Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (5) : 53303    https://doi.org/10.1007/s11467-023-1295-1
RESEARCH ARTICLE
Electronic properties of 2H-stacking bilayer MoS2 measured by terahertz time-domain spectroscopy
Xingjia Cheng1,2, Wen Xu3,1,4(), Hua Wen1,2, Jing Zhang1,2, Heng Zhang1,2, Haowen Li3, Francois M. Peeters3,5, Qingqing Chen1,2
1. Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
2. University of Science and Technology of China, Hefei 230026, China
3. Micro Optical Instruments Inc., Shenzhen 518118, China
4. School of Physics and Astronomy and Yunnan Key Laboratory of Quantum Information of Yunnan Province, Yunnan University, Kunming 650091, China
5. Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
 Download: PDF(5767 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Bilayer (BL) molybdenum disulfide (MoS2) is one of the most important electronic structures not only in valleytronics but also in realizing twistronic systems on the basis of the topological mosaics in moiré superlattices. In this work, BL MoS2 on sapphire substrate with 2H-stacking structure is fabricated. We apply the terahertz (THz) time-domain spectroscopy (TDS) for examining the basic optoelectronic properties of this kind of BL MoS2. The optical conductivity of BL MoS2 is obtained in temperature regime from 80 K to 280 K. Through fitting the experimental data with the theoretical formula, the key sample parameters of BL MoS2 can be determined, such as the electron density, the electronic relaxation time and the electronic localization factor. The temperature dependence of these parameters is examined and analyzed. We find that, similar to monolayer (ML) MoS2, BL MoS2 with 2H-stacking can respond strongly to THz radiation field and show semiconductor-like optoelectronic features. The theoretical calculations using density functional theory (DFT) can help us to further understand why the THz optoelectronic properties of BL MoS2 differ from those observed for ML MoS2. The results obtained from this study indicate that the THz TDS can be applied suitably to study the optoelectronic properties of BL MoS2 based twistronic systems for novel applications as optical and optoelectronic materials and devices.

Keywords terahertz time-domain spectroscopy      bilayer MoS2      optoelectronics     
Corresponding Author(s): Wen Xu   
Issue Date: 22 May 2023
 Cite this article:   
Xingjia Cheng,Wen Xu,Hua Wen, et al. Electronic properties of 2H-stacking bilayer MoS2 measured by terahertz time-domain spectroscopy[J]. Front. Phys. , 2023, 18(5): 53303.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1295-1
https://academic.hep.com.cn/fop/EN/Y2023/V18/I5/53303
Fig.1  Schematic diagram of the sample preparation. i) The ML MoS2 was grown on sapphire wafer by using the CVD; ii) The as-grown ML-MoS2/sapphire wafer was cut into small pieces; iii) The ML MoS2 film on a small piece was peeled off from sapphire substrate; and iv) the ML MoS2 film was transferred onto the small ML-MoS2/sapphire piece, where the twisting angle between two ML MoS2 films was set to be at θ=60 to obtain the 2H-stacking BL MoS2. The bottom figures show lattice structure of 2H-stacking BL MoS2.
Fig.2  (a) AFM image of BL MoS2 on sapphire substrate. The inset shows the hight of the step-change between MoS2 layer and the substrate along the line marked as white straight line, which corresponds to the thickness of the BL MoS2. (b) Raman spectra of BL MoS2 on sapphire substrate (black curve), measured at room-temperature by a 532 nm laser excitation. Two characteristic peaks for BL MoS2, A1g and E2g1 with a spacing about 22.1 cm?1, can be clearly identified. By spectral decomposition (red and blue curves), the Raman peaks A1g and E2g1 along with “a” peak induced characteristically by the 2H-stacking type and the characteristic peak for sapphire can be found. (c) Photoluminescence (PL) spectra of ML (black curve) and BL (red curve) MoS2, measured at room-temperature using a 532 nm laser excitation, where the results are shown after deducting the signals from sapphire substrate. The inset shows the electronic band structure of ML MoS2 obtained from DFT calculation. (d) Electronic band structure of 2H-stacking BL MoS2, obtained from the DFT calculation. Here the Σmin-point in the conduction band is lower than that in the K-point, with a difference about 197 meV.
Fig.3  Schematic diagram of the THz TDS system for optical transmission measurement. Here PCA is the photoconductance antenna.
Fig.4  (a) Amplitude and phase angle of the THz electric field Ems(ω) transmitted through a BL MoS2-sapphire sample as a function of radiation frequency f=ω/(2π) at different temperatures. The inset shows the electric field strength Ems(t) of the THz beam transmitted through a BL MoS2/sapphire sample as a function of delay time at different temperatures. (b) Real σ1(ω) (upper panel) and imaginary σ2(ω) (lower panel) parts of the optical conductivity for BL MoS2 as a function of radiation frequency f = ω/(2π) at different temperatures. The dots are experimental results and the curves are obtained from Drude?Smith formula given by Eq. (3). Here Σ0=e2/(4?)=6.07×10?5 S.
Fig.5  Electron density ne (blue), electronic relaxation time τ (red), and electronic localization factor c (inset) in 2H-stacking BL MoS2 as a function of temperature. For ne and c, the curves are drawn to guide the eye, and for τ the curve is obtained by using Eq. (4).
1 S. Novoselov K. , K. Geim A. , V. Morozov S. , Jiang D. , Zhang Y. , V. Dubonos S. , V. Grigorieva I. , A. Firsov A. . Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666
https://doi.org/10.1126/science.1102896
2 Castellani C. , DiCastro C. , A. Lee P. . Metallic phase and metal-insulator transition in two-dimensional electronic systems. Phys. Rev. B, 1998, 57(16): R9381
https://doi.org/10.1103/PhysRevB.57.R9381
3 F. Mak K. , Xiao D. , Shan J. . Light-valley interactions in 2D semiconductors. Nat. Photonics, 2018, 12(8): 451
https://doi.org/10.1038/s41566-018-0204-6
4 W. Jiang J. . Graphene versus MoS2: A short review. Front. Phys., 2015, 10(3): 287
https://doi.org/10.1007/s11467-015-0459-z
5 M. Hill H. , F. Rigosi A. , Roquelet C. , Chernikov A. , C. Berkelbach T. , R. Reichman D. , S. Hybertsen M. , E. Brus L. , F. Heinz T. . Observation of excitonic Rydberg states in mono-layer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett., 2015, 15(5): 2992
https://doi.org/10.1021/nl504868p
6 Xiao D. , B. Liu G. , Feng W. , Xu X. , Yao W. . Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett., 2012, 108(19): 196802
https://doi.org/10.1103/PhysRevLett.108.196802
7 Tong Q. , Yu H. , Zhu Q. , Wang Y. , Xu X. , Yao W. . Topological mosaics in moiré superlattices of van der Waals heterobilayers. Nat. Phys., 2017, 13(4): 356
https://doi.org/10.1038/nphys3968
8 Cao Y. , Fatemi V. , Fang S. , Watanabe K. , Taniguchi T. , Kaxiras E. , Jarillo-Herrero P. . Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556(7699): 43
https://doi.org/10.1038/nature26160
9 Seyler K. , Rivera P. , Yu H. , Wilson N. , Ray E. , Mandrus D. , Yan J. , Yao W. , Xu X. . Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature, 2019, 567(7746): 66
https://doi.org/10.1038/s41586-019-0957-1
10 Cai T. , A. Yang S. , Li X. , Zhang F. , Shi J. , Yao W. , Niu Q. . Magnetic control of the valley degree of freedom of massive Dirac fermions with application to transition metal dichalcogenides. Phys. Rev. B, 2013, 88(11): 115140
https://doi.org/10.1103/PhysRevB.88.115140
11 F. Mak K. , Lee C. , Hone J. , Shan J. , F. Heinz T. . Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett., 2010, 105(13): 136805
https://doi.org/10.1103/PhysRevLett.105.136805
12 Lee C. , Yan H. , E. Brus L. , F. Heinz T. , Hone J. , Ryu S. . Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano, 2010, 4(5): 2695
https://doi.org/10.1021/nn1003937
13 E. Padilha J.Peelaers H.Janotti A.G. Van de Walle C., Nature and evolution of the band-edge states in MoS2: From monolayer to bulk, Phys. Rev. B 90(20), 205420 (2014)
14 M. Dong H. , D. Guo S. , F. Duan Y. , Huang F. , Xu W. , Zhang J. . Electronic and optical properties of single- layer MoS2. Front. Phys., 2018, 13(4): 137307
https://doi.org/10.1007/s11467-018-0797-8
15 Z. Zhang X. , Y. Zhang R. , Zhang Y. , Jiang T. , Y. Deng C. , A. Zhang X. , Q. Qin S. . Tunable photoluminescence of bilayer MoS2 via interlayer twist. Opt. Mater., 2019, 94: 213
https://doi.org/10.1016/j.optmat.2019.05.047
16 Xia M. , Li B. , Yin K. , Capellini G. , Niu G. , Gong Y. , Zhou W. , M. Ajayan P. , H. Xie Y. . Spectroscopic signatures of AA′ and AB stacking of chemical vapor deposited bilayer MoS2. ACS Nano, 2015, 9(12): 12246
https://doi.org/10.1021/acsnano.5b05474
17 M. van der Zande A. , Kunstmann J. , Chernikov A. , A. Chenet D. , M. You Y. , X. Zhang X. , Y. Huang P. , C. Berkelbach T. , Wang L. , Zhang F. , S. Hybertsen M. , A. Muller D. , R. Reichman D. , F. Heinz T. , C. Hone J. . Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. Nano Lett., 2014, 14(7): 3869
https://doi.org/10.1021/nl501077m
18 Wang C. , Xu W. , Mei H. , Qin H. , Zhao X. , Zhang C. , F. Yuan H. , Zhang J. , Xu Y. , Li P. , Li M. . Substrate-induced electronic localization in monolayer MoS2 measured via terahertz spectroscopy. Opt. Lett., 2019, 44(17): 4139
https://doi.org/10.1364/OL.44.004139
19 Wen H. , Xu W. , Wang C. , Song D. , Y. Mei H. , Zhang J. , Ding L. . Magneto-optical properties of monolayer MoS2-SiO2/Si structure measured via terahertz time-domain spectroscopy. Nano Select, 2021, 2(1): 90
https://doi.org/10.1002/nano.202000138
20 Kumar S. , Singh A. , Kumar S. , Nivedan A. , Tondusson M. , Degert J. , Oberle J. , J. Yun S. , H. Lee Y. , Freysz E. . Enhancement in optically induced ultrafast THz response of MoSe2−MoS2 heterobilayer. Opt. Express, 2021, 29(3): 4181
https://doi.org/10.1364/OE.412548
21 Bala Murali Krishna M. , Madéo J. , P. Urquizo J. , Zhu X. , Vinod S. , S. Tiwary C. , M. Ajayan P. , M. Dani K. . Terahertz photoconductivity and photocarrier dynamics in few-layer hBN/WS2 van der Waals heterostructure laminates. Semicond. Sci. Technol., 2018, 33(8): 084001
https://doi.org/10.1088/1361-6641/aacc3b
22 Liao M. , Wei Z. , Du L. , Wang Q. , Tang J. , Yu H. , Wu F. , Zhao J. , Xu X. , Han B. , Liu K. , Gao P. , Polcar T. , Sun Z. , Shi D. , Yang R. , Zhang G. . Precise control of the interlayer twist angle in large scale MoS2 homostructures. Nat. Commun., 2020, 11(1): 2153
https://doi.org/10.1038/s41467-020-16056-4
23 Yu H. , Liao M. , Zhao W. , Liu G. , J. Zhou X. , Wei Z. , Xu X. , Liu K. , Hu Z. , Deng K. , Zhou S. , A. Shi J. , Gu L. , Shen C. , Zhang T. , Du L. , Xie L. , Zhu J. , Chen W. , Yang R. , Shi D. , Zhang G. . Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano, 2017, 11(12): 12001
https://doi.org/10.1021/acsnano.7b03819
24 Yu Y. , Li C. , Liu Y. , Su L. , Zhang Y. , Cao L. . Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci. Rep., 2013, 3(1): 1866
https://doi.org/10.1038/srep01866
25 Wang X. , Feng H. , Wu Y. , Jiao L. . Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc., 2013, 135(14): 5304
https://doi.org/10.1021/ja4013485
26 Q. Wang Q. , Tang J. , M. Li X. , P. Tian J. , Liang J. , Li N. , P. Ji D. , D. Xian L. , T. Guo Y. , Li L. , H. Zhang Q. , B. Chu Y. , Wei Z. , C. Zhao Y. , J. Du L. , Yu H. , D. Bai X. , Gu L. , H. Liu K. , Yang W. , Yang R. , X. Shi D. , Y. Zhang G. . Layer-by-layer epitaxy of multi-layer MoS2 wafers. Natl. Sci. Rev., 2022, 9(6): nwac077
https://doi.org/10.1093/nsr/nwac077
27 Sajjad H. , S. Muhmmad A. , Dhanasekaran V. , I. Muhmmad Z. , Jai S. , K. Muhmmad F. , Jonghwa E. , Yongho S. , Jongwan J. . Controlled synthesis and optical properties of polycrystalline molybdenum disulfide atomic layers grown by chemical vapor deposition. J. Alloys Compd., 2015, 653(25): 369
28 R. Zhu C. , Wang G. , L. Liu B. , Marie X. , F. Qiao X. , Zhang X. , X. Wu X. , Fan H. , H. Tan P. , Amand T. , Urbaszek B. . Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Phys. Rev. B, 2013, 88(12): 121301
https://doi.org/10.1103/PhysRevB.88.121301
29 Ullah F. , H. Lee J. , Tahir Z. , Samad A. , T. Le C. , Kim J. , Kim D. , U. Rashid M. , Lee S. , Kim K. , Cheong H. , I. Jang J. , J. Seong M. , S. Kim Y. . Selective growth and robust valley polarization of bilayer 3R-MoS2, ACS Appl. Mater. & Inter., 2021, 13(48): 57588
30 K. Ellis J. , J. Lucero M. , E. Scuseria G. . The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory. Appl. Phys. Lett., 2011, 99(26): 261908
https://doi.org/10.1063/1.3672219
31 Bhattacharyya S. , K. Singh A. . Semiconductor-metal transition in semiconducting bilayer sheets of transition- metal dichalcogenides. Phys. Rev. B, 2012, 86(7): 075454
https://doi.org/10.1103/PhysRevB.86.075454
32 L. Christiansen P.P. Srensen M.C. Scott A., Nonlinear Science at the Dawn of the 21st Century, Berlin, Heidelberg: Springer, 2000
33 Hangyo M. , Nagashima T. , Nashima S. . Spectroscopy by pulsed terahertz radiation. Meas. Sci. Technol., 2002, 13(11): 1727
https://doi.org/10.1088/0957-0233/13/11/309
34 Duvillaret L.Garet F.L. Coutaz J., A reliable method for extraction of material parameters in terahertz time-domain spectroscopy, IEEE J. Sel. Top. Quantum Electron. 2(3), 739 (1996)
35 Nudelman S.S. Mitra S., Optical Properties of Solids, Springer, 1969
36 Tinkham M. . Energy gap interpretation of experiments on infrared transmission through superconducting films. Phys. Rev., 1956, 104(3): 845
https://doi.org/10.1103/PhysRev.104.845
37 D. Jackson J., Classical Electrodynamics, 3rd Ed., Wiley, 1998
38 Drude P. . Bestimmung der optischen Constanten der Metalle. Annalen der Physik, 1890, 275(4): 481
https://doi.org/10.1002/andp.18902750402
39 V. Smith N. . Classical generalization of the Drude formula for the optical conductivity. Phys. Rev. B, 2001, 64(15): 155106
https://doi.org/10.1103/PhysRevB.64.155106
40 W. Han F.Xu W.L. Li L.Zhang C., A generalization of the Drude-Smith formula for magneto-optical conductivities in Faraday geometry, J. Appl. Phys. 119(24), 245706 (2016)
41 Mukhopadhyay A. , Kanungo S. , Rahaman H. . The effect of the stacking arrangement on the device behavior of bilayer MoS2 FETs. J. Comput. Electron., 2021, 20(1): 161
https://doi.org/10.1007/s10825-020-01636-w
42 Baugher B. , Churchill H. , Yang Y. , Jarillo-Herrero P. . Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. Nano Lett., 2013, 13(9): 4212
https://doi.org/10.1021/nl401916s
43 Valerini D. , Cretí A. , Lomascolo M. , Manna L. , Cingolani R. , Anni M. . Temperature dependence of the photo-luminescence properties of colloidal CdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix. Phys. Rev. B, 2005, 71(23): 235409
https://doi.org/10.1103/PhysRevB.71.235409
44 Xu W. , M. Peeters F. , C. Lu T. . Dependence of resistivity on electron density and temperature in graphene. Phys. Rev. B, 2009, 79(7): 073403
https://doi.org/10.1103/PhysRevB.79.073403
45 Kim S. , Konar A. , S. Hwang W. , H. Lee J. , Lee J. , Yang J. , Jung C. , Kim H. , B. Yoo J. , Y. Choi J. , W. Jin Y. , Y. Lee S. , Jena D. , Choi W. , Kim K. . High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun., 2012, 3(1): 1011
https://doi.org/10.1038/ncomms2018
46 Schwarz H., Laser Interaction and Related Plasma Phenomena, US: Springer, 1972
47 Xu W. , M. Dong H. , L. Li L. , Q. Yao J. , Vasilopoulos P. , M. Peeters F. . Optoelectronic properties of graphene in the presence of optical phonon scattering. Phys. Rev. B, 2010, 82(12): 125304
https://doi.org/10.1103/PhysRevB.82.125304
48 S. Yun W. , W. Han S. , C. Hong S. , G. Kim I. , D. Lee J. . Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M=Mo, W; X=S, Se, Te). Phys. Rev. B, 2012, 85(3): 033305
https://doi.org/10.1103/PhysRevB.85.033305
49 Scalise E. , Houssa M. , Pourtois G. , V. Afanas’ev V. , Stesmans A. . First-principles study of strained 2D MoS2. Physica E, 2014, 56: 416
https://doi.org/10.1016/j.physe.2012.07.029
50 M. Dong H. , H. Tao Z. , L. Li L. , Huang F. , Xu W. , M. Peeters F. . Substrate dependent terahertz response of monolayer WS2. Appl. Phys. Lett., 2020, 116(20): 203108
https://doi.org/10.1063/5.0006617
51 M. Dong H. , Xu W. , Zeng Z. , C. Lu T. , M. Peeters F. . Quantum and transport conductivities in monolayer graphene. Phys. Rev. B, 2008, 77(23): 235402
https://doi.org/10.1103/PhysRevB.77.235402
52 H. Zhang S. , Xu W. , M. Badalyan S. , M. Peeters F. . Piezoelectric surface acoustical phonon limited mobility of electrons in graphene on a GaAs substrate. Phys. Rev. B, 2013, 87(7): 075443
https://doi.org/10.1103/PhysRevB.87.075443
[1] Liang Liu, Xiaolin Li, Luping Du, Xi Zhang. Generation and modulation of multiple 2D bulk photovoltaic effects in space-time reversal asymmetric 2H-FeCl2[J]. Front. Phys. , 2023, 18(6): 62304-.
[2] Trevor LaMountain, Erik J. Lenferink, Yen-Jung Chen, Teodor K. Stanev, Nathaniel P. Stern. Environmental engineering of transition metal dichalcogenide optoelectronics[J]. Front. Phys. , 2018, 13(4): 138114-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed