Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (5) : 52301    https://doi.org/10.1007/s11467-023-1279-1
RESEARCH ARTICLE
Perfect optomechanically induced transparency in two-cavity optomechanics
Lai-Bin Qian, Xiao-Bo Yan()
School of Physics and Electronic Engineering, Northeast Petroleum University, Daqing 163318, China
 Download: PDF(3981 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Here, we study the controllable optical responses in a two-cavity optomechanical system, especially on the perfect optomechanically induced transparency (OMIT) in the model which has never been studied before. The results show that the perfect OMIT can still occur even with a large mechanical damping rate, and at the perfect transparency window the long-lived slow light can be achieved. In addition, we find that the conversion between the perfect OMIT and optomechanically induced absorption can be easily achieved just by adjusting the driving field strength of the second cavity. We believe that the results can be used to control optical transmission in modern optical networks.

Keywords perfect optomechanically induced transparency      slow light      optomechanically induced absorption      cavity optomechanics     
Corresponding Author(s): Xiao-Bo Yan   
Issue Date: 07 April 2023
 Cite this article:   
Lai-Bin Qian,Xiao-Bo Yan. Perfect optomechanically induced transparency in two-cavity optomechanics[J]. Front. Phys. , 2023, 18(5): 52301.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1279-1
https://academic.hep.com.cn/fop/EN/Y2023/V18/I5/52301
Fig.1  Sketch of a two-cavity optomechanical system consists of a mechanical membrane with frequency ωm interacted with cavity a^1 and a^2 via radiation pressure. The cavity a^1 is driven by a coupling field εc with frequency ωc and a weak probe field εp with frequency ωp. The cavity a^2 is driven by a driving field εd with frequency ωd.
Fig.2  The real part Re[εT] (red-solid) vs. frequency detuning x with parameters ωm=κ 1=κ 2=10 4, γm=1, β1= 3×104 and β2= 1250 according to Eq. (9). The blue-dashed line indicates width ΓOMIT. The inset shows the OMIT profile in a large scale.
Fig.3  The real part Re[εT] vs. frequency detuning x for large mechanical damping rate γm= 10 (red-solid) with β1= 3×105 and β2= 1.25×104 according to Eq. (9), and for γm=100 (blue-dashed) with β1=3× 106 and β2=1.25× 105 according to Eq. (9). The other parameters are same as Fig.2.
Fig.4  The imaginary part Im[εT] vs. frequency detuning x with the same parameters as those in Fig.3.
Fig.5  The real part Re[εT] vs. frequency detuning x for κ2=10 with parameters ωm=104, κ1= 4×103, γm= 1, β1=105 and β2= 5.91. The inset shows a zoom-in of the transparency window at x5.55.
Fig.6  The time delay τ vs. frequency detuning x for γm= 1 (red-solid) with β1= 3×104 and β2= 1250 (same as Fig.2), and for γm= 10 (blue-dashed) with β1= 3×105 and β2= 1.25×104 (same as Fig.3). The other parameters are ωm=κ 1=κ 2=10 4.
Fig.7  The time delay τ vs. frequency detuning x for κ1= κ2=2× 104 (red-solid) with β1= 3×104 and β2= 104 according to Eq. (9), and for κ1= κ2=8× 103 (blue-dashed) with β1= 3×104 and β2= 160 according to Eq. (9). The other parameters are ωm=104 and γm= 1.
Fig.8  The real part Re[εT] vs. frequency detuning x for κ2=10 (blue-dashed) and κ2=1 (red-solid) with parameters κ1=4× 103, ωm=104, γm= 1, β1=105 and β2= 100.
Fig.9  The real part Re[εT] vs. frequency detuning x for β2=5.91 (blue-dashed) and β2=105 (red-solid) with parameters ωm=104, κ1= 4×103, γm= 1, β1=105 and κ2= 10. The inset shows a zoom-in of the transparency window at x5.55.
1 Aspelmeyer M., J. Kippenberg T., Marquardt F.. Cavity optomechanics. Rev. Mod. Phys., 2014, 86(4): 1391
https://doi.org/10.1103/RevModPhys.86.1391
2 Gigan S., Böhm H., Paternostro M., Blaser F., Langer G., Hertzberg J., Schwab K., Bäuerle D., Aspelmeyer M., Zeilinger A.. Self-cooling of a micromirror by radiation pressure. Nature, 2006, 444(7115): 67
https://doi.org/10.1038/nature05273
3 Arcizet O., F. Cohadon P., Briant T., Pinard M., Heidmann A.. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature, 2006, 444(7115): 71
https://doi.org/10.1038/nature05244
4 J. Kippenberg T., Rokhsari H., Carmon T., Scherer A., J. Vahala K.. Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity. Phys. Rev. Lett., 2005, 95(3): 033901
https://doi.org/10.1103/PhysRevLett.95.033901
5 Tomes M., Carmon T.. Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates. Phys. Rev. Lett., 2009, 102(11): 113601
https://doi.org/10.1103/PhysRevLett.102.113601
6 Jiang X., Lin Q., Rosenberg J., Vahala K., Painter O.. High-Q double-disk microcavities for cavity optomechanics. Opt. Express, 2009, 17(23): 20911
https://doi.org/10.1364/OE.17.020911
7 A. Regal C., D. Teufel J., W. Lehnert K.. Measuring nanomechanical motion with a microwave cavity interferometer. Nat. Phys., 2008, 4(7): 555
https://doi.org/10.1038/nphys974
8 D. Teufel J., Li D., S. Allman M., Cicak K., J. Sirois A., D. Whittaker J., W. Simmonds R.. Circuit cavity electromechanics in the strong-coupling regime. Nature, 2011, 471(7337): 204
https://doi.org/10.1038/nature09898
9 D. Thompson J., M. Zwickl B., M. Jayich A., Marquardt F., M. Girvin S., G. E. Harris J.. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature, 2008, 452(7183): 72
https://doi.org/10.1038/nature06715
10 M. Jayich A., C. Sankey J., M. Zwickl B., Yang C., D. Thompson J., M. Girvin S., A. Clerk A., Marquardt F., G. E. Harris J.. Dispersive optomechanics: A membrane inside a cavity. New J. Phys., 2008, 10(9): 095008
https://doi.org/10.1088/1367-2630/10/9/095008
11 C. Sankey J., Yang C., M. Zwickl B., M. Jayich A., G. E. Harris J.. Strong and tunable nonlinear optomechanical coupling in a low-loss system. Nat. Phys., 2010, 6(9): 707
https://doi.org/10.1038/nphys1707
12 Karuza M., Biancofiore C., Bawaj M., Molinelli C., Galassi M., Natali R., Tombesi P., Di Giuseppe G., Vitali D.. Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature. Phys. Rev. A, 2013, 88(1): 013804
https://doi.org/10.1103/PhysRevA.88.013804
13 Marquardt F., P. Chen J., A. Clerk A., M. Girvin S.. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett., 2007, 99(9): 093902
https://doi.org/10.1103/PhysRevLett.99.093902
14 Wilson-Rae I., Nooshi N., Zwerger W., J. Kippenberg T.. Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett., 2007, 99(9): 093901
https://doi.org/10.1103/PhysRevLett.99.093901
15 He B., Yang L., Lin Q., Xiao M.. Radiation pressure cooling as a quantum dynamical process. Phys. Rev. Lett., 2017, 118(23): 233604
https://doi.org/10.1103/PhysRevLett.118.233604
16 Y. Wang D., H. Bai C., Liu S., Zhang S., F. Wang H.. Optomechanical cooling beyond the quantum backaction limit with frequency modulation. Phys. Rev. A, 2018, 98(2): 023816
https://doi.org/10.1103/PhysRevA.98.023816
17 Y. Yang J., Y. Wang D., H. Bai C., Y. Guan S., Y. Gao X., D. Zhu A., F. Wang H.. Ground-state cooling of mechanical oscillator via quadratic optomechanical coupling with two coupled optical cavities. Opt. Express, 2019, 27(16): 22855
https://doi.org/10.1364/OE.27.022855
18 Wang J.. Ground-state cooling based on a three-cavity optomechanical system in the unresolved-sideband regime. Chin. Phys. B, 2021, 30(2): 024204
https://doi.org/10.1088/1674-1056/abc159
19 He Q., Badshah F., Song Y., Wang L., Liang E., L. Su S.. Force sensing and cooling for the mechanical membrane in a hybrid optomechanical system. Phys. Rev. A, 2022, 105(1): 013503
https://doi.org/10.1103/PhysRevA.105.013503
20 Yang J., Zhao C., Yang Z., Peng R., Chao S., Zhou L.. Nonreciprocal ground-state cooling of mechanical resonator in a spinning optomechanical system. Front. Phys., 2022, 17(5): 52507
https://doi.org/10.1007/s11467-022-1202-1
21 Li J., Li G., Zippilli S., Vitali D., Zhang T.. Enhanced entanglement of two different mechanical resonators via coherent feedback. Phys. Rev. A, 2017, 95(4): 043819
https://doi.org/10.1103/PhysRevA.95.043819
22 H. Bai C., Y. Wang D., F. Wang H., D. Zhu A., Zhang S.. Robust entanglement between a movable mirror and atomic ensemble and entanglement transfer in coupled optomechanical system. Sci. Rep., 2016, 6(1): 33404
https://doi.org/10.1038/srep33404
23 B. Yan X.. Enhanced output entanglement with reservoir engineering. Phys. Rev. A, 2017, 96(5): 053831
https://doi.org/10.1103/PhysRevA.96.053831
24 J. Deng Z., B. Yan X., D. Wang Y., W. Wu C.. Optimizing the output-photon entanglement in multimode optomechanical systems. Phys. Rev. A, 2016, 93(3): 033842
https://doi.org/10.1103/PhysRevA.93.033842
25 B. Yan X., J. Deng Z., D. Tian X., H. Wu J.. Entanglement optimization of filtered output fields in cavity optomechanics. Opt. Express, 2019, 27(17): 24393
https://doi.org/10.1364/OE.27.024393
26 T. Chen Y., Du L., Zhang Y., H. Wu J.. Perfect transfer of enhanced entanglement and asymmetric steering in a cavity-magnomechanical system. Phys. Rev. A, 2021, 103(5): 053712
https://doi.org/10.1103/PhysRevA.103.053712
27 Y. Guan S., F. Wang H., X. Yi X.. Cooperative-effect-induced one-way steering in open cavity magnonics. npj Quantum Inf., 2022, 8: 102
https://doi.org/10.1038/s41534-022-00619-y
28 Zeng Y., Xiong B., Li C.. Suppressing laser phase noise in an optomechanical system. Front. Phys., 2022, 17(1): 12503
https://doi.org/10.1007/s11467-021-1097-2
29 H. Bai C., Y. Wang D., Zhang S., Liu S., F. Wang H.. Engineering of strong mechanical squeezing via the joint effect between Duffing nonlinearity and parametric pump driving. Photon. Res., 2019, 7(11): 1229
https://doi.org/10.1364/PRJ.7.001229
30 J. Feng L., Yan L., Q. Gong S.. Unconventional photon blockade induced by the self-Kerr and cross-Kerr nonlinearities. Front. Phys., 2023, 18(1): 12304
https://doi.org/10.1007/s11467-022-1213-y
31 Qu K. and Agarwal G. S. , Phonon-mediated electromagnetically induced absorption in hybrid opto-electromechanical systems, Phys. Rev. A 87, 031802(R) (2013)
32 S. Agarwal G., Huang S.. Nanomechanical inverse electromagnetically induced transparency and confinement of light in normal modes. New J. Phys., 2014, 16(3): 033023
https://doi.org/10.1088/1367-2630/16/3/033023
33 Wang J.. Optomechanically induced tunable ideal nonreciprocity in optomechanical system with Coulomb interaction. Quantum Inform. Process., 2022, 21(7): 238
https://doi.org/10.1007/s11128-022-03587-6
34 He B. , Yang L. , and Xiao M. , Dynamical phonon laser in coupled active-passive microresonators, Phys. Rev. A 94, 031802(R) (2016)
35 Du L., M. Liu Y., Jiang B., Zhang Y.. All-optical photon switching, router and amplifier using a passive-active optomechanical system. EPL, 2018, 122(2): 24001
https://doi.org/10.1209/0295-5075/122/24001
36 C. Xia C., B. Yan X., D. Tian X., Gao F.. Ideal optical isolator with a two-cavity optomechanical system. Opt. Commun., 2019, 451: 197
https://doi.org/10.1016/j.optcom.2019.06.059
37 B. Yan X., L. Cui C., H. Gu K., D. Tian X., B. Fu C., H. Wu J.. Coherent perfect absorption, transmission, and synthesis in a double-cavity optomechanical system. Opt. Express, 2014, 22(5): 4886
https://doi.org/10.1364/OE.22.004886
38 B. Yan X., L. Lu H., Gao F., Yang L.. Perfect optical nonreciprocity in a double-cavity optomechanical system. Front. Phys., 2019, 14(5): 52601
https://doi.org/10.1007/s11467-019-0922-3
39 T. Chen Y., Du L., M. Liu Y., Zhang Y.. Dual-gate transistor amplifier in a multimode optomechanical system. Opt. Express, 2020, 28(5): 7095
https://doi.org/10.1364/OE.385049
40 Wang T., H. Bai C., Y. Wang D., Liu S., Zhang S., F. Wang H.. Optomechanically induced Faraday and splitting effects in a double-cavity optomechanical system. Phys. Rev. A, 2021, 104(1): 013721
https://doi.org/10.1103/PhysRevA.104.013721
41 Qi L., L. Wang G., Liu S., Zhang S., F. Wang H.. Dissipation-induced topological phase transition and periodic-driving-induced photonic topological state transfer in a small optomechanical lattice. Front. Phys., 2021, 16(1): 12503
https://doi.org/10.1007/s11467-020-0983-3
42 R. Zhong Z., Chen L., Q. Sheng J., T. Shen L., B. Zheng S.. Multiphonon-resonance quantum Rabi model and adiabatic passage in a cavity-optomechanical system. Front. Phys., 2022, 17(1): 12501
https://doi.org/10.1007/s11467-021-1092-7
43 Shahidani S., H. Naderi M., Soltanolkotabi M.. Control and manipulation of electromagnetically induced transparency in a nonlinear optomechanical system with two movable mirrors. Phys. Rev. A, 2013, 88(5): 053813
https://doi.org/10.1103/PhysRevA.88.053813
44 X. Liu Y., Davanco M., Aksyuk V., Srinivasan K.. Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators. Phys. Rev. Lett., 2013, 110(22): 223603
https://doi.org/10.1103/PhysRevLett.110.223603
45 Pan G., Xiao R., Chen H., Gao J.. Multicolor optomechanically induced transparency in a distant nano-electro-optomechanical system assisted by two-level atomic ensemble. Laser Phys., 2021, 31(6): 065202
https://doi.org/10.1088/1555-6611/abfe57
46 Xiong H., G. Si L., S. Zheng A., Yang X., Wu Y.. Higher-order sidebands in optomechanically induced transparency. Phys. Rev. A, 2012, 86(1): 013815
https://doi.org/10.1103/PhysRevA.86.013815
47 B. Yan X.. Optomechanically induced transparency and gain. Phys. Rev. A, 2020, 101(4): 043820
https://doi.org/10.1103/PhysRevA.101.043820
48 Agarwal G. S. and Huang S. , Electromagnetically induced transparency in mechanical effects of light, Phys. Rev. A 81, 041803(R) (2010)
49 Bodiya T., Sudhir V., Wipf C., Smith N., Buikema A., Kontos A., Yu H., Mavalvala N.. Sub-Hertz optomechanically induced transparency with a kilogram-scale mechanical oscillator. Phys. Rev. A, 2019, 100(1): 013853
https://doi.org/10.1103/PhysRevA.100.013853
50 Kronwald A., Marquardt F.. Optomechanically induced transparency in the nonlinear quantum regime. Phys. Rev. Lett., 2013, 111: 133601
https://doi.org/10.1103/PhysRevLett.111.133601
51 Jing H., K. Özdemir S., Geng Z., Zhang J., Y. Lü X., Peng B., Yang L., Nori F.. Optomechanically-induced transparency in parity−time-symmetric microresonators. Sci. Rep., 2015, 5(1): 9663
https://doi.org/10.1038/srep09663
52 Li W., Jiang Y., Li C., Song H.. Parity−time-symmetry enhanced optomechanically-induced-transparency. Sci. Rep., 2016, 6(1): 31095
https://doi.org/10.1038/srep31095
53 C. Liu Y., B. Li B., F. Xiao Y.. Electromagnetically induced transparency in optical microcavities. Nanophotonics, 2017, 6(5): 789
https://doi.org/10.1515/nanoph-2016-0168
54 Weis S., Rivie’re R., Deléglise S., Gavartin E., Arcizet O., Schliesser A., J. Kippenberg T.. Optomechanically induced transparency. Science, 2010, 330(6010): 1520
https://doi.org/10.1126/science.1195596
55 B. Yan X., H. Gu K., B. Fu C., L. Cui C., Wang R., H. Wu J.. Optical switching of optomechanically induced transparency and normal mode splitting in a double-cavity system. Eur. Phys. J. D, 2014, 68(5): 126
https://doi.org/10.1140/epjd/e2014-40760-0
56 H. Safavi-Naeini A., P. M. Alegre T., Chan J., Eichenfield M., Winger M., Lin Q., T. Hill J., E. Chang D., Painter O.. Electromagnetically induced transparency and slow light with optomechanics. Nature, 2011, 472(7341): 69
https://doi.org/10.1038/nature09933
57 B. Yan X.. Optomechanically induced optical responses with non-rotating wave approximation. J. Phys. At. Mol. Opt. Phys., 2021, 54(3): 035401
https://doi.org/10.1088/1361-6455/abd645
58 Chen B., Jiang C., D. Zhu K.. Slow light in a cavity optomechanical system with a Bose−Einstein condensate. Phys. Rev. A, 2011, 83(5): 055803
https://doi.org/10.1103/PhysRevA.83.055803
59 Tarhan D., Huang S., E. Müstecaplioğlu Ö.. Superluminal and ultraslow light propagation in optomechanical systems. Phys. Rev. A, 2013, 87(1): 013824
https://doi.org/10.1103/PhysRevA.87.013824
60 H. Gu K., B. Yan X., Zhang Y., B. Fu C., M. Liu Y., Wang X., H. Wu J.. Tunable slow and fast light in an atom-assisted optomechanical system. Opt. Commun., 2015, 338: 569
https://doi.org/10.1016/j.optcom.2014.11.036
61 E. Chang D., H. Safavi-Naeini A., Hafezi M., Painter O.. Slowing and stopping light using an optomechanical crystal array. New J. Phys., 2011, 13(2): 023003
https://doi.org/10.1088/1367-2630/13/2/023003
62 J. Akram M., M. Khan M., Saif F.. Tunable fast and slow light in a hybrid optomechanical system. Phys. Rev. A, 2015, 92(2): 023846
https://doi.org/10.1103/PhysRevA.92.023846
63 B. Yan X.. Optomechanically induced ultraslow and ultrafast light. Physica E, 2021, 131: 114759
https://doi.org/10.1016/j.physe.2021.114759
64 Wang L., T. Chen Y., Yin K., Zhang Y.. Nonreciprocal transmission and asymmetric fast–slow light effect in an optomechanical system with two PT-symmetric mechanical resonators. Laser Phys., 2020, 30(10): 105205
https://doi.org/10.1088/1555-6611/abb1be
65 N. Zhao Y., Wang T., Y. Wang D., Han X., Zhang S., F. Wang H.. Optical amplification and fast-slow light in a three-mode cavity optomechanical system without rotating wave approximation. Photonics, 2021, 8(9): 384
https://doi.org/10.3390/photonics8090384
66 W. Xu X., Li Y.. Optical nonreciprocity and optomechanical circulator in three-mode optomechanical systems. Phys. Rev. A, 2015, 91(5): 053854
https://doi.org/10.1103/PhysRevA.91.053854
67 R. Bernier N., D. Tóth L., Koottandavida A., A. Ioannou M., Malz D., Nunnenkamp A., K. Feofanov A., J. Kippenberg T.. Nonreciprocal reconfigurable microwave optomechanical circuit. Nat. Commun., 2017, 8(1): 604
https://doi.org/10.1038/s41467-017-00447-1
68 Ludwig M., H. Safavi-Naeini A., Painter O., Marquardt F.. Enhanced quantum nonlinearities in a two-mode optomechanical system. Phys. Rev. Lett., 2012, 109(6): 063601
https://doi.org/10.1103/PhysRevLett.109.063601
69 Y. Lü X., M. Zhang W., Ashhab S., Wu Y., Nori F.. Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems. Sci. Rep., 2013, 3(1): 2943
https://doi.org/10.1038/srep02943
70 Tian L.. Robust photon entanglement via quantum interference in optomechanical interfaces. Phys. Rev. Lett., 2013, 110(23): 233602
https://doi.org/10.1103/PhysRevLett.110.233602
71 Nunnenkamp A., Børkje K., M. Girvin S.. Single-photon optomechanics. Phys. Rev. Lett., 2011, 107(6): 063602
https://doi.org/10.1103/PhysRevLett.107.063602
72 Nunnenkamp A., Sudhir V., K. Feofanov A., Roulet A., J. Kippenberg T.. Quantum-limited amplification and parametric instability in the reversed dissipation regime of cavity optomechanics. Phys. Rev. Lett., 2014, 113(2): 023604
https://doi.org/10.1103/PhysRevLett.113.023604
73 Barzanjeh Sh., Abdi M., J. Milburn G., Tombesi P., Vitali D.. Reversible optical-to-microwave quantum interface. Phys. Rev. Lett., 2012, 109(13): 130503
https://doi.org/10.1103/PhysRevLett.109.130503
74 S. Bigelow M., N. Lepeshkin N., W. Boyd R.. Superluminal and slow light propagation in a room-temperature solid. Science, 2003, 301(5630): 200
https://doi.org/10.1126/science.1084429
[1] Haonan Chang, Jun Zhang. Detecting nanoparticles by “listening”[J]. Front. Phys. , 2023, 18(5): 53602-.
[2] Yong Wan, Li-Jun Jiang, Sheng Xu, Meng-Xue Li, Meng-Nan Liu, Cheng-Yi Jiang, Feng Yuan. Slow light effect with high group index and wideband by saddle-like mode in PC-CROW[J]. Front. Phys. , 2018, 13(2): 134202-.
[3] Yong Wan,Xiao-Hui Ge,Sheng Xu,Yue Guo,Feng Yuan. Ultraslow-light effects in symmetric and asymmetric waveguide structures with moon-like scatterers[J]. Front. Phys. , 2017, 12(1): 124204-.
[4] Yi-Wen Hu, Yun-Feng Xiao, Yong-Chun Liu, Qihuang Gong. Optomechanical sensing with on-chip microcavities[J]. Front. Phys. , 2013, 8(5): 475-490.
[5] Ke-ye ZHANG (张可烨), Lu ZHOU (周鲁), Guang-jiong DONG (董光烔), Wei-ping ZHANG (张卫平). Cavity optomechanics with cold atomic gas[J]. Front. Phys. , 2011, 6(3): 237-250.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed