Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (5) : 53602    https://doi.org/10.1007/s11467-023-1287-1
TOPICAL REVIEW
Detecting nanoparticles by “listening”
Haonan Chang1,2, Jun Zhang1,2()
1. State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(8289 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In the macroscopic world, we can obtain some important information through the vibration of objects, that is, listening to the sound. Likewise, we can also get some information of the nanoparticles that we want to know by the means of “listening” in the microscopic world. In this review, we will introduce two sensing methods (cavity optomechanical sensing and surface-enhanced Raman scattering sensing) which can be used to detect the nanoparticles. The cavity optomechanical systems are mainly used to detect sub-gigahertz nano particle or cavity vibrations, while surface-enhanced Raman scattering is a well-known technique to detect molecular vibrations whose frequency generally exceeds terahertz. Therefore, the vibrational information of nanoparticles from low-frequency to high-frequency could be obtained by these two methods. The size of the viruses is at the nanoscale and we can regard it as a kind of nanoparticles. Rapid and ultrasensitive detection of the viruses is the key strategies to break the spread of the viruses in the community. Cavity optomechanical sensing enables rapid, ultrasensitive detection of nanoparticles through the interaction of light and mechanical oscillators and surface-enhanced Raman scattering is an attractive qualitatively analytical technique for chemical sensing and biomedical applications, which has been used to detect the SARS-CoV-2 infected. Hence, investigation in these two fields is of vital importance in preventing the spread of the virus from affecting human’s life and health.

Keywords ultrasensitive sensing      cavity optomechanics      surface-enhanced Raman scattering     
Corresponding Author(s): Jun Zhang   
About author:

*These authors equally shared correspondence to this manuscript.

Issue Date: 28 April 2023
 Cite this article:   
Haonan Chang,Jun Zhang. Detecting nanoparticles by “listening”[J]. Front. Phys. , 2023, 18(5): 53602.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1287-1
https://academic.hep.com.cn/fop/EN/Y2023/V18/I5/53602
Fig.1  (a) Schematic diagram of the cavity optomechanical coupling mechanism based on radiation pressure. (b) Whispering-gallery-mode microcavity-based optomechanics.
Fig.2  Various cavity optomechanical coupling platforms. (a) The principle of the passive optomechanical coupling platforms. The passive optomechanical coupling elements consisting of micro-cantilevers (b) (Reproduced with permission from Ref. [29], Copyright ? 2020 Nature) and microcavities (c) (Reproduced with permission from Ref. [41], Copyright ? 2009 IEEE). (d) The principle of the electrical modulated optomechanical coupling platforms. (e, f) The electrical modulated optomechanical coupling platforms. (e) Reproduced with permission from Ref. [37], Copyright ? 2017 The Optical Society of America. (f) Reproduced with permission from Ref. [36], Copyright ? 2020 Nature.
Fig.3  Weigh a single nanoparticle by multimode optomechanical system. (a) Multimode optomechanical system. (b) SEM image of the 157 nm diameter nanoparticle. (c) Demodulated output signal phase at the resonance frequencies of the RBM1 (red) and RBM2 (green) during the landing of a cluster of three latex nanoparticles. Reproduced with permission from Ref. [8], Copyright ? 2022 American Chemical Society.
Fig.4  Nonlinear cavity optomechanical systems for optomechanical mass sensing. (a) Schematic diagram of a quadratically coupled optomechanical system. A degenerate parametric amplifier (DPA) is embedded into a membrane-in-the-middle cavity driven by a strong control field ωd and a weak probe pulse ωp. Reproduced with permission from Ref. [24], Copyright ? 2019 American Physical Society. (b) A quadratically coupled optomechanical platform in an experiment. Reproduced with permission from Ref. [55], Copyright ? 2010 Nature. (c) The steady-state solution of GX0 versus the added mass δm for different control field intensities Pd = 50 μW, 80 μW, and 150 μW. Reproduced with permission from Ref. [24], Copyright ? 2019 American Physical Society. (d) The eigenenergy of a membrane versus the added mass δm for different control field intensities Pd = 50 μW, 80 μW, and 150 μW. Reproduced with permission from Ref. [24], Copyright ? 2019 American Physical Society.
Fig.5  Experimentally detect the vibration modes of a single bacterium via an optomechanical microcavity. (a) Experimental setup. (b) Frequency of the radial breathing mode of an optomechanical disk (blue region) and of the fundamental mode of quasi-spherical biological particles adsorbed on a rigid support (red region) as a function of the disk and bioparticle radii, respectively. (c) The left panel: Color-intensity map of the amplitude of the fluctuations of the sensor as a function of the dimensionless frequency and the ratio of the radial breathing mode eigenfrequency to the fundamental eigenfrequency of the particle (Λ). The right panel: Cross-sections of the regions in the left panel for Λ = 0, 0.5, 0.9, 1, 1.1, 1.5 and 20. The gray and purple vertical dashed lines represent the corresponding the values of Λ at the boundaries of the inertial region. Reproduced with permission from Ref. [70] and Ref. [10], Copyright ? 2020 Nature.
Fig.6  Schematic diagram of the principle of detecting nanoparticles based on the whispering-gallery cavity optomechanical devices. Reproduced with permission from Ref. [5], Copyright ? 2016 Nature.
Fig.7  Schematic diagram of Raman scattering process. The left panel is Stokes scattering process and the right panel is anti-Stokes scattering process. Reproduced with permission from Ref. [80], Copyright ? 2008 Royal Society of Chemistry.
Fig.8  Schematic diagram of Raman and SERS processes. The intensity of SES is enhanced by the existence of the plasmon polariton. Reproduced with permission from Ref. [84], Copyright ? 2014 Elsevier.
Fig.9  Feedback diagram of dynamical backaction in the SERS process in the theoretical framework of cavity optomechanics. Reproduced with permission from Ref. [89], Copyright ? 2015 Nature.
Fig.10  Schematic diagrams of SERS-active nanomaterials in various dimensions: (a) 0 dimension, (b) 1 dimension, (c) 2 dimensions, (d) 3 dimensions. Reproduced with permission from Ref. [110], Copyright ? 2020 American Chemical Society.
Fig.11  SERS-based strategy to identify COVID-positive individuals using their breath volatile organic compounds. (a) Custom SERS Breathalyzer. (b) (i) Ion?dipole interactions between MBA-aldehydes and H-bonding with hydroxyl-containing compounds. (ii) 521 cm?1 SERS peak of MBA for blanks, COVID positive and negative breath samples. (c) (i) Deprotonated and protonated MPY forming hydrogen bonds with aldehydes and hydroxyl-containing compounds. (ii) MPY I1617/I1586 SERS peak intensity ratio for blanks, COVID positive and negative breath samples. (d) (i) Increased laser-induced ATP dimerization to DMAB in the presence of breath metabolites that serve as hot electron acceptors. (ii) ATP SERS spectral region at 1030?1600 cm?1 for blanks, COVID positive and negative breath samples. Reproduced with permission from Ref. [9], Copyright ? 2022 American Chemical Society.
Fig.12  The detection scheme. SERS signals collected from samples consist of different types of respiratory and nonrespiratory viruses placed on a nano manufactured 2D array of field-enhancing metal?insulator antenna (FEMIA) on a flexible elastomer substrate. Principal component analysis (PCA) and random forest classification were applied on the SERS spectra, which allow us to distinguish and identify different viral samples. Reproduced with permission from Ref. [119], Copyright ? 2022 American Chemical Society.
Fig.13  Potential platforms combining cavity optomechanical sensing with SERS. (a) Photonic crystal nanobeam cavity with a plasmonic bowtie antenna. Reproduced with permission from Ref. [130], Copyright ? American Institute of Physics 2017. (b) ZnO/graphene/Ag-NP hybrid whispering-gallery microcavity. Reproduced with permission from Ref. [129], Copyright ? Royal Society of Chemistry 2019. (c) Solid Au core/SiO2 shell nanostructure inside a single hollow nanocavity. Reproduced with permission from Ref. [135], Copyright ? Elsevier 2022.
1 He L. , K. Özdemir Ş. , Zhu J. , Kim W. , Yang L. . Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat. Nanotechnol., 2011, 6(7): 428
https://doi.org/10.1038/nnano.2011.99
2 Shao L. , F. Jiang X. , C. Yu X. , B. Li B. , R. Clements W. , Vollmer F. , Wang W. , F. Xiao Y. , Gong Q. . Detection of single nanoparticles and lentiviruses using microcavity resonance broadening. Adv. Mater., 2013, 25(39): 5616
https://doi.org/10.1002/adma201302572
3 Chen W. , Kaya Özdemir Ş. , Zhao G. , Wiersig J. , Yang L. . Exceptional points enhance sensing in an optical microcavity. Nature, 2017, 548(7666): 192
https://doi.org/10.1038/nature23281
4 D. Baaske M. , S. Neu P. , Orrit M. . Label-free plasmonic detection of untethered nanometer-sized Brownian particles. ACS Nano, 2020, 14(10): 14212
https://doi.org/10.1021/acsnano.0c07335
5 Yu W. , C. Jiang W. , Lin Q. , Lu T. . Cavity optomechanical spring sensing of single molecules. Nat. Commun., 2016, 7(1): 12311
https://doi.org/10.1038/ncomms12311
6 Cao C. , Zhang J. , Li S. , Xiong Q. . Intelligent and ultrasensitive analysis of mercury trace contaminants via plasmonic metamaterial‐based surface‐enhanced Raman spectroscopy. Small, 2014, 10(16): 3252
https://doi.org/10.1002/smll.201400165
7 Cao C. , Zhang J. , Wen X. , L. Dodson S. , T. Dao N. , M. Wong L. , Wang S. , Li S. , T. Phan A. , Xiong Q. . Metamaterials-based label-free nanosensor for conformation and affinity biosensing. ACS Nano, 2013, 7(9): 7583
https://doi.org/10.1021/nn401645t
8 Sbarra S. , Waquier L. , Suffit S. , Lemaître A. , Favero I. . Multimode optomechanical weighting of a single nanoparticle. Nano Lett., 2022, 22(2): 710
https://doi.org/10.1021/acs.nanolett.1c03890
9 X. Leong S. , X. Leong Y. , X. Tan E. , Y. F. Sim H. , S. L. Koh C. , H. Lee Y. , Chong C. , S. Ng L. , R. T. Chen J. , W. C. Pang D. , B. T. Nguyen L. , K. Boong S. , Han X. , C. Kao Y. , H. Chua Y. , C. Phan-Quang G. , Y. Phang I. , K. Lee H. , Y. Abdad M. , S. Tan N. , Y. Ling X. . Noninvasive and point-of-care surface-enhanced raman scattering (SERS)-based breathalyzer for mass screening of coronavirus disease 2019 (COVID-19) under 5 min. ACS Nano, 2022, 16(2): 2629
https://doi.org/10.1021/acsnano.1c09371
10 Gil-Santos E. , J. Ruz J. , Malvar O. , Favero I. , Lemaître A. , M. Kosaka P. , García-López S. , Calleja M. , Tamayo J. . Optomechanical detection of vibration modes of a single bacterium. Nat. Nanotechnol., 2020, 15(6): 469
https://doi.org/10.1038/s41565-020-0672-y
11 Wang L. , Wang X. , Wu Y. , Guo M. , Gu C. , Dai C. , Kong D. , Wang Y. , Zhang C. , Qu D. , Fan C. , Xie Y. , Zhu Z. , Liu Y. , Wei D. . Rapid and ultrasensitive electromechanical detection of ions, biomolecules and SARS-CoV-2 RNA in unamplified samples. Nat. Biomed. Eng., 2022, 6(3): 276
https://doi.org/10.1038/s41551-021-00833-7
12 Zhang J. , Cao C. , Xu X. , Liow C. , Li S. , Tan P. , Xiong Q. . Tailoring alphabetical metamaterials in optical frequency: Plasmonic coupling, dispersion, and sensing. ACS Nano, 2014, 8(4): 3796
https://doi.org/10.1021/nn500527f
13 Wang P. , Chen S. , Guo M. , Peng S. , Wang M. , Chen M. , Ma W. , Zhang R. , Su J. , Rong X. , Shi F. , Xu T. , Du J. . Nanoscale magnetic imaging of ferritins in a single cell. Sci. Adv., 2019, 5(4): eaau8038
https://doi.org/10.1126/sciadv.aau8038
14 Le Sage D. , Arai K. , R. Glenn D. , J. DeVience S. , M. Pham L. , Rahn-Lee L. , D. Lukin M. , Yacoby A. , Komeili A. , L. Walsworth R. . Optical magnetic imaging of living cells. Nature, 2013, 496: 486
https://doi.org/10.1038/nature12072
15 Jiang X. , J. Qavi A. , H. Huang S. , Yang L. . Whispering-gallery sensors. Matter, 2020, 3(2): 371
https://doi.org/10.1016/j.matt.2020.07.008
16 Ekinci K. . Electromechanical transducers at the nanoscale: Actuation and sensing of motion in nanoelectromechanical systems (NEMS). Small, 2005, 1(8-9): 786
https://doi.org/10.1002/smll.200500077
17 P. Blencowe M. . Nanoelectromechanical systems. Contemp. Phys., 2005, 46(4): 249
https://doi.org/10.1080/00107510500146865
18 Anichini C. , Czepa W. , Pakulski D. , Aliprandi A. , Ciesielski A. , Samorì P. . Chemical sensing with 2D materials. Chem. Soc. Rev., 2018, 47(13): 4860
https://doi.org/10.1039/C8CS00417J
19 Ohno Y. , Maehashi K. , Matsumoto K. . Label-free biosensors based on aptamer-modified graphene field-effect transistors. J. Am. Chem. Soc., 2010, 132(51): 18012
https://doi.org/10.1021/ja108127r
20 M. Lai J. , J. Sun Y. , H. Tan Q. , H. Tan P. , Zhang J. . Laser cooling of a lattice vibration in van der Waals semiconductor. Nano Lett., 2022, 22(17): 7129
https://doi.org/10.1021/acs.nanolett.2c02240
21 M. Lai J. , U. Farooq M. , J. Sun Y. , H. Tan P. , Zhang J. . Multiphonon process in Mn-doped ZnO nanowires. Nano Lett., 2022, 22(13): 5385
https://doi.org/10.1021/acs.nanolett.2c01428
22 Zhang J. , Zhang Q. , Wang X. , C. Kwek L. , Xiong Q. . Resolved-sideband Raman cooling of an optical phonon in semiconductor materials. Nat. Photonics, 2016, 10(9): 600
https://doi.org/10.1038/nphoton.2016.122
23 J. Li J. , D. Zhu K. . Nonlinear optical mass sensor with an optomechanical microresonator. Appl. Phys. Lett., 2012, 101(14): 141905
https://doi.org/10.1063/1.4757004
24 Liu S. , Liu B. , Wang J. , Sun T. , X. Yang W. . Realization of a highly sensitive mass sensor in a quadratically coupled optomechanical system. Phys. Rev. A, 2019, 99(3): 033822
https://doi.org/10.1103/PhysRevA.99.033822
25 B. Li B. , Ou L. , Lei Y. , C. Liu Y. . Cavity optomechanical sensing. Nanophotonics, 2021, 10(11): 2799
https://doi.org/10.1515/nanoph-2021-0256
26 W. Hu Y. , F. Xiao Y. , C. Liu Y. , Gong Q. . Optomechanical sensing with on-chip microcavities. Front. Phys., 2013, 8(5): 475
https://doi.org/10.1007/s11467-013-0384-y
27 Liu F. , Alaie S. , C. Leseman Z. , Hossein-Zadeh M. . Sub-pg mass sensing and measurement with an optomechanical oscillator. Opt. Express, 2013, 21(17): 19555
https://doi.org/10.1364/OE.21.019555
28 Djorwe P. , Pennec Y. , Djafari-Rouhani B. . Exceptional point enhances sensitivity of optomechanical mass sensors. Phys. Rev. Appl., 2019, 12(2): 024002
https://doi.org/10.1103/PhysRevApplied.12.024002
29 Sansa M. , Defoort M. , Brenac A. , Hermouet M. , Banniard L. , Fafin A. , Gely M. , Masselon C. , Favero I. , Jourdan G. , Hentz S. . Optomechanical mass spectrometry. Nat. Commun., 2020, 11(1): 3781
https://doi.org/10.1038/s41467-020-17592-9
30 Liu F. , Hossein-Zadeh M. . Mass sensing with optomechanical oscillation. IEEE Sens. J., 2013, 13(1): 146
https://doi.org/10.1109/JSEN.2012.2217956
31 Lan L.Gao Y.Fan X.Li M.Hao Q.Qiu T., The origin of ultrasensitive SERS sensing beyond plasmonics, Front. Phys. 16(4), 43300 (2021)
32 Aspelmeyer M. , J. Kippenberg T. , Marquardt F. . Cavity optomechanics. Rev. Mod. Phys., 2014, 86(4): 1391
https://doi.org/10.1103/RevModPhys.86.1391
33 Chang H. , Zhang J. . From cavity optomechanics to cavity-less exciton optomechanics: A review. Nanoscale, 2022, 14(45): 16710
https://doi.org/10.1039/D2NR03784J
34 F. Gao Y. , M. Lai J. , Zhang J. . Optical control of bulk phonon modes in crystalline solids. Adv. Quantum Technol., 2022, 5(2): 2100103
https://doi.org/10.1002/qute.202100103
35 Yu D. , Humar M. , Meserve K. , C. Bailey R. , N. Chormaic S. , Vollmer F. . Whispering-gallery-mode sensors for biological and physical sensing. Nat. Rev. Methods Primers, 2021, 1(1): 83
https://doi.org/10.1038/s43586-021-00079-2
36 Miao H.Srinivasan K.Aksyuk V., A microelectromechanically controlled cavity optomechanical sensing system, New J. Phys. 14(7), 075015 (2012)
37 Han X. , Fu W. , Zhong C. , L. Zou C. , Xu Y. , A. Sayem A. , Xu M. , Wang S. , Cheng R. , Jiang L. , X. Tang H. . Cavity piezo-mechanics for superconducting-nanophotonic quantum interface. Nat. Commun., 2020, 11(1): 3237
https://doi.org/10.1038/s41467-020-17053-3
38 Bekker C. , Kalra R. , Baker C. , P. Bowen W. . Injection locking of an electro-optomechanical device. Optica, 2017, 4(10): 1196
https://doi.org/10.1364/OPTICA.4.001196
39 Chae J. , An S. , Ramer G. , Stavila V. , Holland G. , Yoon Y. , A. Talin A. , Allendorf M. , A. Aksyuk V. , Centrone A. . Nanophotonic atomic force microscope transducers enable chemical composition and thermal conductivity measurements at the nanoscale. Nano Lett., 2017, 17(9): 5587
https://doi.org/10.1021/acs.nanolett.7b02404
40 G. Krause A.Winger M.D. Blasius T.Lin Q.Painter O., A high-resolution microchip optomechanical accelerometer, Nat. Photonics 6(11), 768 (2012)
41 Liu X. , Liu W. , Ren Z. , Ma Y. , Dong B. , Zhou G. , Lee C. . Progress of optomechanical micro/nano sensors: A review. Int. J. Optomechatronics, 2021, 15(1): 120
https://doi.org/10.1080/15599612.2021.1986612
42 Xiang W. , Lee C. . Nanophotonics sensor based on microcantilever for chemical analysis. IEEE J. Sel. Top. Quantum Electron., 2009, 15(5): 1323
https://doi.org/10.1109/JSTQE.2009.2016578
43 T. Mai T. , L. Hsiao F. , Lee C. , Xiang W. , C. Chen C. , Choi W. . Optimization and comparison of photonic crystal resonators for silicon microcantilever sensors. Sens. Actuators A Phys., 2011, 165(1): 16
https://doi.org/10.1016/j.sna.2010.01.006
44 Yang D. , Liu X. , Li X. , Duan B. , Wang A. , Xiao Y. . Photoic crystal nanobeam cavity devices for on-chip integrated silicon photonics. J. Semicond., 2021, 42(2): 023103
https://doi.org/10.1088/1674-4926/42/2/023103
45 J. Giessibl F. . Advances in atomic force microscopy. Rev. Mod. Phys., 2003, 75(3): 949
https://doi.org/10.1103/RevModPhys.75.949
46 Zhao Z. , Chang H. , Wang R. , Du P. , He X. , Yang J. , Zhang X. , Huang K. , Fan D. , Wang Y. , Pan X. , Lei M. . Activity origin and catalyst design principles for electrocatalytic oxygen evolution on layered transition metal oxide with halogen doping. Small Struct., 2021, 2(9): 2100069
https://doi.org/10.1002/sstr.202100069
47 Chen Y. , Shen Z. , Xiong X. , H. Dong C. , L. Zou C. , C. Guo G. . Mechanical bound state in the continuum for optomechanical microresonators. New J. Phys., 2016, 18(6): 063031
https://doi.org/10.1088/1367-2630/18/6/063031
48 Zhao M. , Fang K. . Mechanical bound states in the continuum for macroscopic optomechanics. Opt. Express, 2019, 27(7): 10138
https://doi.org/10.1364/OE.27.010138
49 Yu Y. , Xi X. , Sun X. . Observation of mechanical bound states in the continuum in an optomechanical microresonator. Light Sci. Appl., 2022, 11(1): 328
https://doi.org/10.1038/s41377-022-00971-w
50 Liu S. , Tong H. , Fang K. . Optomechanical crystal with bound states in the continuum. Nat. Commun., 2022, 13(1): 3187
https://doi.org/10.1038/s41467-022-30965-6
51 Zanotto S. , Conte G. , Bellieres L. , Griol A. , Navarro-Urrios D. , Tredicucci A. , Martínez A. , Pitanti A. . Optomechanical modulation spectroscopy of bound states in the continuum in a dielectric metasurface. Phys. Rev. Appl., 2022, 17(4): 044033
https://doi.org/10.1103/PhysRevApplied.17.044033
52 Chang H. , Li Z. , Lou W. , Yao Q. , M. Lai J. , Liu B. , Ni H. , Niu Z. , Chang K. , Zhang J. . Terahertz cavity optomechanics using a topological nanophononic superlattice. Nanoscale, 2022, 14(36): 13046
https://doi.org/10.1039/D2NR03376C
53 Esmann M. , Lamberti F. , Harouri A. , Lanco L. , Sagnes I. , Favero I. , Aubin G. , Gomez-Carbonell C. , Lemaitre A. , Krebs O. , Senellart P. , D. Lanzillotti-Kimura N. . Brillouin scattering in hybrid optophononic Bragg micropillar resonators at 300 GHz. Optica, 2019, 6(7): 854
https://doi.org/10.1364/OPTICA.6.000854
54 Rodriguez A. , Priya P. , Ortiz O. , Senellart P. , Gomez-Carbonell C. , Lemaitre A. , Esmann M. , Lanzillotti-Kimura N. . Fiber-based angular filtering for high-resolution Brillouin spectroscopy in the 20−300 GHz frequency range. Opt. Express, 2021, 29(2): 2637
https://doi.org/10.1364/OE.415228
55 M. Bar-On Y., A. Flamholz, R. Phillips, and R. Milo, SARS-CoV-2 (COVID-19) by the numbers, elife 9, e57309 (2020)
56 C. Sankey J. , Yang C. , M. Zwickl B. , M. Jayich A. , G. Harris J. . Strong and tunable nonlinear optomechanical coupling in a low-loss system. Nat. Phys., 2010, 6(9): 707
https://doi.org/10.1038/nphys1707
57 Brawley G. , Vanner M. , E. Larsen P. , Schmid S. , Boisen A. , Bowen W. . Nonlinear optomechanical measurement of mechanical motion. Nat. Commun., 2016, 7(1): 10988
https://doi.org/10.1038/ncomms10988
58 Burgwal R. , del Pino J. , Verhagen E. . Comparing nonlinear optomechanical coupling in membrane-in-the-middle and single-cavity systems. New J. Phys., 2020, 22(11): 113006
https://doi.org/10.1088/1367-2630/abc1c8
59 Børkje K. , Nunnenkamp A. , Teufel J. , Girvin S. . Signatures of nonlinear cavity optomechanics in the weak coupling regime. Phys. Rev. Lett., 2013, 111(5): 053603
https://doi.org/10.1103/PhysRevLett.111.053603
60 Doolin C. , Hauer B. , Kim P. , MacDonald A. , Ramp H. , Davis J. . Nonlinear optomechanics in the stationary regime. Phys. Rev. A, 2014, 89(5): 053838
https://doi.org/10.1103/PhysRevA.89.053838
61 Shahidani S. , Naderi M. , Soltanolkotabi M. . Control and manipulation of electromagnetically induced transparency in a nonlinear optomechanical system with two movable mirrors. Phys. Rev. A, 2013, 88(5): 053813
https://doi.org/10.1103/PhysRevA.88.053813
62 Shahidani S. , Naderi M. , Soltanolkotabi M. , Barzanjeh S. . Steady-state entanglement, cooling, and tristability in a nonlinear optomechanical cavity. J. Opt. Soc. Am. B, 2014, 31(5): 1087
https://doi.org/10.1364/JOSAB.31.001087
63 R. Vanner M. . Selective linear or quadratic optomechanical coupling via measurement. Phys. Rev. X, 2011, 1(2): 021011
https://doi.org/10.1103/PhysRevX.1.021011
64 Tan M. , Xu X. , Wu J. , G. Nguyen T. , T. Chu S. , E. Little B. , Morandotti R. , Mitchell A. , J. Moss D. . Photonic radio frequency channelizers based on Kerr optical micro-combs. J. Semicond., 2021, 42(4): 041302
https://doi.org/10.1088/1674-4926/42/4/041302
65 F. Rhoads J. , W. Shaw S. . The impact of nonlinearity on degenerate parametric amplifiers. Appl. Phys. Lett., 2010, 96(23): 234101
https://doi.org/10.1063/1.3446851
66 Wódkiewicz K. , S. Zubairy M. . Effect of laser fluctuations on squeezed states in a degenerate parametric amplifier. Phys. Rev. A, 1983, 27(4): 2003
https://doi.org/10.1103/PhysRevA.27.2003
67 Bhattacharya M. , Uys H. , Meystre P. . Optomechanical trapping and cooling of partially reflective mirrors. Phys. Rev. A, 2008, 77(3): 033819
https://doi.org/10.1103/PhysRevA.77.033819
68 Huang S. , Agarwal G. . Electromagnetically induced transparency from two-phonon processes in quadratically coupled membranes. Phys. Rev. A, 2011, 83(2): 023823
https://doi.org/10.1103/PhysRevA.83.023823
69 Thompson J. , Zwickl B. , Jayich A. , Marquardt F. , Girvin S. , Harris J. . Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature, 2008, 452(7183): 72
https://doi.org/10.1038/nature06715
70 Xu D. , F. Xiao Y. . Listening to the sound of a bacterium. Nat. Nanotechnol., 2020, 15(6): 420
https://doi.org/10.1038/s41565-020-0681-x
71 Li Y. , Zhao L. , Yao Y. , Guo X. . Single-molecule nanotechnologies: An evolution in biological dynamics detection. ACS Appl. Bio Mater., 2020, 3(1): 68
https://doi.org/10.1021/acsabm.9b00840
72 A. Lyon L. , D. Keating C. , P. Fox A. , E. Baker B. , He L. , R. Nicewarner S. , P. Mulvaney S. , J. Natan M. . Raman spectroscopy. Anal. Chem., 1998, 70(12): 341
https://doi.org/10.1021/a1980021p
73 Zhang X. , F. Qiao X. , Shi W. , B. Wu J. , S. Jiang D. , H. Tan P. . Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev., 2015, 44(9): 2757
https://doi.org/10.1039/C4CS00282B
74 S. Das R. , Agrawal Y. . Raman spectroscopy: Recent advancements, techniques and applications. Vib. Spectrosc., 2011, 57(2): 163
https://doi.org/10.1016/j.vibspec.2011.08.003
75 Movasaghi Z. , Rehman S. , U. Rehman I. . Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev., 2007, 42(5): 493
https://doi.org/10.1080/05704920701551530
76 M. Malard L. , A. Pimenta M. , Dresselhaus G. , S. Dresselhaus M. . Raman spectroscopy in graphene. Phys. Rep., 2009, 473(5-6): 51
https://doi.org/10.1016/j.physrep.2009.02.003
77 X. Han X. , S. Rodriguez R. , L. Haynes C. , Ozaki Y. , Zhao B. . Surface-enhanced Raman spectroscopy. Nat. Rev. Methods Primers, 2022, 1(1): 87
https://doi.org/10.1038/s43586-021-00083-6
78 S. Allakhverdiev E. , V. Khabatova V. , D. Kossalbayev B. , V. Zadneprovskaya E. , V. Rodnenkov O. , V. Martynyuk T. , V. Maksimov G. , Alwasel S. , Tomo T. , I. Allakhverdiev S. . Raman spectroscopy and its modifications applied to biological and medical research. Cells, 2022, 11(3): 386
https://doi.org/10.3390/cells11030386
79 Plou J. , S. Valera P. , García I. , D. de Albuquerque C. , Carracedo A. , M. Liz-Marzán L. . Prospects of surface-enhanced Raman spectroscopy for biomarker monitoring toward precision medicine. ACS Photonics, 2022, 9(2): 333
https://doi.org/10.1021/acsphotonics.1c01934
80 Maher R. , Galloway C. , Le Ru E. , Cohen L. , Etchegoin P. . Vibrational pumping in surface enhanced Raman scattering (SERS). Chem. Soc. Rev., 2008, 37(5): 965
https://doi.org/10.1039/b707870f
81 F. Aroca R. . Plasmon enhanced spectroscopy. Phys. Chem. Chem. Phys., 2013, 15(15): 5355
https://doi.org/10.1039/c3cp44103b
82 Li M. , K. Cushing S. , Wu N. . Plasmon-enhanced optical sensors: a review. Analyst (Lond.), 2015, 140(2): 386
https://doi.org/10.1039/C4AN01079E
83 Benz F. , K. Schmidt M. , Dreismann A. , Chikkaraddy R. , Zhang Y. , Demetriadou A. , Carnegie C. , Ohadi H. , De Nijs B. , Esteban R. , Aizpurua J. , J. Baumberg J. . Single-molecule optomechanics in “picocavities”. Science, 2016, 354(6313): 726
https://doi.org/10.1126/science.aah5243
84 S. Yamamoto Y. , Ozaki Y. , Itoh T. . Recent progress and frontiers in the electromagnetic mechanism of surface-enhanced Raman scattering. J. Photochem. Photobiol. Photochem. Rev., 2014, 21: 81
https://doi.org/10.1016/j.jphotochemrev.2014.10.001
85 Sharma B.R. Frontiera R.I. Henry A.Ringe E.P. Van Duyne R., SERS: Materials, applications, and the future, Mater. Today 15(1–2), 16 (2012)
86 Yu X. , Cai H. , Zhang W. , Li X. , Pan N. , Luo Y. , Wang X. , Hou J. . Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets. ACS Nano, 2011, 5(2): 952
https://doi.org/10.1021/nn102291j
87 Xia L. , Chen M. , Zhao X. , Zhang Z. , Xia J. , Xu H. , Sun M. . Visualized method of chemical enhancement mechanism on SERS and TERS. J. Spectrosc., 2014, 45: 533
88 Dong B. , Liu L. , Xu H. , Sun M. . Experimental and theoretical evidence for the chemical mechanism in SERRS of rhodamine 6G adsorbed on colloidal silver excited at 1064 nm. J. Spectrosc., 2010, 41: 719
https://doi.org/10.1002/jrs.2605
89 Roelli P. , Galland C. , Piro N. , J. Kippenberg T. . Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering. Nat. Nanotechnol., 2016, 11(2): 164
https://doi.org/10.1038/nnano.2015.264
90 Esteban R. , J. Baumberg J. , Aizpurua J. . Molecular optomechanics approach to surface-enhanced Raman scattering. Acc. Chem. Res., 2022, 55(14): 1889
https://doi.org/10.1021/acs.accounts.1c00759
91 Huang Z. , Zhang A. , Zhang Q. , Cui D. . Nanomaterial-based SERS sensing technology for biomedical application. J. Mater. Chem. B, 2019, 7(24): 3755
https://doi.org/10.1039/C9TB00666D
92 W. Joo S. , J. Kim W. , S. Yoon W. , S. Choi I. . Adsorption of 4, 4′‐biphenyl diisocyanide on gold nanoparticle surfaces investigated by surface‐enhanced Raman scattering. J. Raman Spectrosc., 2003, 34(4): 271
https://doi.org/10.1002/jrs.994
93 K. Venkata S. , A. Gaddam S. , S. Kotakadi V. , Gopal D. . Multifunctional silver nanoparticles by fruit extract of terminalia belarica and their therapeutic applications: A 3-in-1 system. Nano Biomed. Eng., 2018, 10(3): 279
https://doi.org/10.5101/nbe.v10i3.p279-294
94 Nie S. , R. Emory S. . Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 1997, 275(5303): 1102
https://doi.org/10.1126/science.275.5303.1102
95 Song C. , Zhou N. , Yang B. , Yang Y. , Wang L. . Facile synthesis of hydrangea flower-like hierarchical gold nanostructures with tunable surface topographies for single-particle surface-enhanced Raman scattering. Nanoscale, 2015, 7(40): 17004
https://doi.org/10.1039/C5NR04827C
96 Liang H. , Li Z. , Wang W. , Wu Y. , Xu H. . Highly surface‐roughened “flower‐like” silver nanoparticles for extremely sensitive substrates of surface‐enhanced Raman scattering. Adv. Mater., 2009, 21(45): 4614
https://doi.org/10.1002/adma.200901139
97 Hu C. , Shen J. , Yan J. , Zhong J. , Qin W. , Liu R. , Aldalbahi A. , Zuo X. , Song S. , Fan C. , He D. . Highly narrow nanogap-containing Au@ Au core–shell SERS nanoparticles: Size-dependent Raman enhancement and applications in cancer cell imaging. Nanoscale, 2016, 8(4): 2090
https://doi.org/10.1039/C5NR06919J
98 Chang J. , Zhang A. , Huang Z. , Chen Y. , Zhang Q. , Cui D. . Monodisperse Au@Ag core-shell nanoprobes with ultrasensitive SERS-activity for rapid identification and Raman imaging of living cancer cells. Talanta, 2019, 198: 45
https://doi.org/10.1016/j.talanta.2019.01.085
99 Chen B. , Meng G. , Huang Q. , Huang Z. , Xu Q. , Zhu C. , Qian Y. , Ding Y. . Green synthesis of large-scale highly ordered core@shell nanoporous Au@Ag nanorod arrays as sensitive and reproducible 3D SERS substrates. ACS Appl. Mater. Interfaces, 2014, 6(18): 15667
https://doi.org/10.1021/am505474n
100 Yang Y. , Zhang Q. , W. Fu Z. , Qin D. . Transformation of Ag nanocubes into Ag–Au hollow nanostructures with enriched Ag contents to improve SERS activity and chemical stability. ACS Appl. Mater. Interfaces, 2014, 6(5): 3750
https://doi.org/10.1021/am500506j
101 M. Li J. , Yang Y. , Qin D. . Hollow nanocubes made of Ag–Au alloys for SERS detection with sensitivity of 10− 8 M for melamine. J. Mater. Chem. C, 2014, 2(46): 9934
https://doi.org/10.1039/C4TC02004A
102 X. Han X. , Ji W. , Zhao B. , Ozaki Y. . Semiconductor-enhanced Raman scattering: Active nanomaterials and applications. Nanoscale, 2017, 9(15): 4847
https://doi.org/10.1039/C6NR08693D
103 Kang T. , M. Yoo S. , Yoon I. , Y. Lee S. , Kim B. . Patterned multiplex pathogen DNA detection by Au particle-on-wire SERS sensor. Nano Lett., 2010, 10(4): 1189
https://doi.org/10.1021/nl1000086
104 Jiang Z. , Zhang Q. , Zong C. , J. Liu B. , Ren B. , Xie Z. , Zheng L. . Cu–Au alloy nanotubes with five-fold twinned structure and their application in surface-enhanced Raman scattering. J. Mater. Chem., 2012, 22(35): 18192
https://doi.org/10.1039/c2jm33863g
105 K. Kannan P. , Shankar P. , Blackman C. , H. Chung C. . Recent advances in 2D inorganic nanomaterials for SERS sensing. Adv. Mater., 2019, 31(34): 1803432
https://doi.org/10.1002/adma.201803432
106 Cai X. , Han X. , Zhao C. , Niu C. , Jia Y. . Tellurene: An elemental 2D monolayer material beyond its bulk phases without van der Waals layered structures. J. Semicond., 2020, 41(8): 081002
https://doi.org/10.1088/1674-4926/41/8/081002
107 Li Z. , M. Lai J. , Zhang J. . Review of phonons in moiré superlattices. J. Semicond., 2023, 44(1): 011902
https://doi.org/10.1088/1674-4926/44/1/011902
108 Li Z.Jiang S.Huo Y.Ning T.Liu A.Zhang C.He Y.Wang M.Li C.Man B., 3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis, Nanoscale 10(13), 5897 (2018)
109 Liang X. , S. Wang Y. , T. You T. , J. Zhang X. , Yang N. , S. Wang G. , G. Yin P. . Interfacial synthesis of a three-dimensional hierarchical MoS2-NS@Ag-NP nanocomposite as a SERS nanosensor for ultrasensitive thiram detection. Nanoscale, 2017, 9(25): 8879
https://doi.org/10.1039/C7NR01891F
110 J. Park H. , Cho S. , Kim M. , S. Jung Y. . Carboxylic acid-functionalized, graphitic layer-coated three-dimensional SERS substrate for label-free analysis of Alzheimer’s disease biomarkers. Nano Lett., 2020, 20(4): 2576
https://doi.org/10.1021/acs.nanolett.0c00048
111 Zhang E. , Xing Z. , Wan D. , Gao H. , Han Y. , Gao Y. , Hu H. , Cheng Z. , Liu T. . Surface-enhanced Raman spectroscopy chips based on two-dimensional materials beyond graphene. J. Semicond., 2021, 42(5): 051001
https://doi.org/10.1088/1674-4926/42/5/051001
112 Idili A. , Parolo C. , Alvarez-Diduk R. , Merkoçi A. . Rapid and efficient detection of the SARS-CoV-2 spike protein using an electrochemical aptamer-based sensor. ACS Sens., 2021, 6(8): 3093
https://doi.org/10.1021/acssensors.1c01222
113 T. Tsai T. , H. Huang T. , A. Chen C. , Y. J. Ho N. , J. Chou Y. , F. Chen C. . Development a stacking pad design for enhancing the sensitivity of lateral flow immunoassay. Sci. Rep., 2018, 8(1): 17319
https://doi.org/10.1038/s41598-018-35694-9
114 Montesinos I. , Gruson D. , Kabamba B. , Dahma H. , Van den Wijngaert S. , Reza S. , Carbone V. , Vandenberg O. , Gulbis B. , Wolff F. , Rodriguez-Villalobos H. . Evaluation of two automated and three rapid lateral flow immunoassays for the detection of anti-SARS-CoV-2 antibodies. J. Clin. Virol., 2020, 128: 104413
https://doi.org/10.1016/j.jcv.2020.104413
115 Anfossi L. , Baggiani C. , Giovannoli C. , D’Arco G. , Giraudi G. . Lateral-flow immunoassays for mycotoxins and phycotoxins: A review. Anal. Bioanal. Chem., 2013, 405(2-3): 467
https://doi.org/10.1007/s00216-012-6033-4
116 Wang D. , He S. , Wang X. , Yan Y. , Liu J. , Wu S. , Liu S. , Lei Y. , Chen M. , Li L. , Zhang J. , Zhang L. , Hu X. , Zheng X. , Bai J. , Zhang Y. , Zhang Y. , Song M. , Tang Y. . Rapid lateral flow immunoassay for the fluorescence detection of SARS-CoV-2 RNA. Nat. Biomed. Eng., 2020, 4(12): 1150
https://doi.org/10.1038/s41551-020-00655-z
117 Banerjee R. , Jaiswal A. . Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases. Analyst (Lond. ), 2018, 143(9): 1970
https://doi.org/10.1039/C8AN00307F
118 Di Nardo F. , Chiarello M. , Cavalera S. , Baggiani C. , Anfossi L. . Ten years of lateral flow immunoassay technique applications: Trends, challenges and future perspectives. Sensors (Basel), 2021, 21(15): 5185
https://doi.org/10.3390/s21155185
119 Paria D. , S. Kwok K. , Raj P. , Zheng P. , H. Gracias D. , Barman I. . Label-free spectroscopic SARS-CoV-2 detection on versatile nanoimprinted substrates. Nano Lett., 2022, 22(9): 3620
https://doi.org/10.1021/acs.nanolett.1c04722
120 Walther M. , M. Fischer B. , Ortner A. , Bitzer A. , Thoman A. , Helm H. . Chemical sensing and imaging with pulsed terahertz radiation. Anal. Bioanal. Chem., 2010, 397(3): 1009
https://doi.org/10.1007/s00216-010-3672-1
121 J. Tyree D. , Huntington P. , Holt J. , L. Ross A. , Schueler R. , T. Petkie D. , S. Kim S. , C. Grigsby C. , Neese C. , R. Medvedev I. . Terahertz spectroscopic molecular sensor for rapid and highly specific quantitative analytical gas sensing. ACS Sens., 2022, 7(12): 3730
https://doi.org/10.1021/acssensors.2c01537
122 Beruete M. , Jáuregui‐López I. . Terahertz sensing based on metasurfaces. Adv. Opt. Mater., 2020, 8(3): 1900721
https://doi.org/10.1002/adom.201900721
123 B. Liu H. , Zhong H. , Karpowicz N. , Chen Y. , C. Zhang X. . Terahertz spectroscopy and imaging for defense and security applications. Proc. IEEE, 2007, 95(8): 1514
https://doi.org/10.1109/JPROC.2007.898903
124 Vaks V. , Anfertev V. , Chernyaeva M. , Domracheva E. , Yablokov A. , Maslennikova A. , Zhelesnyak A. , Baranov A. , Schevchenko Y. , F. Pereira M. . Sensing nitriles with THz spectroscopy of urine vapours from cancers patients subject to chemotherapy. Sci. Rep., 2022, 12(1): 18117
https://doi.org/10.1038/s41598-022-22783-z
125 Toma A. , Tuccio S. , Prato M. , De Donato F. , Perucchi A. , Di Pietro P. , Marras S. , Liberale C. , Proietti Zaccaria R. , De Angelis F. , Manna L. , Lupi S. , Di Fabrizio E. , Razzari L. . Squeezing terahertz light into nanovolumes: Nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots. Nano Lett., 2015, 15(1): 386
https://doi.org/10.1021/nl503705w
126 Liu J. , Dai J. , L. Chin S. , C. Zhang X. . Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases. Nat. Photonics, 2010, 4(9): 627
https://doi.org/10.1038/nphoton.2010.165
127 Chen H. , G. Park S. , Choi N. , J. Kwon H. , Kang T. , K. Lee M. , Choo J. . Sensitive detection of SARS-CoV-2 using a SERS-based aptasensor. ACS Sens., 2021, 6(6): 2378
https://doi.org/10.1021/acssensors.1c00596
128 Y. Chou S. , R. Krauss P. , J. Renstrom P. . Nanoimprint lithography. J. Vac. Sci. Technol. B, 1996, 14(6): 4129
https://doi.org/10.1116/1.588605
129 Zhu Q. , Xu C. , Wang D. , Liu B. , Qin F. , Zhu Z. , Liu Y. , Zhao X. , Shi Z. . Femtomolar response of a plasmon-coupled ZnO/graphene/silver hybrid whispering-gallery mode microcavity for SERS sensing. J. Mater. Chem. C, 2019, 7(9): 2710
https://doi.org/10.1039/C8TC06305B
130 Conteduca D. , Reardon C. , G. Scullion M. , Dell’Olio F. , N. Armenise M. , F. Krauss T. , Ciminelli C. . Ultra-high Q/V hybrid cavity for strong light-matter interaction. APL Photonics, 2017, 2(8): 086101
https://doi.org/10.1063/1.4994056
131 Xiong X. , F. Xiao Y. . Hybrid plasmonic-photonic microcavity for enhanced light-matter interaction. Sci. Bull. (Beijing), 2022, 67(12): 1205
https://doi.org/10.1016/j.scib.2022.04.021
132 Zhang H. , Zhao W. , Liu Y. , Chen J. , Wang X. , Lu C. . Photonic-plasmonic hybrid microcavities: Physics and applications. Chin. Phys. B, 2021, 30(11): 117801
https://doi.org/10.1088/1674-1056/ac0db3
133 Li Z.Chang H.M. Lai J.Song F.Yao Q.Liu H.Ni H.Niu Z.Zhang J., Terahertz phononic crystal in plasmonic nanocavity, J. Semicond. (2023) (in press)
134 Cheng Q. , Wang S. , Lv J. , Wang J. , Liu N. . Highly sensitive nanoparticle sensing based on a hybrid cavity in a freely suspended microfiber. Nanotechnology, 2021, 32(20): 205203
https://doi.org/10.1088/1361-6528/abe48e
135 Gökbulut B. , Inanç A. , Topcu G. , Ozcelik S. , M. Demir M. , N. Inci M. . Hybrid photonic-plasmonic mode-coupling induced enhancement of the spontaneous emission rate of CdS/CdSe quantum emitters. Physica E, 2022, 136: 115017
https://doi.org/10.1016/j.physe.2021.115017
[1] Lai-Bin Qian, Xiao-Bo Yan. Perfect optomechanically induced transparency in two-cavity optomechanics[J]. Front. Phys. , 2023, 18(5): 52301-.
[2] Leilei Lan, Yimeng Gao, Xingce Fan, Mingze Li, Qi Hao, Teng Qiu. The origin of ultrasensitive SERS sensing beyond plasmonics[J]. Front. Phys. , 2021, 16(4): 43300-.
[3] Li-Hua Qian,Li-Zhi Yi,Gui-Sheng Wang,Chao Zhang,Song-Liu Yuan. Survey of plasmonic gaps tuned at sub-nanometer scale in self-assembled arrays[J]. Front. Phys. , 2016, 11(2): 115204-.
[4] Mai Takase,Satoshi Yasuda,Kei Murakoshi. Single-site surface-enhanced Raman scattering beyond spectroscopy[J]. Front. Phys. , 2016, 11(2): 117803-.
[5] Katherine A. Willets. Plasmon point spread functions: How do we model plasmon-mediated emission processes?[J]. Front. Phys. , 2014, 9(1): 3-16.
[6] Yuko S. Yamamoto, Mitsuru Ishikawa, Yukihiro Ozaki, Tamitake Itoh. Fundamental studies on enhancement and blinking mechanism of surface-enhanced Raman scattering (SERS) and basic applications of SERS biological sensing[J]. Front. Phys. , 2014, 9(1): 31-46.
[7] Yi-Wen Hu, Yun-Feng Xiao, Yong-Chun Liu, Qihuang Gong. Optomechanical sensing with on-chip microcavities[J]. Front. Phys. , 2013, 8(5): 475-490.
[8] Feng-Zi Cong, Hong Wei, Xiao-Rui Tian, Hong-Xing Xu. A facile synthesis of branched silver nanowire structures and its applications in surface-enhanced Raman scattering[J]. Front. Phys. , 2012, 7(5): 521-526.
[9] Ke-ye ZHANG (张可烨), Lu ZHOU (周鲁), Guang-jiong DONG (董光烔), Wei-ping ZHANG (张卫平). Cavity optomechanics with cold atomic gas[J]. Front. Phys. , 2011, 6(3): 237-250.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed