|
|
When optical microscopy meets all-optical analog computing: A brief review |
Yichang Shou, Jiawei Liu, Hailu Luo( ) |
Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082, China |
|
|
Abstract As a revolutionary observation tool in life science, biomedical, and material science, optical microscopy allows imaging of samples with high spatial resolution and a wide field of view. However, conventional microscopy methods are limited to single imaging and cannot accomplish real-time image processing. The edge detection, image enhancement and phase visualization schemes have attracted great interest with the rapid development of optical analog computing. The two main physical mechanisms that enable optical analog computing originate from two geometric phases: the spin-redirection Rytov-Vlasimirskii-Berry (RVB) phase and the Pancharatnam-Berry (PB) phase. Here, we review the basic principles and recent research progress of the RVB phase and PB phase based optical differentiators. Then we focus on the innovative and emerging applications of optical analog computing in microscopic imaging. Optical analog computing is accelerating the transformation of information processing from classical imaging to quantum techniques. Its intersection with optical microscopy opens opportunities for the development of versatile and compact optical microscopy systems.
|
Keywords
optical microscopy
optical analog computing
all-optical image processing
|
Corresponding Author(s):
Hailu Luo
|
Issue Date: 21 March 2023
|
|
1 |
B. Murphy D., Fundamentals of Light Microscopy and Electronic Imaging, John Wiley & Sons, 2002
|
2 |
Zernike F. . Phase contrast, a new method for the microscopic observation of transparent objects part II. Physica, 1942, 9(10): 974
https://doi.org/10.1016/S0031-8914(42)80079-8
|
3 |
L. Lessor D. , S. Hartman J. , L. Gordon R. . Quantitative surface topography determination by Nomarski reflection microscopy. I. Theory. J. Opt. Soc. Am., 1979, 69(2): 357
https://doi.org/10.1364/JOSA.69.000357
|
4 |
W. Lichtman J. , A. Conchello J. . Fluorescence microscopy. Nat. Methods, 2005, 2(12): 910
https://doi.org/10.1038/nmeth817
|
5 |
Huang B. , Babcock H. , Zhuang X. . Breaking the diffraction barrier: Super-resolution imaging of cells. Cell, 2010, 143(7): 1047
https://doi.org/10.1016/j.cell.2010.12.002
|
6 |
Fernández-Suárez M. , Y. Ting A. . Fluorescent probes for super-resolution imaging in living cells. Nat. Rev. Mol. Cell Biol., 2008, 9(12): 929
https://doi.org/10.1038/nrm2531
|
7 |
A. Klar T. , Jakobs S. , Dyba M. , Egner A. , W. Hell S. . Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. USA, 2000, 97(15): 8206
https://doi.org/10.1073/pnas.97.15.8206
|
8 |
Betzig E. . Proposed method for molecular optical imaging. Opt. Lett., 1995, 20(3): 237
https://doi.org/10.1364/OL.20.000237
|
9 |
Betzig E. , H. Patterson G. , Sougrat R. , W. Lindwasser O. , Olenych S. , S. Bonifacino J. , W. Davidson M. , Lippincott-Schwartz J. , F. Hess H. . Imaging intracellular fluorescent proteins at nanometer resolution. Science, 2006, 313(5793): 1642
https://doi.org/10.1126/science.1127344
|
10 |
J. Rust M. , Bates M. , Zhuang X. . Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 2006, 3(10): 793
https://doi.org/10.1038/nmeth929
|
11 |
G. L. Gustafsson M. . Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA, 2005, 102(37): 13081
https://doi.org/10.1073/pnas.0406877102
|
12 |
R. Zipfel W. , M. Williams R. , W. Webb W. . Nonlinear magic: Multiphoton microscopy in the biosciences. Nat. Biotechnol., 2003, 21(11): 1369
https://doi.org/10.1038/nbt899
|
13 |
J. Caulfield H. , Dolev S. . Why future supercomputing requires optics. Nat. Photonics, 2010, 4(5): 261
https://doi.org/10.1038/nphoton.2010.94
|
14 |
Silva A. , Monticone F. , Castaldi G. , Galdi V. , Alù A. , Engheta N. . Performing mathematical operations with metamaterials. Science, 2014, 343(6167): 160
https://doi.org/10.1126/science.1242818
|
15 |
R. Solli D. , Jalali B. . Analog optical computing. Nat. Photonics, 2015, 9(11): 704
https://doi.org/10.1038/nphoton.2015.208
|
16 |
Ferrera M. , Park Y. , Razzari L. , E. Little B. , T. Chu S. , Morandotti R. , J. Moss D. , Azaña J. . On-chip CMOS-compatible all-optical integrator. Nat. Commun., 2010, 1(1): 29
https://doi.org/10.1038/ncomms1028
|
17 |
Ruan Z. . Spatial mode control of surface plasmon polariton excitation with gain medium: from spatial differentiator to integrator. Opt. Lett., 2015, 40(4): 601
https://doi.org/10.1364/OL.40.000601
|
18 |
A. Bykov D. , L. Doskolovich L. , A. Bezus E. , A. Soifer V. . Optical computation of the Laplace operator using phase-shifted Bragg grating. Opt. Express, 2014, 22(21): 25084
https://doi.org/10.1364/OE.22.025084
|
19 |
L. Doskolovich L. , A. Bykov D. , A. Bezus E. , A. Soifer V. . Spatial differentiation of optical beams using phase-shifted Bragg grating. Opt. Lett., 2014, 39(5): 1278
https://doi.org/10.1364/OL.39.001278
|
20 |
Zhou J. , Qian H. , Chen C. , Zhao J. , Li G. , Wu Q. , Luo H. , Wen S. , Liu Z. . Optical edge detection based on high-efficiency dielectric metasurface. Proc. Natl. Acad. Sci. USA, 2019, 116(23): 11137
https://doi.org/10.1073/pnas.1820636116
|
21 |
Abdollahramezani S. , Chizari A. , E. Dorche A. , V. Jamali M. , A. Salehi J. . Dielectric metasurfaces solve differential and integro-differential equations. Opt. Lett., 2017, 42(7): 1197
https://doi.org/10.1364/OL.42.001197
|
22 |
Mohammadi Estakhri N. , Edwards B. , Engheta N. . Inverse-designed metastructures that solve equations. Science, 2019, 363(6433): 1333
https://doi.org/10.1126/science.aaw2498
|
23 |
He S. , Wang R. , Luo H. . Computing metasurfaces for all-optical image processing: A brief review. Nanophotonics, 2022, 11(6): 1083
https://doi.org/10.1515/nanoph-2021-0823
|
24 |
Zhou Y. , Zheng H. , I. Kravchenko I. , Valentine J. . Flat optics for image differentiation. Nat. Photonics, 2020, 14(5): 316
https://doi.org/10.1038/s41566-020-0591-3
|
25 |
Huo P. , Zhang C. , Zhu W. , Liu M. , Zhang S. , Zhang S. , Chen L. , J. Lezec H. , Agrawal A. , Lu Y. , Xu T. . Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging. Nano Lett., 2020, 20(4): 2791
https://doi.org/10.1021/acs.nanolett.0c00471
|
26 |
Zhou J. , Qian H. , Zhao J. , Tang M. , Wu Q. , Lei M. , Luo H. , Wen S. , Chen S. , Liu Z. . Two-dimensional optical spatial differentiation and high-contrast imaging. Natl. Sci. Rev., 2021, 8(6): nwaa176
https://doi.org/10.1093/nsr/nwaa176
|
27 |
Fu W. , Zhao D. , Li Z. , Liu S. , Tian C. , Huang K. . Ultracompact meta-imagers for arbitrary all-optical convolution. Light Sci. Appl., 2022, 11(1): 62
https://doi.org/10.1038/s41377-022-00752-5
|
28 |
Zhou J. , Liu S. , Qian H. , Li Y. , Luo H. , Wen S. , Zhou Z. , Guo G. , Shi B. , Liu Z. . Metasurface enabled quantum edge detection. Sci. Adv., 2020, 6(51): eabc4385
https://doi.org/10.1126/sciadv.abc4385
|
29 |
Liu J. , Yang Q. , Chen S. , Xiao Z. , Wen S. , Luo H. . Intrinsic optical spatial differentiation enabled quantum dark-field microscopy. Phys. Rev. Lett., 2022, 128(19): 193601
https://doi.org/10.1103/PhysRevLett.128.193601
|
30 |
Zhou Y. , Wu W. , Chen R. , Chen W. , Chen R. , Ma Y. . Analog optical spatial differentiators based on dielectric metasurfaces. Adv. Opt. Mater., 2020, 8(4): 1901523
https://doi.org/10.1002/adom.201901523
|
31 |
Wan L. , Pan D. , Yang S. , Zhang W. , A. Potapov A. , Wu X. , Liu W. , Feng T. , Li Z. . Optical analog computing of spatial differentiation and edge detection with dielectric metasurfaces. Opt. Lett., 2020, 45(7): 2070
https://doi.org/10.1364/OL.386986
|
32 |
Zangeneh-Nejad F. , L. Sounas D. , Alù A. , Fleury R. . Analogue computing with metamaterials. Nat. Rev. Mater., 2020, 6(3): 207
https://doi.org/10.1038/s41578-020-00243-2
|
33 |
Xiao T. , Yang H. , Yang Q. , Xu D. , Wang R. , Chen S. , Luo H. . Realization of tunable edge-enhanced images based on computing metasurfaces. Opt. Lett., 2022, 47(4): 925
https://doi.org/10.1364/OL.450988
|
34 |
Wang Z. , Hu G. , Wang X. , Ding X. , Zhang K. , Li H. , N. Burokur S. , Wu Q. , Liu J. , Tan J. , Qiu C. . Single-layer spatial analog meta-processor for imaging processing. Nat. Commun., 2022, 13(1): 2188
https://doi.org/10.1038/s41467-022-29732-4
|
35 |
Xu D.Wen S.Luo H., Metasurface-based optical analog computing: From fundamentals to applications, Adv. Devices Instrum., doi: (2022)
|
36 |
Youssefi A. , Zangeneh-Nejad F. , Abdollahramezani S. , Khavasi A. . Analog computing by Brewster effect. Opt. Lett., 2016, 41(15): 3467
https://doi.org/10.1364/OL.41.003467
|
37 |
Zhu T. , Lou Y. , Zhou Y. , Zhang J. , Huang J. , Li Y. , Luo H. , Wen S. , Zhu S. , Gong Q. , Qiu M. , Ruan Z. . Generalized spatial differentiation from the spin Hall effect of light and its application in image processing of edge detection. Phys. Rev. Appl., 2019, 11(3): 034043
https://doi.org/10.1103/PhysRevApplied.11.034043
|
38 |
He S. , Zhou J. , Chen S. , Shu W. , Luo H. , Wen S. . Wavelength-independent optical fully differential operation based on the spin−orbit interaction of light. APL Photonics, 2020, 5(3): 036105
https://doi.org/10.1063/1.5144953
|
39 |
Xu D. , He S. , Zhou J. , Chen S. , Wen S. , Luo H. . Goos–Hänchen effect enabled optical differential operation and image edge detection. Appl. Phys. Lett., 2020, 116(21): 211103
https://doi.org/10.1063/5.0006483
|
40 |
Y. Bliokh K. , Gorodetski Y. , Kleiner V. , Hasman E. . Coriolis effect in optics: Unified geometric phase and spin-Hall effect. Phys. Rev. Lett., 2008, 101(3): 030404
https://doi.org/10.1103/PhysRevLett.101.030404
|
41 |
Yin X. , Ye Z. , Rho J. , Wang Y. , Zhang X. . Photonic spin Hall effect at metasurfaces. Science, 2013, 339(6126): 1405
https://doi.org/10.1126/science.1231758
|
42 |
Ling X. , Zhou X. , Yi X. , Shu W. , Liu Y. , Chen S. , Luo H. , Wen S. , Fan D. . Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence. Light Sci. Appl., 2015, 4(5): e290
https://doi.org/10.1038/lsa.2015.63
|
43 |
Wäldchen S. , Lehmann J. , Klein T. , Van De Linde S. , Sauer M. . Light-induced cell damage in live-cell super-resolution microscopy. Sci. Rep., 2015, 5(1): 15348
https://doi.org/10.1038/srep15348
|
44 |
Zhu T. , Huang J. , Ruan Z. . Optical phase mining by adjustable spatial differentiator. Adv. Photonics, 2020, 2(1): 016001
https://doi.org/10.1117/1.AP.2.1.016001
|
45 |
Kim Y. , Y. Lee G. , Sung J. , Jang J. , Lee B. . Spiral metalens for phase contrast imaging. Adv. Funct. Mater., 2022, 32(5): 2106050
https://doi.org/10.1002/adfm.202106050
|
46 |
Zhang X. , Bai B. , B. Sun H. , Jin G. , Valentine J. . Incoherent optoelectronic differentiation based on optimized multilayer films. Laser Photonics Rev., 2022, 16(9): 2200038
https://doi.org/10.1002/lpor.202200038
|
47 |
Wang Y.Yang Q.He S.Wang R.Luo H., Computing metasurfaces enabled broad-band vectorial differential interference contrast microscopy, ACS Photonics, doi: (2022)
|
48 |
Wang R. , He S. , Luo H. . Photonic spin-Hall differential microscopy. Phys. Rev. Appl., 2022, 18(4): 044016
https://doi.org/10.1103/PhysRevApplied.18.044016
|
49 |
Wesemann L. , Rickett J. , Song J. , Lou J. , Hinde E. , J. Davis T. , Roberts A. . Nanophotonics enhanced coverslip for phase imaging in biology. Light Sci. Appl., 2021, 10(1): 98
https://doi.org/10.1038/s41377-021-00540-7
|
50 |
Pancharatnam S. . Generalized theory of interference and its applications. Proc. Indian Acad. Sci. Sect. A, 1956, 44(6): 398
https://doi.org/10.1007/BF03046095
|
51 |
Shapere A.Wilczek F., Geometric Phases in Physics, World Scientific, Singapore, 1989
|
52 |
V. Berry M. . Quantal phase factors accompanying adiabatic changes. Proc. Roy. Soc. A, 1984, 392(1802): 45
https://doi.org/10.1098/rspa.1984.0023
|
53 |
Bomzon Z. , Biener G. , Kleiner V. , Hasman E. . Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett., 2002, 27(13): 1141
https://doi.org/10.1364/OL.27.001141
|
54 |
Y. Bliokh K. , P. Bliokh Y. . Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet. Phys. Rev. Lett., 2006, 96(7): 073903
https://doi.org/10.1103/PhysRevLett.96.073903
|
55 |
Liu S. , Chen S. , Wen S. , Luo H. . Photonic spin Hall effect: fundamentals and emergent applications. Opto-Electronic Sci., 2022, 1(7): 220007
https://doi.org/10.29026/oes.2022.220007
|
56 |
Y. Bliokh K. . Geometrodynamics of polarized light: Berry phase and spin Hall effect in a gradient-index medium. J. Opt. A, Pure Appl. Opt., 2009, 11(9): 094009
https://doi.org/10.1088/1464-4258/11/9/094009
|
57 |
Y. Bliokh K. , J. Rodríguez-Fortuño F. , Nori F. , V. Zayats A. . Spin–orbit interactions of light. Nat. Photonics, 2015, 9(12): 796
https://doi.org/10.1038/nphoton.2015.201
|
58 |
Cisowski C. , B. Götte J. , Franke-Arnold S. . Colloquium: Geometric phases of light: Insights from fiber bundle theory. Rev. Mod. Phys., 2022, 94(3): 031001
https://doi.org/10.1103/RevModPhys.94.031001
|
59 |
Liu Y. , Ke Y. , Luo H. , Wen S. . Photonic spin Hall effect in metasurfaces: A brief review. Nanophotonics, 2017, 6(1): 51
https://doi.org/10.1515/nanoph-2015-0155
|
60 |
Onoda M. , Murakami S. , Nagaosa N. . Hall effect of light. Phys. Rev. Lett., 2004, 93(8): 083901
https://doi.org/10.1103/PhysRevLett.93.083901
|
61 |
Ling X. , Zhou X. , Huang K. , Liu Y. , Qiu C. , Luo H. , Wen S. . Recent advances in the spin Hall effect of light. Rep. Prog. Phys., 2017, 80(6): 066401
https://doi.org/10.1088/1361-6633/aa5397
|
62 |
V. Berry M. . The adiabatic phase and Pancharatnam’s phase for polarized light. J. Mod. Opt., 1987, 34(11): 1401
https://doi.org/10.1080/09500348714551321
|
63 |
Wesemann L. , J. Davis T. , Roberts A. . Meta-optical and thin film devices for all-optical information processing. Appl. Phys. Rev., 2021, 8(3): 031309
https://doi.org/10.1063/5.0048758
|
64 |
Huang J. , Zhu T. , Ruan Z. . Two-shot calibration method for phase-only spatial light modulators with generalized spatial differentiator. Phys. Rev. Appl., 2020, 14(5): 054040
https://doi.org/10.1103/PhysRevApplied.14.054040
|
65 |
He S. , Zhou J. , Chen S. , Shu W. , Luo H. , Wen S. . Spatial differential operation and edge detection based on the geometric spin Hall effect of light. Opt. Lett., 2020, 45(4): 877
https://doi.org/10.1364/OL.386224
|
66 |
Xu D. , He S. , Zhou J. , Chen S. , Wen S. , Luo H. . Optical analog computing of two-dimensional spatial differentiation based on the Brewster effect. Opt. Lett., 2020, 45(24): 6867
https://doi.org/10.1364/OL.413104
|
67 |
He S. , Wang R. , Xu W. , Luo Z. , Luo H. . Visualization of transparent particles based on optical spatial differentiation. Opt. Lett., 2022, 47(22): 5754
https://doi.org/10.1364/OL.468452
|
68 |
Zhu T. , Guo C. , Huang J. , Wang H. , Orenstein M. , Ruan Z. , Fan S. . Topological optical differentiator. Nat. Commun., 2021, 12(1): 680
https://doi.org/10.1038/s41467-021-20972-4
|
69 |
Chen S. , Li Z. , Liu W. , Cheng H. , Tian J. . From single‐dimensional to multidimensional manipulation of optical waves with metasurfaces. Adv. Mater., 2019, 31(16): 1802458
https://doi.org/10.1002/adma.201802458
|
70 |
Xu D. , Yang H. , Xu W. , Zhang W. , Zeng K. , Luo H. . Inverse design of Pancharatnam–Berry phase metasurfaces for all-optical image edge detection. Appl. Phys. Lett., 2022, 120(24): 241101
https://doi.org/10.1063/5.0090606
|
71 |
Shou Y. , Wang Y. , Miao L. , Chen S. , Luo H. . Realization of all-optical higher-order spatial differentiators based on cascaded operations. Opt. Lett., 2022, 47(22): 5981
https://doi.org/10.1364/OL.473988
|
72 |
Li T. , Yang Y. , Liu X. , Wu Y. , Zhou Y. , Huang S. , Li X. , Huang H. . Enhanced optical edge detection based on a Pancharatnam–Berry flat lens with a large focal length. Opt. Lett., 2020, 45(13): 3681
https://doi.org/10.1364/OL.395879
|
73 |
Kwon H. , Sounas D. , Cordaro A. , Polman A. , Alù A. . Nonlocal metasurfaces for optical signal processing. Phys. Rev. Lett., 2018, 121(17): 173004
https://doi.org/10.1103/PhysRevLett.121.173004
|
74 |
Komar A. , A. Aoni R. , Xu L. , Rahmani M. , E. Miroshnichenko A. , N. Neshev D. . Edge detection with Mie-resonant dielectric metasurfaces. ACS Photonics, 2021, 8(3): 864
https://doi.org/10.1021/acsphotonics.0c01874
|
75 |
Pan D. , Wan L. , Ouyang M. , Zhang W. , A. Potapov A. , Liu W. , Liang Z. , Feng T. , Li Z. . Laplace metasurfaces for optical analog computing based on quasi-bound states in the continuum. Photon. Res., 2021, 9(9): 1758
https://doi.org/10.1364/PRJ.426827
|
76 |
P. Laissue P. , A. Alghamdi R. , Tomancak P. , G. Reynaud E. , Shroff H. . Assessing phototoxicity in live fluorescence imaging. Nat. Methods, 2017, 14(7): 657
https://doi.org/10.1038/nmeth.4344
|
77 |
Wang R. , He S. , Chen S. , Luo H. . Brewster differential microscopy. Appl. Phys. Lett., 2022, 121(23): 231103
https://doi.org/10.1063/5.0131424
|
78 |
Kwon H. , Arbabi E. , M. Kamali S. , S. Faraji-Dana M. , Faraon A. . Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces. Nat. Photonics, 2020, 14(2): 109
https://doi.org/10.1038/s41566-019-0536-x
|
79 |
Engay E. , Huo D. , Malureanu R. , I. Bunea A. , Lavrinenko A. . Polarization-dependent all-dielectric metasurface for single-shot quantitative phase imaging. Nano Lett., 2021, 21(9): 3820
https://doi.org/10.1021/acs.nanolett.1c00190
|
80 |
Guo Y. , Pu M. , Zhang F. , Xu M. , Li X. , Ma X. , Luo X. . Classical and generalized geometric phase in electromagnetic metasurfaces. Photon. Insights, 2022, 1(1): R03
https://doi.org/10.3788/PI.2022.R03
|
81 |
Arbabi A. , Arbabi E. , M. Kamali S. , Horie Y. , Han S. , Faraon A. . Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun., 2016, 7(1): 13682
https://doi.org/10.1038/ncomms13682
|
82 |
Arbabi E. , Li J. , J. Hutchins R. , M. Kamali S. , Arbabi A. , Horie Y. , Van Dorpe P. , Gradinaru V. , A. Wagenaar D. , Faraon A. . Two-photon microscopy with a double-wavelength metasurface objective lens. Nano Lett., 2018, 18(8): 4943
https://doi.org/10.1021/acs.nanolett.8b01737
|
83 |
Zhou J. , Wu Q. , Zhao J. , Posner C. , Lei M. , Chen G. , Zhang J. , Liu Z. . Fourier optical spin splitting microscopy. Phys. Rev. Lett., 2022, 129(2): 020801
https://doi.org/10.1103/PhysRevLett.129.020801
|
84 |
Zhao Q. , Tu S. , Lei Q. , Yue Q. , Guo C. , Cai Y. . Edge enhancement of phase objects through complex media by using transmission-matrix-based spiral phase contrast imaging. Front. Phys., 2022, 17(5): 52503
https://doi.org/10.1007/s11467-022-1169-y
|
85 |
Zhao M. , Liang X. , Li J. , Xie M. , Zheng H. , Zhong Y. , Yu J. , Zhang J. , Chen Z. , Zhu W. . Optical phase contrast microscopy with incoherent vortex phase. Laser Photonics Rev., 2022, 16(11): 2200230
https://doi.org/10.1002/lpor.202200230
|
86 |
Wolfgramm F. , Vitelli C. , A. Beduini F. , Godbout N. , W. Mitchell M. . Entanglement-enhanced probing of a delicate material system. Nat. Photonics, 2013, 7(1): 28
https://doi.org/10.1038/nphoton.2012.300
|
87 |
A. Taylor M. , Janousek J. , Daria V. , Knittel J. , Hage B. , A. Bachor H. , P. Bowen W. . Subdiffraction-limited quantum imaging within a living cell. Phys. Rev. X, 2014, 4(1): 011017
https://doi.org/10.1103/PhysRevX.4.011017
|
88 |
Lloyd S. . Enhanced sensitivity of photodetection via quantum illumination. Science, 2008, 321(5895): 1463
https://doi.org/10.1126/science.1160627
|
89 |
D. Lopaeva E. , Ruo Berchera I. , P. Degiovanni I. , Olivares S. , Brida G. , Genovese M. . Experimental realization of quantum illumination. Phys. Rev. Lett., 2013, 110(15): 153603
https://doi.org/10.1103/PhysRevLett.110.153603
|
90 |
Gregory T. , A. Moreau P. , Toninelli E. , J. Padgett M. . Imaging through noise with quantum illumination. Sci. Adv., 2020, 6(6): eaay2652
https://doi.org/10.1126/sciadv.aay2652
|
91 |
Ono T. , Okamoto R. , Takeuchi S. . An entanglement-enhanced microscope. Nat. Commun., 2013, 4(1): 2426
https://doi.org/10.1038/ncomms3426
|
92 |
N. Boto A. , Kok P. , S. Abrams D. , L. Braunstein S. , P. Williams C. , P. Dowling J. . Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett., 2000, 85(13): 2733
https://doi.org/10.1103/PhysRevLett.85.2733
|
93 |
Ornigotti M. , Aiello A. . The Hertz vector revisited: A simple physical picture. J. Opt., 2014, 16(10): 105705
https://doi.org/10.1088/2040-8978/16/10/105705
|
94 |
G. England D. , Balaji B. , J. Sussman B. . Quantum-enhanced standoff detection using correlated photon pairs. Phys. Rev. A, 2019, 99(2): 023828
https://doi.org/10.1103/PhysRevA.99.023828
|
95 |
A. Moreau P. , Toninelli E. , Gregory T. , S. Aspden R. , A. Morris P. , J. Padgett M. . Imaging Bell-type nonlocal behavior. Sci. Adv., 2019, 5(7): eaaw2563
https://doi.org/10.1126/sciadv.aaw2563
|
96 |
Liu S. , Yang C. , Liu S. , Zhou Z. , Li Y. , Li Y. , Xu Z. , Guo G. , Shi B. . Up-conversion imaging processing with field-of-view and edge enhancement. Phys. Rev. Appl., 2019, 11(4): 044013
https://doi.org/10.1103/PhysRevApplied.11.044013
|
97 |
Liu S. , Li Y. , Liu S. , Zhou Z. , Li Y. , Yang C. , Guo G. , Shi B. . Real-time quantum edge enhanced imaging. Opt. Express, 2020, 28(24): 35415
https://doi.org/10.1364/OE.395910
|
98 |
A. Taylor M. , P. Bowen W. . Quantum metrology and its application in biology. Phys. Rep., 2016, 615: 1
https://doi.org/10.1016/j.physrep.2015.12.002
|
99 |
Israel Y. , Rosen S. , Silberberg Y. . Supersensitive polarization microscopy using NOON states of light. Phys. Rev. Lett., 2014, 112(10): 103604
https://doi.org/10.1103/PhysRevLett.112.103604
|
100 |
A. Morris P. , S. Aspden R. , E. C. Bell J. , W. Boyd R. , J. Padgett M. . Imaging with a small number of photons. Nat. Commun., 2015, 6(1): 5913
https://doi.org/10.1038/ncomms6913
|
101 |
Samantaray N. , Ruo-Berchera I. , Meda A. , Genovese M. . Realization of the first sub-shot-noise wide field microscope. Light Sci. Appl., 2017, 6(7): e17005
https://doi.org/10.1038/lsa.2017.5
|
102 |
Kviatkovsky I. , M. Chrzanowski H. , G. Avery E. , Bartolomaeus H. , Ramelow S. . Microscopy with undetected photons in the mid-infrared. Sci. Adv., 2020, 6(42): eabd0264
https://doi.org/10.1126/sciadv.abd0264
|
103 |
A. Casacio C. , S. Madsen L. , Terrasson A. , Waleed M. , Barnscheidt K. , Hage B. , A. Taylor M. , P. Bowen W. . Quantum-enhanced nonlinear microscopy. Nature, 2021, 594(7862): 201
https://doi.org/10.1038/s41586-021-03528-w
|
104 |
J. Stephens D. , J. Allan V. . Light microscopy techniques for live cell imaging. Science, 2013, 300(5616): 82
https://doi.org/10.1126/science.1082160
|
105 |
Frischwasser K. , Cohen K. , Kher-Alden J. , Dolev S. , Tsesses S. , Bartal G. . Real-time sub-wavelength imaging of surface waves with nonlinear near-field optical microscopy. Nat. Photonics, 2021, 15(6): 442
https://doi.org/10.1038/s41566-021-00782-2
|
106 |
E. Villegas-Hernández L. , Dubey V. , Nystad M. , C. Tinguely J. , A. Coucheron D. , T. Dullo F. , Priyadarshi A. , Acuña S. , Ahmad A. , M. Mateos J. , Barmettler G. , Ziegler U. , B. Birgisdottir Å. , M. K. Hovd A. , A. Fenton K. , Acharya G. , Agarwal K. , S. Ahluwalia B. . Chip-based multimodal super-resolution microscopy for histological investigations of cryopreserved tissue sections. Light Sci. Appl., 2022, 11(1): 43
https://doi.org/10.1038/s41377-022-00731-w
|
107 |
Li J. , Zhou N. , Sun J. , Zhou S. , Bai Z. , Lu L. , Chen Q. , Zuo C. . Transport of intensity diffraction tomography with non-interferometric synthetic aperture for three-dimensional label-free microscopy. Light Sci. Appl., 2022, 11(1): 154
https://doi.org/10.1038/s41377-022-00815-7
|
108 |
A. Moreau P. , Toninelli E. , Gregory T. , J. Padgett M. . Imaging with quantum states of light. Nat. Rev. Phys., 2019, 1(6): 367
https://doi.org/10.1038/s42254-019-0056-0
|
109 |
G. Basset M. , Setzpfandt F. , Steinlechner F. , Beckert E. , Pertsch T. , Gräfe M. . Perspectives for applications of quantum imaging. Laser Photonics Rev., 2019, 13(10): 1900097
https://doi.org/10.1002/lpor.201900097
|
110 |
Varnavski O. , Gunthardt C. , Rehman A. , D. Luker G. , Goodson T. . Quantum light-enhanced two-photon imaging of breast cancer cells. J. Phys. Chem. Lett., 2022, 13(12): 2772
https://doi.org/10.1021/acs.jpclett.2c00695
|
111 |
V. Paterova A. , Yang H. , S. D. Toa Z. , A. Krivitsky L. . Quantum imaging for the semiconductor industry. Appl. Phys. Lett., 2020, 117(5): 054004
https://doi.org/10.1063/5.0015614
|
112 |
Goh H. , Alù A. . Nonlocal scatterer for compact wave-based analog computing. Phys. Rev. Lett., 2022, 128(7): 073201
https://doi.org/10.1103/PhysRevLett.128.073201
|
113 |
Wu J. , Lin X. , Guo Y. , Liu J. , Fang L. , Jiao S. , Dai Q. . Analog optical computing for artificial intelligence. Engineering, 2021, 10(1): 133
https://doi.org/10.1016/j.eng.2021.06.021
|
114 |
K. Chen M. , Yan Y. , Liu X. , Wu Y. , Zhang J. , Yuan J. , Zhang Z. , P. Tsai D. . Edge detection with meta-lens: From one dimension to three dimensions. Nanophotonics, 2021, 10(14): 3709
https://doi.org/10.1515/nanoph-2021-0239
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|