagnetic–antiferromagnetic state in twisted bilayer CrI3. Nat. Nanotechnol., 2022, 17(2): 143
https://doi.org/10.1038/s41565-021-01014-y
92 Wang C., Zhou X., Zhou L., Pan Y., Y. Lu Z., G. Wan X., Q. Wang X., Ji W.. Bethe−Slater-curve-like behavior and interlayer spin-exchange coupling mechanisms in two-dimensional magnetic bilayers. Phys. Rev. B, 2020, 102: 020402(R)
https://doi.org/10.1103/PhysRevB.102.020402
93 Wu L., Zhou L., Zhou X., Wang C., Ji W.. In-plane epitaxy-strain-tuning intralayer and interlayer magnetic coupling in CrSe2 and CrTe2 monolayers and bilayers. Phys. Rev. B, 2022, 106(8): L081401
https://doi.org/10.1103/PhysRevB.106.L081401
94 C. Slonczewski J.. Fluctuation mechanism for biquadratic exchange coupling in magnetic multilayers. Phys. Rev. Lett., 1991, 67(22): 3172
https://doi.org/10.1103/PhysRevLett.67.3172
95 S. Fedorova N., Ederer C., A. Spaldin N., Scaramucci A.. Biquadratic and ring exchange interactions in orthorhombic perovskite manganites. Phys. Rev. B, 2015, 91(16): 165122
https://doi.org/10.1103/PhysRevB.91.165122
96 Kartsev A., Augustin M., F. L. Evans R., S. Novoselov K., J. G. Santos E.. Biquadratic exchange interactions in two-dimensional magnets. npj Comput. Mater., 2020, 6: 150
https://doi.org/10.1038/s41524-020-00416-1
97 Chen L., H. Chung J., Gao B., Chen T., B. Stone M., I. Kolesnikov A., Huang Q., Dai P.. Topological spin excitations in honeycomb ferromagnet CrI3. Phys. Rev. X, 2018, 8(4): 041028
https://doi.org/10.1103/PhysRevX.8.041028
98 Chen L., H. Chung J., B. Stone M., I. Kolesnikov A., Winn B., O. Garlea V., L. Abernathy D., Gao B., Augustin M., J. G. Santos E., Dai P.. Magnetic field effect on topological spin excitations in CrI3. Phys. Rev. X, 2021, 11(3): 031047
https://doi.org/10.1103/PhysRevX.11.031047
99 A. Wahab D., Augustin M., M. Valero S., Kuang W., Jenkins S., Coronado E., V. Grigorieva I., J. Vera-Marun I., Navarro-Moratalla E., F. L. Evans R., S. Novoselov K., J. G. Santos E.. Quantum rescaling, domain metastability, and hybrid domain‐walls in 2D CrI3 magnets. Adv. Mater., 2021, 33(5): 2004138
https://doi.org/10.1002/adma.202004138
100 A. Lindgard P., J. Birgeneau R., Als-Nielsen J., J. Guggenheim H.. Spin-wave dispersion and sublattice magnetization in NiCl2. J. Phys. Chem., 1975, 8: 1059
101 Jiang Z., Li Y., Duan W., Zhang S.. Half-excitonic insulator: A single-spin Bose−Einstein condensate. Phys. Rev. Lett., 2019, 122(23): 236402
https://doi.org/10.1103/PhysRevLett.122.236402
102 Paul S., Haldar S., von Malottki S., Heinze S.. Role of higher-order exchange interactions for skyrmion stability. Nat. Commun., 2020, 11(1): 4756
https://doi.org/10.1038/s41467-020-18473-x
103 Ding B., Li Z., Xu G., Li H., Hou Z., Liu E., Xi X., Xu F., Yao Y., Wang W.. Observation of magnetic skyrmion bubbles in a van der Waals ferromagnet Fe3GeTe2. Nano Lett., 2020, 20(2): 868
https://doi.org/10.1021/acs.nanolett.9b03453
104 T. Birch M., Powalla L., Wintz S., Hovorka O., Litzius K., C. Loudon J., A. Turnbull L., Nehruji V., Son K., Bubeck C., G. Rauch T., Weigand M., Goering E., Burghard M., Schütz G.. History-dependent domain and skyrmion formation in 2D van der Waals magnet Fe3GeTe2. Nat. Commun., 2022, 13(1): 3035
https://doi.org/10.1038/s41467-022-30740-7
105 Xu C., Li X., Chen P., Zhang Y., Xiang H., Bellaiche L.. Assembling diverse skyrmionic phases in Fe3GeTe2 monolayers. Adv. Mater., 2022, 34(12): 2107779
https://doi.org/10.1002/adma.202107779
106 Y. Li X., Lou F., G. Gong X., Xiang H.. Constructing realistic effective spin Hamiltonians with machine learning approaches. New J. Phys., 2020, 22(5): 053036
https://doi.org/10.1088/1367-2630/ab85df
107 Yu H., Xu C., Li X., Lou F., Bellaiche L., Hu Z., Gong X., Xiang H.. Complex spin Hamiltonian represented by an artificial neural network. Phys. Rev. B, 2022, 105(17): 174422
https://doi.org/10.1103/PhysRevB.105.174422
108 Dzyaloshinsky I.. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids, 1958, 4(4): 241
https://doi.org/10.1016/0022-3697(58)90076-3
109 Moriya T.. New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett., 1960, 4(5): 228
https://doi.org/10.1103/PhysRevLett.4.228
110 Moriya T.. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev., 1960, 120(1): 91
https://doi.org/10.1103/PhysRev.120.91
111 Fert A., M. Levy P.. Role of anisotropic exchange interactions in determining the properties of spin-glasses. Phys. Rev. Lett., 1980, 44(23): 1538
https://doi.org/10.1103/PhysRevLett.44.1538
112 M. Levy P., Fert A.. Anisotropy induced by nonmagnetic impurities in Cu Mn spin-glass alloys. Phys. Rev. B, 1981, 23(9): 4667
https://doi.org/10.1103/PhysRevB.23.4667
113 Kundu A., Zhang S.. Dzyaloshinskii−Moriya interaction mediated by spin-polarized band with Rashba spin−orbit coupling. Phys. Rev. B, 2015, 92(9): 094434
https://doi.org/10.1103/PhysRevB.92.094434
114 Fert A., Reyren N., Cros V.. Magnetic skyrmions: Advances in physics and potential applications. Nat. Rev. Mater., 2017, 2(7): 17031
https://doi.org/10.1038/natrevmats.2017.31
115 Mühlbauer S., Binz B., Jonietz F., Pfleiderer C., Rosch A., Neubauer A., Georgii R., Böni P.. Skyrmion lattice in a chiral magnet. Science, 2009, 323(5916): 915
https://doi.org/10.1126/science.1166767
116 Yu X., Onose Y., Kanazawa N., H. Park J., H. Han J., Matsui Y., Nagaosa N., Tokura Y.. Real-space observation of a two-dimensional skyrmion crystal. Nature, 2010, 465(7300): 901
https://doi.org/10.1038/nature09124
117 Yu X., Kanazawa N., Onose Y., Kimoto K., Z. Zhang W., Ishiwata S., Matsui Y., Tokura Y.. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat. Mater., 2011, 10(2): 106
https://doi.org/10.1038/nmat2916
118 Moreau-Luchaire C., Moutafis C., Reyren N., Sampaio J., A. F. Vaz C., Van Horne N., Bouzehouane K., Garcia K., Deranlot C., Warnicke P., Wohlhüter P., M. George J., Weigand M., Raabe J., Cros V., Fert A.. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotechnol., 2016, 11(5): 444
https://doi.org/10.1038/nnano.2015.313
119 Soumyanarayanan A., Raju M., L. Gonzalez Oyarce A., K. C. Tan A., Y. Im M., P. Petrović A., Ho P., H. Khoo K., Tran M., K. Gan C., Ernult F., Panagopoulos C.. Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. Nat. Mater., 2017, 16(9): 898
https://doi.org/10.1038/nmat4934
120 Boulle O., Vogel J., Yang H., Pizzini S., de Souza Chaves D., Locatelli A., O. Menteş T., Sala A., D. Buda-Prejbeanu L., Klein O., Belmeguenai M., Roussigné Y., Stashkevich A., M. Chérif S., Aballe L., Foerster M., Chshiev M., Auffret S., M. Miron I., Gaudin G.. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotechnol., 2016, 11(5): 449
https://doi.org/10.1038/nnano.2015.315
121 Yang H., Boulle O., Cros V., Fert A., Chshiev M.. Controlling Dzyaloshinskii−Moriya interaction via chirality dependent atomic-layer stacking, insulator capping and electric field. Sci. Rep., 2018, 8(1): 12356
https://doi.org/10.1038/s41598-018-30063-y
122 Kundu A., Zhang S.. Dzyaloshinskii−Moriya interaction mediated by spin-polarized band with Rashba spin-orbit coupling. Phys. Rev. B, 2015, 92(9): 094434
https://doi.org/10.1103/PhysRevB.92.094434
123 A. Ado A., Qaiumzadeh A., A. Duine R., Brataas A., Titov M.. Asymmetric and symmetric exchange in a generalized 2D Rashba ferromagnet. Phys. Rev. Lett., 2018, 121(8): 086802
https://doi.org/10.1103/PhysRevLett.121.086802
124 Yang H., Chen G., A. C. Cotta A., T. N’Diaye A., A. Nikolaev S., A. Soares E., A. A. Macedo W., Liu K., K. Schmid A., Fert A., Chshiev M.. Significant Dzyaloshinskii−Moriya interaction at graphene-ferromagnet interfaces due to the Rashba effect. Nat. Mater., 2018, 17(7): 605
https://doi.org/10.1038/s41563-018-0079-4
125 Hallal A., Liang J., Ibrahim F., Yang H., Fert A., Chshiev M.. Rashba-type Dzyaloshinskii−Moriya interaction, perpendicular magnetic anisotropy, and skyrmion states at 2D materials/Co interfaces. Nano Lett., 2021, 21(17): 7138
https://doi.org/10.1021/acs.nanolett.1c01713
126 Liang J., Wang W., Du H., Hallal A., Garcia K., Chshiev M., Fert A., Yang H.. Very large Dzyaloshinskii-Moriya interaction in two-dimensional Janus manganese dichalcogenides and its application to realize skyrmion states. Phys. Rev. B, 2020, 101(18): 184401
https://doi.org/10.1103/PhysRevB.101.184401
127 Heinze S., von Bergmann K., Menzel M., Brede J., Kubetzka A., Wiesendanger R., Bihlmayer G., Blügel S.. Spontaneous atomic scale magnetic skyrmion lattice in two dimensions. Nat. Phys., 2011, 7(9): 713
https://doi.org/10.1038/nphys2045
128 Belabbes A., Bihlmayer G., Bechstedt F., Blügel S., Manchon A.. Hund’s rule-driven Dzyaloshinskii−Moriya interaction at 3d−5d interfaces. Phys. Rev. Lett., 2016, 117(24): 247202
https://doi.org/10.1103/PhysRevLett.117.247202
129 Xu C., Feng J., Prokhorenko S., Nahas Y., Xiang H., Bellaiche L.. Topological spin texture in Janus monolayers of the chromium trihalides Cr(I,X)3. Phys. Rev. B, 2020, 101(6): 060404
https://doi.org/10.1103/PhysRevB.101.060404
130 Zhang Y., Xu C., Chen P.. et al.. Emergence of skyrmionium in a two-dimensional CrGe(Se,Te)3 Janus monolayer. Phys. Rev. B, 2020, 102: 241107(R)
https://doi.org/10.1103/PhysRevB.102.241107
131 Laref S.Goli V.Smaili I., et al.., Topologically stable bimerons and skyrmions in vanadium dichalcogenide Janus monolayers, arXiv: 2011.07813 (2011)
132 Jiang J., Liu X., Li R., Mi W.. Topological spin textures in a two-dimensional MnBi2(Se,Te)4 Janus material. Appl. Phys. Lett., 2021, 119(7): 072401
https://doi.org/10.1063/5.0057794
133 Cui Q., Zhu Y., Jiang J., Liang J., Yu D., Cui P., Yang H.. Ferroelectrically controlled topological magnetic phase in a Janus-magnet-based multiferroic heterostructure. Phys. Rev. Res., 2021, 3(4): 043011
https://doi.org/10.1103/PhysRevResearch.3.043011
134 Du W., Dou K., He Z., Dai Y., Huang B., Ma Y., Spontaneous magnetic skyrmions in single-layer CrInX3 (X = Te. Se). Nano Lett., 2022, 22(8): 3440
https://doi.org/10.1021/acs.nanolett.2c00836
135 Li P., Cui Q., Ga Y., Liang J., Yang H.. Large Dzyaloshinskii−Moriya interaction and field-free topological chiral spin states in two-dimensional alkali-based chromium chalcogenides. Phys. Rev. B, 2022, 106(2): 024419
https://doi.org/10.1103/PhysRevB.106.024419
136 Zhang F., Mi W., Wang X., Spin-dependent electronic structure, magnetic anisotropy of 2D ferromagnetic Janus Cr2I3X3 (X = Br. Cl) monolayers. Adv. Electron. Mater., 2019, 1900778
https://doi.org/10.1002/aelm.201900778
137 Zhang F., Zhang H., Mi W., Wang X., Electronic structure, magnetic anisotropy, Dzyaloshinskii–Moriya interaction in Janus Cr2I3X3 (X = Br. Cl) bilayers. Phys. Chem. Chem. Phys., 2020, 22(16): 8647
https://doi.org/10.1039/D0CP00174K
138 Li R., Jiang J., Shi X., Mi W., Bai H., Janus FeXY (X Two-dimensional, = Cl Y. Br, and I, X ≠ Y) monolayers: Half-metallic ferromagnets with tunable magnetic properties under strain. ACS Appl. Mater. Interfaces, 2021, 13(32): 38897
https://doi.org/10.1021/acsami.1c10304
139 Jiang J., Li R., Mi W.. Electrical control of topological spin textures in two-dimensional multiferroics. Nanoscale, 2021, 13(48): 20609
https://doi.org/10.1039/D1NR06266B
140 Xu Y., Qi S., Mi W., structure Electronic, properties of two-dimensional h-BN/Janus 2H-VSeX (X = S magnetic. Te) van der Waals heterostructures. Appl. Surf. Sci., 2021, 537: 147898
https://doi.org/10.1016/j.apsusc.2020.147898
141 Qi S., Jiang J., Wang X., Mi W.. Valley polarization, magnetic anisotropy and Dzyaloshinskii−Moriya interaction of two-dimensional graphene/Janus 2H-VSeX (X = S, Te) heterostructures. Carbon, 2021, 174: 540
https://doi.org/10.1016/j.carbon.2020.12.072
142 Cui Q., Zhu Y., Ga Y., Liang J., Li P., Yu D., Cui P., Yang H.. Anisotropic Dzyaloshinskii–Moriya interaction and topological magnetism in two-dimensional magnets protected by P4¯m2 crystal symmetry. Nano Lett., 2022, 22(6): 2334
https://doi.org/10.1021/acs.nanolett.1c04803
143 Ga Y., Cui Q., Zhu Y., Yu D., Wang L., Liang J., Yang H.. Anisotropic Dzyaloshinskii−Moriya interaction protected by D2d crystal symmetry in two-dimensional ternary compounds. npj Comput. Mater., 2022, 8: 128
https://doi.org/10.1038/s41524-022-00809-4
144 Matsukura F., Tokura Y., Ohno H.. Control of magnetism by electric fields. Nat. Nanotechnol., 2015, 10(3): 209
https://doi.org/10.1038/nnano.2015.22
145 J. Hsu P., Kubetzka A., Finco A., Romming N., von Bergmann K., Wiesendanger R.. Electric-field-driven switching of individual magnetic skyrmions. Nat. Nanotechnol., 2017, 12(2): 123
https://doi.org/10.1038/nnano.2016.234
146 Tang C., Zhang L., Sanvito S., Du A.. Electric-controlled half-metallicity in magnetic van der Waals heterobilayer. J. Mater. Chem. C, 2020, 8(21): 7034
https://doi.org/10.1039/D0TC01541E
147 Zhang L., Tang C., Sanvito S., Gu Y., Du A.. Hydrogen-intercalated 2D magnetic bilayer: Controlled magnetic phase transition and half-metallicity via ferroelectric switching. ACS Appl. Mater. Interfaces, 2022, 14(1): 1800
https://doi.org/10.1021/acsami.1c21848
148 Xu C., Chen P., Tan H., Yang Y., Xiang H., Bellaiche L.. Electric-field switching of magnetic topological charge in type-I multiferroics. Phys. Rev. Lett., 2020, 125(3): 037203
https://doi.org/10.1103/PhysRevLett.125.037203
149 Liang J., Cui Q., Yang H.. Electrically switchable Rashba-type Dzyaloshinskii−Moriya interaction and skyrmion in two-dimensional magnetoelectric multiferroics. Phys. Rev. B, 2020, 102(22): 220409
https://doi.org/10.1103/PhysRevB.102.220409
150 Shao Z., Liang J., Cui Q., Chshiev M., Fert A., Zhou T., Yang H.. Multiferroic materials based on transition-metal dichalcogenides: Potential platform for reversible control of Dzyaloshinskii−Moriya interaction and skyrmion via electric field. Phys. Rev. B, 2022, 105(17): 174404
https://doi.org/10.1103/PhysRevB.105.174404
151 Wu Y., Zhang S., Zhang J., Wang W., L. Zhu Y., Hu J., Yin G., Wong K., Fang C., Wan C., Han X., Shao Q., Taniguchi T., Watanabe K., Zang J., Mao Z., Zhang X., L. Wang K.. Néel-type skyrmion in WTe2/Fe3GeTe2 van der Waals heterostructure. Nat. Commun., 2020, 11(1): 3860
https://doi.org/10.1038/s41467-020-17566-x
152 E. Park T., Peng L., Liang J., Hallal A., S. Yasin F., Zhang X., M. Song K., J. Kim S., Kim K., Weigand M., Schütz G., Finizio S., Raabe J., Garcia K., Xia J., Zhou Y., Ezawa M., Liu X., Chang J., C. Koo H., D. Kim Y., Chshiev M., Fert A., Yang H., Yu X., Woo S.. Néel-type skyrmions and their current-induced motion in van der Waals ferromagnet-based heterostructures. Phys. Rev. B, 2021, 103(10): 104410
https://doi.org/10.1103/PhysRevB.103.104410
153 Wu Y.Francisco B.Wang W., et al.., A van der Waals interface hosting two groups of magnetic skyrmions, a van der Waals interface hosting two groups of magnetic skyrmions, Adv. Mater. 34(16), 2110583 (2022)
154 Sun W., Wang W., Li H., Zhang G., Chen D., Wang J., Cheng Z.. Controlling bimerons as skyrmion analogues by ferroelectric polarization in 2D van der Waals multiferroic heterostructures. Nat. Commun., 2020, 11(1): 5930
https://doi.org/10.1038/s41467-020-19779-6
155 K. Li C., P. Yao X., Chen G.. Writing and deleting skyrmions with electric fields in a multiferroic heterostructure. Phys. Rev. Res., 2021, 3(1): L012026
https://doi.org/10.1103/PhysRevResearch.3.L012026
156 Dou K., Du W., Dai Y., Huang B., Ma Y.. Two-dimensional magnetoelectric multiferroics in a MnSTe/In2Se3 heterobilayer with ferroelectrically controllable skyrmions. Phys. Rev. B, 2022, 105(20): 205427
https://doi.org/10.1103/PhysRevB.105.205427
157 Sun W., Wang W., Zang J., Li H., Zhang G., Wang J., Cheng Z.. Manipulation of magnetic skyrmion in a 2D van der Waals heterostructure via both electric and magnetic fields. Adv. Funct. Mater., 2021, 31(47): 2104452
https://doi.org/10.1002/adfm.202104452
158 Sun W., Wang W., Li H., Li X., Yu Z., Bai Y., Zhang G, Cheng Z.. LaBr2 bilayer multiferroic moiré superlattice with robust magnetoelectric coupling and magnetic bimerons. npj Comput. Mater., 2022, 8: 159
https://doi.org/10.1038/s41524-022-00833-4
159 Chen J., Dong S.. Manipulation of magnetic domain walls by ferroelectric switching: Dynamic magnetoelectricity at the nanoscale. Phys. Rev. Lett., 2021, 126: 117603
https://doi.org/10.1103/PhysRevLett.126.117603
160 Onose Y., Ideue T., Katsura H., Shiomi Y., Nagaosa N., Tokura Y.. Observation of the magnon Hall effect. Science, 2010, 329(5989): 297
https://doi.org/10.1126/science.1188260
161 Matsumoto R., Murakami S.. Theoretical prediction of a rotating magnon wave packet in ferromagnets. Phys. Rev. Lett., 2011, 106(19): 197202
https://doi.org/10.1103/PhysRevLett.106.197202
162 Chisnell R., S. Helton J., E. Freedman D., K. Singh D., I. Bewley R., G. Nocera D., S. Lee Y.. Topological magnon bands in a kagome lattice ferromagnet. Phys. Rev. Lett., 2015, 115(14): 147201
https://doi.org/10.1103/PhysRevLett.115.147201
163 Zhu F., Zhang L., Wang X., J. dos Santos F., Song J., Mueller T., Schmalzl K., F. Schmidt W., Ivanov A., T. Park J., Xu J., Ma J., Lounis S., Blügel S., Mokrousov Y., Su Y., Brückel T.. Topological magnon insulators in two-dimensional van der Waals ferromagnets CrSiTe3 and CrGeTe3: Toward intrinsic gap-tunability. Sci. Adv., 2021, 7(37): eabi7532
https://doi.org/10.1126/sciadv.abi7532
164 Yu X., Zhang X., Shi Q., Tian S., Lei H., Xu K., Hosono H.. Large magnetocaloric effect in van der Waals crystal CrBr3. Front. Phys., 2019, 14(4): 43501
https://doi.org/10.1007/s11467-019-0883-6
165 Pei Q., C. Wang X., J. Zou J., B. Mi W.. Tunable electronic structure and magnetic coupling in strained two-dimensional semiconductor MnPSe3. Front. Phys., 2018, 13(4): 137105
https://doi.org/10.1007/s11467-018-0796-9
[1] Guibo Zheng, Shuixian Qu, Wenzhe Zhou, Fangping Ouyang. Janus monolayer TaNF: A new ferrovalley material with large valley splitting and tunable magnetic properties[J]. Front. Phys. , 2023, 18(5): 53302-.
[2] Ming-Xiu Sui, Zi-Bo Zhang, Xiao-Dan Chi, Jia-Yu Zhang, Yong Hu. Dense skyrmion crystal stabilized through interfacial exchange coupling: Role of in-plane anisotropy[J]. Front. Phys. , 2021, 16(2): 23501-.
[3] Yong-Hao Gao, Xu-Ping Yao, Fei-Ye Li, Gang Chen. Spin-1 pyrochlore antiferromagnets: Theory, model, and materials’ survey[J]. Front. Phys. , 2020, 15(6): 63201-.
[4] Ai-Yuan Hu, Lin Wen, Guo-Pin Qin, Zhi-Min Wu, Peng Yu, Yu-Ting Cui. Possible phase transition of anisotropic frustrated Heisenberg model at finite temperature[J]. Front. Phys. , 2019, 14(5): 53601-.
[5] Fang WU (吴芳), Richard TJORNHAMMAR, Er-jun KAN (阚二军), Zhen-yu LI (李震宇). A first-principles study on the electronic structure of one-dimensional [TM(Bz)] polymer (TM= Y, Zr, Nb, Mo, and Tc)[J]. Front. Phys. , 2009, 4(3): 403-407.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed