Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (4) : 42601    https://doi.org/10.1007/s11467-023-1271-9
TOPICAL REVIEW
When optical microscopy meets all-optical analog computing: A brief review
Yichang Shou, Jiawei Liu, Hailu Luo()
Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082, China
 Download: PDF(7445 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

As a revolutionary observation tool in life science, biomedical, and material science, optical microscopy allows imaging of samples with high spatial resolution and a wide field of view. However, conventional microscopy methods are limited to single imaging and cannot accomplish real-time image processing. The edge detection, image enhancement and phase visualization schemes have attracted great interest with the rapid development of optical analog computing. The two main physical mechanisms that enable optical analog computing originate from two geometric phases: the spin-redirection Rytov-Vlasimirskii-Berry (RVB) phase and the Pancharatnam-Berry (PB) phase. Here, we review the basic principles and recent research progress of the RVB phase and PB phase based optical differentiators. Then we focus on the innovative and emerging applications of optical analog computing in microscopic imaging. Optical analog computing is accelerating the transformation of information processing from classical imaging to quantum techniques. Its intersection with optical microscopy opens opportunities for the development of versatile and compact optical microscopy systems.

Keywords optical microscopy      optical analog computing      all-optical image processing     
Corresponding Author(s): Hailu Luo   
Issue Date: 21 March 2023
 Cite this article:   
Yichang Shou,Jiawei Liu,Hailu Luo. When optical microscopy meets all-optical analog computing: A brief review[J]. Front. Phys. , 2023, 18(4): 42601.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1271-9
https://academic.hep.com.cn/fop/EN/Y2023/V18/I4/42601
Fig.1  An overview of the combination with optical analog computing in optical microscopy, containing the brief development routes of both [14]. Spin-redirection Rytov?Vlasimirskii?Berry phase: Dark-field differentiation [29], quantitative phase imaging [44], photonic spin-Hall microscopy [48]. Pancharatnam?Berry phase: 2D high-contrast imaging [26], broad-band vectorial DIC [47], spin splitting microscopy [83]. Others: Optimized multilayer films [46], nanophotonics coverslip [49], entanglement phase contrast [91].
Fig.2  Generation of geometric phases and photonic SHE. (a) Non-trivial parallel transport of wave vectors in momentum space generates geometric phase. (b) Photonic SHE based on the RVB phase at an air-glass interface. (c) Geometric features of polarization evolutions on the momentum space. (d) Stokes vector for non-trivial parallel transfer in Stokes parameter space. (e) Circularly polarized light acquires PB phase gradients through a localized optical axis variation of the metasurface. (f) The PB phase-induced polarization evolution on the Poincaré sphere. (b, c) Reproduced from Ref. [48]. (e, f) Reproduced from Ref. [42].
Fig.3  The RVB phase-based optical differential operations and image edge detection. (a) Schematic illustration of spatial differentiation of photonic SHE at the interface of isotropic media. (b) Experimental results of edge detection for amplitude patterns. (c) Air-glass reflection interface realization optical fully differentiator. (d) The edge detection images when the polarization angle of the incident light is 0°, 10°, 40° respectively. (e) Diagram of the photonic spin-Hall differentiator experimental setup, inset shows the actual phase pattern. (f) Bright-field and differential images of phase patterns. (a, b) Reproduced from Ref. [37]. (c, d) Reproduced from Ref. [38]. (e, f) Reproduced from Ref. [48].
Fig.4  The PB phase-based optical differential operations and image edge detection. (a) PB phase metasurface differentiator. The right figures represent the metasurface-induced Fourier space spectrum and real-space image. (b) Broadband edge detection experiments with three wavelengths of 430nm, 500nm, and 670nm, respectively. (c) Optical differential operations and corresponding phase distributions based on inversely designed metasurface. (d) All-optical image edge detection optical system. (e) Experimental setup for vector differential operations based on computational metasurface. The inset presents the resolution target (object). (f) 1D differential operations in x- and y-directions and 2D edge detection images. (g) Schematic diagram of a higher-order spatial differentiator based on cascaded operations. (h) All-optical spatial second-order differentiator for phase objects. (a, b) Reproduced from Ref. [20]. (c, d) Reproduced from Ref. [70]. (e, f) Reproduced from Ref. [47]. (g, h) Reproduced from Ref. [71].
Fig.5  Microscopically enhanced imaging based on optical interface reflection. (a) Schematic diagram of phase analysis for polarization modulation at the air-glass interface. (b) Results of horizontal partial derivatives of epithelial cell phase distribution. (c) 2D Fourier algorithm to recover phase results and original phase distribution. (d) Photonic spin-Hall differential microscopy optical path. (e) Bright-field and differential images of unlabeled onion and shallot cells. (f) Quantitative phase microscopy reconstruction of the 350nm focus star phase distribution. (a?c) Reproduced from Ref. [44]. (d?f) Reproduced from Ref. [47].
Fig.6  High-contrast microscopy imaging based on the PB phase metasurfaces. (a) 2D PB phase metasurface combined with commercial microscopy. (b) Different microscopic modes of observing HUVEC, from top to bottom, bright-field, dark-field, phase contrast, and differential images, respectively. (c) Metasurface single shot QPGI optical path and polarization direction of camera pixels. (d) Pattern simulation and NIH3T3 cells imaging for single shot QPGI. (e) Experimental setup of the vectorial DIC microscope. (f) Phase target 1D and 2D edge microscopy images. (a, b) Reproduced from Ref. [29]. (c, d) Reproduced from Ref. [83]. (e, f) Reproduced from Ref. [47].
Fig.7  Quantum differential and dark-field microscopies. (a) How conventional DIC and quantum differential microscopies work. (b) Images of sample taken using the entanglement and classical light source illumination. Conformity count data are taken from the red box and the black solid line is the theoretical fit curve. (c) The electromagnetic field emitted by an oscillating dipole. (d) Schematic diagram of a quantum bright and dark field imaging with remote control of polarization entanglement. (e) Bright- and dark-field images of cells taken with ICCD internal and external triggers. (a, b) Reproduced from Ref. [91]. (c?e) Reproduced from Ref. [29].
1 B. Murphy D., Fundamentals of Light Microscopy and Electronic Imaging, John Wiley & Sons, 2002
2 Zernike F. . Phase contrast, a new method for the microscopic observation of transparent objects part II. Physica, 1942, 9(10): 974
https://doi.org/10.1016/S0031-8914(42)80079-8
3 L. Lessor D. , S. Hartman J. , L. Gordon R. . Quantitative surface topography determination by Nomarski reflection microscopy. I. Theory. J. Opt. Soc. Am., 1979, 69(2): 357
https://doi.org/10.1364/JOSA.69.000357
4 W. Lichtman J. , A. Conchello J. . Fluorescence microscopy. Nat. Methods, 2005, 2(12): 910
https://doi.org/10.1038/nmeth817
5 Huang B. , Babcock H. , Zhuang X. . Breaking the diffraction barrier: Super-resolution imaging of cells. Cell, 2010, 143(7): 1047
https://doi.org/10.1016/j.cell.2010.12.002
6 Fernández-Suárez M. , Y. Ting A. . Fluorescent probes for super-resolution imaging in living cells. Nat. Rev. Mol. Cell Biol., 2008, 9(12): 929
https://doi.org/10.1038/nrm2531
7 A. Klar T. , Jakobs S. , Dyba M. , Egner A. , W. Hell S. . Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. USA, 2000, 97(15): 8206
https://doi.org/10.1073/pnas.97.15.8206
8 Betzig E. . Proposed method for molecular optical imaging. Opt. Lett., 1995, 20(3): 237
https://doi.org/10.1364/OL.20.000237
9 Betzig E. , H. Patterson G. , Sougrat R. , W. Lindwasser O. , Olenych S. , S. Bonifacino J. , W. Davidson M. , Lippincott-Schwartz J. , F. Hess H. . Imaging intracellular fluorescent proteins at nanometer resolution. Science, 2006, 313(5793): 1642
https://doi.org/10.1126/science.1127344
10 J. Rust M. , Bates M. , Zhuang X. . Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 2006, 3(10): 793
https://doi.org/10.1038/nmeth929
11 G. L. Gustafsson M. . Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA, 2005, 102(37): 13081
https://doi.org/10.1073/pnas.0406877102
12 R. Zipfel W. , M. Williams R. , W. Webb W. . Nonlinear magic: Multiphoton microscopy in the biosciences. Nat. Biotechnol., 2003, 21(11): 1369
https://doi.org/10.1038/nbt899
13 J. Caulfield H. , Dolev S. . Why future supercomputing requires optics. Nat. Photonics, 2010, 4(5): 261
https://doi.org/10.1038/nphoton.2010.94
14 Silva A. , Monticone F. , Castaldi G. , Galdi V. , Alù A. , Engheta N. . Performing mathematical operations with metamaterials. Science, 2014, 343(6167): 160
https://doi.org/10.1126/science.1242818
15 R. Solli D. , Jalali B. . Analog optical computing. Nat. Photonics, 2015, 9(11): 704
https://doi.org/10.1038/nphoton.2015.208
16 Ferrera M. , Park Y. , Razzari L. , E. Little B. , T. Chu S. , Morandotti R. , J. Moss D. , Azaña J. . On-chip CMOS-compatible all-optical integrator. Nat. Commun., 2010, 1(1): 29
https://doi.org/10.1038/ncomms1028
17 Ruan Z. . Spatial mode control of surface plasmon polariton excitation with gain medium: from spatial differentiator to integrator. Opt. Lett., 2015, 40(4): 601
https://doi.org/10.1364/OL.40.000601
18 A. Bykov D. , L. Doskolovich L. , A. Bezus E. , A. Soifer V. . Optical computation of the Laplace operator using phase-shifted Bragg grating. Opt. Express, 2014, 22(21): 25084
https://doi.org/10.1364/OE.22.025084
19 L. Doskolovich L. , A. Bykov D. , A. Bezus E. , A. Soifer V. . Spatial differentiation of optical beams using phase-shifted Bragg grating. Opt. Lett., 2014, 39(5): 1278
https://doi.org/10.1364/OL.39.001278
20 Zhou J. , Qian H. , Chen C. , Zhao J. , Li G. , Wu Q. , Luo H. , Wen S. , Liu Z. . Optical edge detection based on high-efficiency dielectric metasurface. Proc. Natl. Acad. Sci. USA, 2019, 116(23): 11137
https://doi.org/10.1073/pnas.1820636116
21 Abdollahramezani S. , Chizari A. , E. Dorche A. , V. Jamali M. , A. Salehi J. . Dielectric metasurfaces solve differential and integro-differential equations. Opt. Lett., 2017, 42(7): 1197
https://doi.org/10.1364/OL.42.001197
22 Mohammadi Estakhri N. , Edwards B. , Engheta N. . Inverse-designed metastructures that solve equations. Science, 2019, 363(6433): 1333
https://doi.org/10.1126/science.aaw2498
23 He S. , Wang R. , Luo H. . Computing metasurfaces for all-optical image processing: A brief review. Nanophotonics, 2022, 11(6): 1083
https://doi.org/10.1515/nanoph-2021-0823
24 Zhou Y. , Zheng H. , I. Kravchenko I. , Valentine J. . Flat optics for image differentiation. Nat. Photonics, 2020, 14(5): 316
https://doi.org/10.1038/s41566-020-0591-3
25 Huo P. , Zhang C. , Zhu W. , Liu M. , Zhang S. , Zhang S. , Chen L. , J. Lezec H. , Agrawal A. , Lu Y. , Xu T. . Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging. Nano Lett., 2020, 20(4): 2791
https://doi.org/10.1021/acs.nanolett.0c00471
26 Zhou J. , Qian H. , Zhao J. , Tang M. , Wu Q. , Lei M. , Luo H. , Wen S. , Chen S. , Liu Z. . Two-dimensional optical spatial differentiation and high-contrast imaging. Natl. Sci. Rev., 2021, 8(6): nwaa176
https://doi.org/10.1093/nsr/nwaa176
27 Fu W. , Zhao D. , Li Z. , Liu S. , Tian C. , Huang K. . Ultracompact meta-imagers for arbitrary all-optical convolution. Light Sci. Appl., 2022, 11(1): 62
https://doi.org/10.1038/s41377-022-00752-5
28 Zhou J. , Liu S. , Qian H. , Li Y. , Luo H. , Wen S. , Zhou Z. , Guo G. , Shi B. , Liu Z. . Metasurface enabled quantum edge detection. Sci. Adv., 2020, 6(51): eabc4385
https://doi.org/10.1126/sciadv.abc4385
29 Liu J. , Yang Q. , Chen S. , Xiao Z. , Wen S. , Luo H. . Intrinsic optical spatial differentiation enabled quantum dark-field microscopy. Phys. Rev. Lett., 2022, 128(19): 193601
https://doi.org/10.1103/PhysRevLett.128.193601
30 Zhou Y. , Wu W. , Chen R. , Chen W. , Chen R. , Ma Y. . Analog optical spatial differentiators based on dielectric metasurfaces. Adv. Opt. Mater., 2020, 8(4): 1901523
https://doi.org/10.1002/adom.201901523
31 Wan L. , Pan D. , Yang S. , Zhang W. , A. Potapov A. , Wu X. , Liu W. , Feng T. , Li Z. . Optical analog computing of spatial differentiation and edge detection with dielectric metasurfaces. Opt. Lett., 2020, 45(7): 2070
https://doi.org/10.1364/OL.386986
32 Zangeneh-Nejad F. , L. Sounas D. , Alù A. , Fleury R. . Analogue computing with metamaterials. Nat. Rev. Mater., 2020, 6(3): 207
https://doi.org/10.1038/s41578-020-00243-2
33 Xiao T. , Yang H. , Yang Q. , Xu D. , Wang R. , Chen S. , Luo H. . Realization of tunable edge-enhanced images based on computing metasurfaces. Opt. Lett., 2022, 47(4): 925
https://doi.org/10.1364/OL.450988
34 Wang Z. , Hu G. , Wang X. , Ding X. , Zhang K. , Li H. , N. Burokur S. , Wu Q. , Liu J. , Tan J. , Qiu C. . Single-layer spatial analog meta-processor for imaging processing. Nat. Commun., 2022, 13(1): 2188
https://doi.org/10.1038/s41467-022-29732-4
35 Xu D.Wen S.Luo H., Metasurface-based optical analog computing: From fundamentals to applications, Adv. Devices Instrum., doi: (2022)
36 Youssefi A. , Zangeneh-Nejad F. , Abdollahramezani S. , Khavasi A. . Analog computing by Brewster effect. Opt. Lett., 2016, 41(15): 3467
https://doi.org/10.1364/OL.41.003467
37 Zhu T. , Lou Y. , Zhou Y. , Zhang J. , Huang J. , Li Y. , Luo H. , Wen S. , Zhu S. , Gong Q. , Qiu M. , Ruan Z. . Generalized spatial differentiation from the spin Hall effect of light and its application in image processing of edge detection. Phys. Rev. Appl., 2019, 11(3): 034043
https://doi.org/10.1103/PhysRevApplied.11.034043
38 He S. , Zhou J. , Chen S. , Shu W. , Luo H. , Wen S. . Wavelength-independent optical fully differential operation based on the spin−orbit interaction of light. APL Photonics, 2020, 5(3): 036105
https://doi.org/10.1063/1.5144953
39 Xu D. , He S. , Zhou J. , Chen S. , Wen S. , Luo H. . Goos–Hänchen effect enabled optical differential operation and image edge detection. Appl. Phys. Lett., 2020, 116(21): 211103
https://doi.org/10.1063/5.0006483
40 Y. Bliokh K. , Gorodetski Y. , Kleiner V. , Hasman E. . Coriolis effect in optics: Unified geometric phase and spin-Hall effect. Phys. Rev. Lett., 2008, 101(3): 030404
https://doi.org/10.1103/PhysRevLett.101.030404
41 Yin X. , Ye Z. , Rho J. , Wang Y. , Zhang X. . Photonic spin Hall effect at metasurfaces. Science, 2013, 339(6126): 1405
https://doi.org/10.1126/science.1231758
42 Ling X. , Zhou X. , Yi X. , Shu W. , Liu Y. , Chen S. , Luo H. , Wen S. , Fan D. . Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence. Light Sci. Appl., 2015, 4(5): e290
https://doi.org/10.1038/lsa.2015.63
43 Wäldchen S. , Lehmann J. , Klein T. , Van De Linde S. , Sauer M. . Light-induced cell damage in live-cell super-resolution microscopy. Sci. Rep., 2015, 5(1): 15348
https://doi.org/10.1038/srep15348
44 Zhu T. , Huang J. , Ruan Z. . Optical phase mining by adjustable spatial differentiator. Adv. Photonics, 2020, 2(1): 016001
https://doi.org/10.1117/1.AP.2.1.016001
45 Kim Y. , Y. Lee G. , Sung J. , Jang J. , Lee B. . Spiral metalens for phase contrast imaging. Adv. Funct. Mater., 2022, 32(5): 2106050
https://doi.org/10.1002/adfm.202106050
46 Zhang X. , Bai B. , B. Sun H. , Jin G. , Valentine J. . Incoherent optoelectronic differentiation based on optimized multilayer films. Laser Photonics Rev., 2022, 16(9): 2200038
https://doi.org/10.1002/lpor.202200038
47 Wang Y.Yang Q.He S.Wang R.Luo H., Computing metasurfaces enabled broad-band vectorial differential interference contrast microscopy, ACS Photonics, doi: (2022)
48 Wang R. , He S. , Luo H. . Photonic spin-Hall differential microscopy. Phys. Rev. Appl., 2022, 18(4): 044016
https://doi.org/10.1103/PhysRevApplied.18.044016
49 Wesemann L. , Rickett J. , Song J. , Lou J. , Hinde E. , J. Davis T. , Roberts A. . Nanophotonics enhanced coverslip for phase imaging in biology. Light Sci. Appl., 2021, 10(1): 98
https://doi.org/10.1038/s41377-021-00540-7
50 Pancharatnam S. . Generalized theory of interference and its applications. Proc. Indian Acad. Sci. Sect. A, 1956, 44(6): 398
https://doi.org/10.1007/BF03046095
51 Shapere A.Wilczek F., Geometric Phases in Physics, World Scientific, Singapore, 1989
52 V. Berry M. . Quantal phase factors accompanying adiabatic changes. Proc. Roy. Soc. A, 1984, 392(1802): 45
https://doi.org/10.1098/rspa.1984.0023
53 Bomzon Z. , Biener G. , Kleiner V. , Hasman E. . Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett., 2002, 27(13): 1141
https://doi.org/10.1364/OL.27.001141
54 Y. Bliokh K. , P. Bliokh Y. . Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet. Phys. Rev. Lett., 2006, 96(7): 073903
https://doi.org/10.1103/PhysRevLett.96.073903
55 Liu S. , Chen S. , Wen S. , Luo H. . Photonic spin Hall effect: fundamentals and emergent applications. Opto-Electronic Sci., 2022, 1(7): 220007
https://doi.org/10.29026/oes.2022.220007
56 Y. Bliokh K. . Geometrodynamics of polarized light: Berry phase and spin Hall effect in a gradient-index medium. J. Opt. A, Pure Appl. Opt., 2009, 11(9): 094009
https://doi.org/10.1088/1464-4258/11/9/094009
57 Y. Bliokh K. , J. Rodríguez-Fortuño F. , Nori F. , V. Zayats A. . Spin–orbit interactions of light. Nat. Photonics, 2015, 9(12): 796
https://doi.org/10.1038/nphoton.2015.201
58 Cisowski C. , B. Götte J. , Franke-Arnold S. . Colloquium: Geometric phases of light: Insights from fiber bundle theory. Rev. Mod. Phys., 2022, 94(3): 031001
https://doi.org/10.1103/RevModPhys.94.031001
59 Liu Y. , Ke Y. , Luo H. , Wen S. . Photonic spin Hall effect in metasurfaces: A brief review. Nanophotonics, 2017, 6(1): 51
https://doi.org/10.1515/nanoph-2015-0155
60 Onoda M. , Murakami S. , Nagaosa N. . Hall effect of light. Phys. Rev. Lett., 2004, 93(8): 083901
https://doi.org/10.1103/PhysRevLett.93.083901
61 Ling X. , Zhou X. , Huang K. , Liu Y. , Qiu C. , Luo H. , Wen S. . Recent advances in the spin Hall effect of light. Rep. Prog. Phys., 2017, 80(6): 066401
https://doi.org/10.1088/1361-6633/aa5397
62 V. Berry M. . The adiabatic phase and Pancharatnam’s phase for polarized light. J. Mod. Opt., 1987, 34(11): 1401
https://doi.org/10.1080/09500348714551321
63 Wesemann L. , J. Davis T. , Roberts A. . Meta-optical and thin film devices for all-optical information processing. Appl. Phys. Rev., 2021, 8(3): 031309
https://doi.org/10.1063/5.0048758
64 Huang J. , Zhu T. , Ruan Z. . Two-shot calibration method for phase-only spatial light modulators with generalized spatial differentiator. Phys. Rev. Appl., 2020, 14(5): 054040
https://doi.org/10.1103/PhysRevApplied.14.054040
65 He S. , Zhou J. , Chen S. , Shu W. , Luo H. , Wen S. . Spatial differential operation and edge detection based on the geometric spin Hall effect of light. Opt. Lett., 2020, 45(4): 877
https://doi.org/10.1364/OL.386224
66 Xu D. , He S. , Zhou J. , Chen S. , Wen S. , Luo H. . Optical analog computing of two-dimensional spatial differentiation based on the Brewster effect. Opt. Lett., 2020, 45(24): 6867
https://doi.org/10.1364/OL.413104
67 He S. , Wang R. , Xu W. , Luo Z. , Luo H. . Visualization of transparent particles based on optical spatial differentiation. Opt. Lett., 2022, 47(22): 5754
https://doi.org/10.1364/OL.468452
68 Zhu T. , Guo C. , Huang J. , Wang H. , Orenstein M. , Ruan Z. , Fan S. . Topological optical differentiator. Nat. Commun., 2021, 12(1): 680
https://doi.org/10.1038/s41467-021-20972-4
69 Chen S. , Li Z. , Liu W. , Cheng H. , Tian J. . From single‐dimensional to multidimensional manipulation of optical waves with metasurfaces. Adv. Mater., 2019, 31(16): 1802458
https://doi.org/10.1002/adma.201802458
70 Xu D. , Yang H. , Xu W. , Zhang W. , Zeng K. , Luo H. . Inverse design of Pancharatnam–Berry phase metasurfaces for all-optical image edge detection. Appl. Phys. Lett., 2022, 120(24): 241101
https://doi.org/10.1063/5.0090606
71 Shou Y. , Wang Y. , Miao L. , Chen S. , Luo H. . Realization of all-optical higher-order spatial differentiators based on cascaded operations. Opt. Lett., 2022, 47(22): 5981
https://doi.org/10.1364/OL.473988
72 Li T. , Yang Y. , Liu X. , Wu Y. , Zhou Y. , Huang S. , Li X. , Huang H. . Enhanced optical edge detection based on a Pancharatnam–Berry flat lens with a large focal length. Opt. Lett., 2020, 45(13): 3681
https://doi.org/10.1364/OL.395879
73 Kwon H. , Sounas D. , Cordaro A. , Polman A. , Alù A. . Nonlocal metasurfaces for optical signal processing. Phys. Rev. Lett., 2018, 121(17): 173004
https://doi.org/10.1103/PhysRevLett.121.173004
74 Komar A. , A. Aoni R. , Xu L. , Rahmani M. , E. Miroshnichenko A. , N. Neshev D. . Edge detection with Mie-resonant dielectric metasurfaces. ACS Photonics, 2021, 8(3): 864
https://doi.org/10.1021/acsphotonics.0c01874
75 Pan D. , Wan L. , Ouyang M. , Zhang W. , A. Potapov A. , Liu W. , Liang Z. , Feng T. , Li Z. . Laplace metasurfaces for optical analog computing based on quasi-bound states in the continuum. Photon. Res., 2021, 9(9): 1758
https://doi.org/10.1364/PRJ.426827
76 P. Laissue P. , A. Alghamdi R. , Tomancak P. , G. Reynaud E. , Shroff H. . Assessing phototoxicity in live fluorescence imaging. Nat. Methods, 2017, 14(7): 657
https://doi.org/10.1038/nmeth.4344
77 Wang R. , He S. , Chen S. , Luo H. . Brewster differential microscopy. Appl. Phys. Lett., 2022, 121(23): 231103
https://doi.org/10.1063/5.0131424
78 Kwon H. , Arbabi E. , M. Kamali S. , S. Faraji-Dana M. , Faraon A. . Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces. Nat. Photonics, 2020, 14(2): 109
https://doi.org/10.1038/s41566-019-0536-x
79 Engay E. , Huo D. , Malureanu R. , I. Bunea A. , Lavrinenko A. . Polarization-dependent all-dielectric metasurface for single-shot quantitative phase imaging. Nano Lett., 2021, 21(9): 3820
https://doi.org/10.1021/acs.nanolett.1c00190
80 Guo Y. , Pu M. , Zhang F. , Xu M. , Li X. , Ma X. , Luo X. . Classical and generalized geometric phase in electromagnetic metasurfaces. Photon. Insights, 2022, 1(1): R03
https://doi.org/10.3788/PI.2022.R03
81 Arbabi A. , Arbabi E. , M. Kamali S. , Horie Y. , Han S. , Faraon A. . Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun., 2016, 7(1): 13682
https://doi.org/10.1038/ncomms13682
82 Arbabi E. , Li J. , J. Hutchins R. , M. Kamali S. , Arbabi A. , Horie Y. , Van Dorpe P. , Gradinaru V. , A. Wagenaar D. , Faraon A. . Two-photon microscopy with a double-wavelength metasurface objective lens. Nano Lett., 2018, 18(8): 4943
https://doi.org/10.1021/acs.nanolett.8b01737
83 Zhou J. , Wu Q. , Zhao J. , Posner C. , Lei M. , Chen G. , Zhang J. , Liu Z. . Fourier optical spin splitting microscopy. Phys. Rev. Lett., 2022, 129(2): 020801
https://doi.org/10.1103/PhysRevLett.129.020801
84 Zhao Q. , Tu S. , Lei Q. , Yue Q. , Guo C. , Cai Y. . Edge enhancement of phase objects through complex media by using transmission-matrix-based spiral phase contrast imaging. Front. Phys., 2022, 17(5): 52503
https://doi.org/10.1007/s11467-022-1169-y
85 Zhao M. , Liang X. , Li J. , Xie M. , Zheng H. , Zhong Y. , Yu J. , Zhang J. , Chen Z. , Zhu W. . Optical phase contrast microscopy with incoherent vortex phase. Laser Photonics Rev., 2022, 16(11): 2200230
https://doi.org/10.1002/lpor.202200230
86 Wolfgramm F. , Vitelli C. , A. Beduini F. , Godbout N. , W. Mitchell M. . Entanglement-enhanced probing of a delicate material system. Nat. Photonics, 2013, 7(1): 28
https://doi.org/10.1038/nphoton.2012.300
87 A. Taylor M. , Janousek J. , Daria V. , Knittel J. , Hage B. , A. Bachor H. , P. Bowen W. . Subdiffraction-limited quantum imaging within a living cell. Phys. Rev. X, 2014, 4(1): 011017
https://doi.org/10.1103/PhysRevX.4.011017
88 Lloyd S. . Enhanced sensitivity of photodetection via quantum illumination. Science, 2008, 321(5895): 1463
https://doi.org/10.1126/science.1160627
89 D. Lopaeva E. , Ruo Berchera I. , P. Degiovanni I. , Olivares S. , Brida G. , Genovese M. . Experimental realization of quantum illumination. Phys. Rev. Lett., 2013, 110(15): 153603
https://doi.org/10.1103/PhysRevLett.110.153603
90 Gregory T. , A. Moreau P. , Toninelli E. , J. Padgett M. . Imaging through noise with quantum illumination. Sci. Adv., 2020, 6(6): eaay2652
https://doi.org/10.1126/sciadv.aay2652
91 Ono T. , Okamoto R. , Takeuchi S. . An entanglement-enhanced microscope. Nat. Commun., 2013, 4(1): 2426
https://doi.org/10.1038/ncomms3426
92 N. Boto A. , Kok P. , S. Abrams D. , L. Braunstein S. , P. Williams C. , P. Dowling J. . Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett., 2000, 85(13): 2733
https://doi.org/10.1103/PhysRevLett.85.2733
93 Ornigotti M. , Aiello A. . The Hertz vector revisited: A simple physical picture. J. Opt., 2014, 16(10): 105705
https://doi.org/10.1088/2040-8978/16/10/105705
94 G. England D. , Balaji B. , J. Sussman B. . Quantum-enhanced standoff detection using correlated photon pairs. Phys. Rev. A, 2019, 99(2): 023828
https://doi.org/10.1103/PhysRevA.99.023828
95 A. Moreau P. , Toninelli E. , Gregory T. , S. Aspden R. , A. Morris P. , J. Padgett M. . Imaging Bell-type nonlocal behavior. Sci. Adv., 2019, 5(7): eaaw2563
https://doi.org/10.1126/sciadv.aaw2563
96 Liu S. , Yang C. , Liu S. , Zhou Z. , Li Y. , Li Y. , Xu Z. , Guo G. , Shi B. . Up-conversion imaging processing with field-of-view and edge enhancement. Phys. Rev. Appl., 2019, 11(4): 044013
https://doi.org/10.1103/PhysRevApplied.11.044013
97 Liu S. , Li Y. , Liu S. , Zhou Z. , Li Y. , Yang C. , Guo G. , Shi B. . Real-time quantum edge enhanced imaging. Opt. Express, 2020, 28(24): 35415
https://doi.org/10.1364/OE.395910
98 A. Taylor M. , P. Bowen W. . Quantum metrology and its application in biology. Phys. Rep., 2016, 615: 1
https://doi.org/10.1016/j.physrep.2015.12.002
99 Israel Y. , Rosen S. , Silberberg Y. . Supersensitive polarization microscopy using NOON states of light. Phys. Rev. Lett., 2014, 112(10): 103604
https://doi.org/10.1103/PhysRevLett.112.103604
100 A. Morris P. , S. Aspden R. , E. C. Bell J. , W. Boyd R. , J. Padgett M. . Imaging with a small number of photons. Nat. Commun., 2015, 6(1): 5913
https://doi.org/10.1038/ncomms6913
101 Samantaray N. , Ruo-Berchera I. , Meda A. , Genovese M. . Realization of the first sub-shot-noise wide field microscope. Light Sci. Appl., 2017, 6(7): e17005
https://doi.org/10.1038/lsa.2017.5
102 Kviatkovsky I. , M. Chrzanowski H. , G. Avery E. , Bartolomaeus H. , Ramelow S. . Microscopy with undetected photons in the mid-infrared. Sci. Adv., 2020, 6(42): eabd0264
https://doi.org/10.1126/sciadv.abd0264
103 A. Casacio C. , S. Madsen L. , Terrasson A. , Waleed M. , Barnscheidt K. , Hage B. , A. Taylor M. , P. Bowen W. . Quantum-enhanced nonlinear microscopy. Nature, 2021, 594(7862): 201
https://doi.org/10.1038/s41586-021-03528-w
104 J. Stephens D. , J. Allan V. . Light microscopy techniques for live cell imaging. Science, 2013, 300(5616): 82
https://doi.org/10.1126/science.1082160
105 Frischwasser K. , Cohen K. , Kher-Alden J. , Dolev S. , Tsesses S. , Bartal G. . Real-time sub-wavelength imaging of surface waves with nonlinear near-field optical microscopy. Nat. Photonics, 2021, 15(6): 442
https://doi.org/10.1038/s41566-021-00782-2
106 E. Villegas-Hernández L. , Dubey V. , Nystad M. , C. Tinguely J. , A. Coucheron D. , T. Dullo F. , Priyadarshi A. , Acuña S. , Ahmad A. , M. Mateos J. , Barmettler G. , Ziegler U. , B. Birgisdottir Å. , M. K. Hovd A. , A. Fenton K. , Acharya G. , Agarwal K. , S. Ahluwalia B. . Chip-based multimodal super-resolution microscopy for histological investigations of cryopreserved tissue sections. Light Sci. Appl., 2022, 11(1): 43
https://doi.org/10.1038/s41377-022-00731-w
107 Li J. , Zhou N. , Sun J. , Zhou S. , Bai Z. , Lu L. , Chen Q. , Zuo C. . Transport of intensity diffraction tomography with non-interferometric synthetic aperture for three-dimensional label-free microscopy. Light Sci. Appl., 2022, 11(1): 154
https://doi.org/10.1038/s41377-022-00815-7
108 A. Moreau P. , Toninelli E. , Gregory T. , J. Padgett M. . Imaging with quantum states of light. Nat. Rev. Phys., 2019, 1(6): 367
https://doi.org/10.1038/s42254-019-0056-0
109 G. Basset M. , Setzpfandt F. , Steinlechner F. , Beckert E. , Pertsch T. , Gräfe M. . Perspectives for applications of quantum imaging. Laser Photonics Rev., 2019, 13(10): 1900097
https://doi.org/10.1002/lpor.201900097
110 Varnavski O. , Gunthardt C. , Rehman A. , D. Luker G. , Goodson T. . Quantum light-enhanced two-photon imaging of breast cancer cells. J. Phys. Chem. Lett., 2022, 13(12): 2772
https://doi.org/10.1021/acs.jpclett.2c00695
111 V. Paterova A. , Yang H. , S. D. Toa Z. , A. Krivitsky L. . Quantum imaging for the semiconductor industry. Appl. Phys. Lett., 2020, 117(5): 054004
https://doi.org/10.1063/5.0015614
112 Goh H. , Alù A. . Nonlocal scatterer for compact wave-based analog computing. Phys. Rev. Lett., 2022, 128(7): 073201
https://doi.org/10.1103/PhysRevLett.128.073201
113 Wu J. , Lin X. , Guo Y. , Liu J. , Fang L. , Jiao S. , Dai Q. . Analog optical computing for artificial intelligence. Engineering, 2021, 10(1): 133
https://doi.org/10.1016/j.eng.2021.06.021
114 K. Chen M. , Yan Y. , Liu X. , Wu Y. , Zhang J. , Yuan J. , Zhang Z. , P. Tsai D. . Edge detection with meta-lens: From one dimension to three dimensions. Nanophotonics, 2021, 10(14): 3709
https://doi.org/10.1515/nanoph-2021-0239
[1] P. James Schuck,Wei Bao,Nicholas J. Borys. A polarizing situation: Taking an in-plane perspective for next-generation near-field studies[J]. Front. Phys. , 2016, 11(2): 117804-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed