Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (6) : 61303    https://doi.org/10.1007/s11467-023-1317-z
RESEARCH ARTICLE
Single-photon source with sub-MHz linewidth for cesium-based quantum information processing
Hai He, Peng-Fei Yang, Peng-Fei Zhang, Gang Li(), Tian-Cai Zhang()
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Collaborative Innovation Center of Extreme Optics, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
 Download: PDF(4436 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A single-photon source with narrow bandwidth, high purity, and large brightness can efficiently interact with material qubits strongly coupled to an optical microcavity for quantum information processing. Here, we experimentally demonstrate a degenerate doubly resonant single-photon source at 852 nm by the cavity-enhanced spontaneous parametric downconversion process with a 100% duty cycle of generation. The single photon source possesses both high purity with a second-order correlation gh(2)(0)=0.021 and narrow linewidth with Δνsp=(800±13)kHz. The single-photon source is compatible with the cesium atom D2 line and can be used for cesium-based quantum information processing.

Keywords single-photon source      sub-MHz linewidth      few longitudinal modes      quantum information processing     
Corresponding Author(s): Gang Li,Tian-Cai Zhang   
Issue Date: 29 November 2023
 Cite this article:   
Hai He,Peng-Fei Yang,Peng-Fei Zhang, et al. Single-photon source with sub-MHz linewidth for cesium-based quantum information processing[J]. Front. Phys. , 2023, 18(6): 61303.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1317-z
https://academic.hep.com.cn/fop/EN/Y2023/V18/I6/61303
Fig.1  Schematic of the experimental setup. A frequency-stabilized 852 nm laser is injected into a frequency doubler. The generated frequency-doubled 426 nm light is injected into the SPDC cavity. The generated signal and idler photons are separated by polarizing components and recorded by SPCMs. HWP: half-wave plate; DM: dichroic mirror; PBS: polarizing beam splitter; QWP: quarter-wave plate; PZT: piezoelectric transducers; LPF: longpass filter.
Fig.2  Joint spectrum of generated photons. (a) Phase-matching spectrum of the nonlinear crystal (red curve), joint spectrum within the SPDC cavity (blue line), and transmission spectrum of the F?P filter (purple line). (b) The final joint spectrum of the cavity-enhanced SPDC output (green) with a 3 mm-long etalon.
Fig.3  The convoluted cross correlation as a function of delay time. The blue points give the measured data, and the red solid line is the fitting. The data are obtained in 5 minutes with 16 mW pump power and a 4.4 ns time bin. According to the fitting, the decay rate of the cavity is γ=(1.25±0.02)MHz, and the corresponding bandwidth is Δνsp=(800±13)kHz.
Fig.4  The convoluted multimode cross-correlation. (a) The convoluted cross-correlation function in a ±10 ns time window with a time bin of 100 ps. The FWHM of the main peak is approximately (0.88±0.03)ns. (b) The FWHM of the main peak as a function of the number of modes N with a 10 mm long type-II PPKTP crystal. Under the condition of τD= 500 ps (blue line), the FWHM decreases when N increases. The result with τD= 0 ps (red line) is also shown for comparison. The numerical values FSR=224.7MHz and γs=γi=1.25MHz are used for the calculation. The effective mode number of our experiment is between 3 and 4, as shown by the green dashed line.
Fig.5  The normalized maximum of the cross-correlation, gsi(2)(max), versus the pump power is plotted in the black points on the left axis. On the right axis, the coincidences as a function of the power are shown in the red points. When the pump power decreases, a stronger bunching effect between signal-idler pairs can be observed and the signal-to-background ratio improves.
Fig.6  The dependence of heralded autocorrelation gh(2)(0) as a function of the pump power. The measured gh(2)(0) is less than 0.5 depending on the power up to 40 mW. The green line is the boundary of gh(2)(0)=0.5.
Fig.7  The transmitted counts of the signal photons (blue points) as a function of the temperatures through a Cs vapor cell. When temperatures increase, the transmitted counts decrease. As a comparison, the counts of idler photons (red points) remain unchanged in the process.
1 Knill E.Laflamme R.J. Milburn G., A scheme for efficient quantum computation with linear optics, Nature 409(6816), 46 (2001)
2 Piro N. , Rohde F. , Schuck C. , Almendros M. , Huwer J. , Ghosh J. , Haase A. , Hennrich M. , Dubin F. , Eschner J. . Heralded single- photon absorption by a single atom. Nat. Phys., 2011, 7(1): 17
https://doi.org/10.1038/nphys1805
3 Jacques V. , Wu E. , Grosshans F. , Treussart F. , Grangier P. , Aspect A. , F. Roch J. . Experimental realization of Wheeler’s delayed-choice Gedanken experiment. Science, 2007, 315(5814): 966
https://doi.org/10.1126/science.1136303
4 Esposito C. , R. Barros M. , Durán Hernández A. , Carvacho G. , Di Colandrea F. , Barboza R. , Cardano F. , Spagnolo N. , Marrucci L. , Sciarrino F. . Quantum walks of two correlated photons in a 2D synthetic lattice. NPJ Quantum Inf., 2022, 8(1): 34
https://doi.org/10.1038/s41534-022-00544-0
5 B. Pittman T. , H. Shih Y. , V. Strekalov D. , V. Sergienko A. . Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A, 1995, 52(5): R3429
https://doi.org/10.1103/PhysRevA.52.R3429
6 F. Yan Y. , Zhou L , Zhong W , B. Sheng Y. . Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon. Front. Phys., 2021, 16(1): 11501
https://doi.org/10.1007/s11467-020-1005-1
7 Beveratos A. , Brouri R. , Gacoin T. , Villing A. , P. Poizat J. , Grangier P. . Single photon quantum cryptography. Phys. Rev. Lett., 2002, 89(18): 187901
https://doi.org/10.1103/PhysRevLett.89.187901
8 M. Duan L. , D. Lukin M. , I. Cirac J. , Zoller P. . Long-distance quantum communication with atomic ensembles and linear optics. Nature, 2001, 414(6862): 413
https://doi.org/10.1038/35106500
9 Yin J. , Cao Y. , H. Li Y. , K. Liao S. , Zhang L. . et al.. Satellite-based entanglement distribution over 1200 kilometers. Science, 2017, 356(6343): 1140
https://doi.org/10.1126/science.aan3211
10 Brekenfeld M.Niemietz D.D. Christesen J.Rempe G., A quantum network node with crossed optical fibre cavities, Nat. Phys. 16(6), 647 (2020)
11 Reiserer A.Kalb N.Rempe G.Ritter S., A quantum gate between a flying optical photon and a single trapped atom, Nature 508(7495), 237 (2014)
12 Daiss S.Langenfeld S.Welte S.Distante E.Thomas P.Hartung L.Morin O.Rempe G., A quantum-logic gate between distant quantum-network modules, Science 371(6529), 614 (2021)
13 Langenfeld S.Morin O.Korber M.Rempe G., A network-ready random-access qubits memory, npj Quantum Inf. 6(1), 86 (2020)
14 J. Kimble H. . The quantum internet. Nature, 2008, 453(7198): 1023
https://doi.org/10.1038/nature07127
15 Ritter S. , Nolleke C. , Hahn C. , Reiserer A. , Neuzner A. , Uphoff M. , Mucke M. , Figueroa E. , Bochmann J. , Rempe G. . An elementary quantum network of single atoms in optical cavities. Nature, 2012, 484(7393): 195
https://doi.org/10.1038/nature11023
16 T. Sheng J. , X. Chao Y. , Kumar S. , Q. Fan H. , Sedlacek J. , P. Shaffer J. . Intracavity Rydberg-atom electromagnetically induced transparency using a high-finesse optical cavity. Phys. Rev. A, 2017, 96(3): 033813
https://doi.org/10.1103/PhysRevA.96.033813
17 Junge C. , O’Shea D. , Volz J. , Rauschenbeutel A. . Strong coupling between single atoms and nontransversal photons. Phys. Rev. Lett., 2013, 110(21): 213604
https://doi.org/10.1103/PhysRevLett.110.213604
18 Kato S. , Aoki T. . Strong coupling between a trapped single atom and an all-fiber cavity. Phys. Rev. Lett., 2015, 115(9): 093603
https://doi.org/10.1103/PhysRevLett.115.093603
19 McKeever J. , Boca A. , D. Boozer A. , Miller R. , R. Buck J. , Kuzmich A. , J. Kimble H. . Deterministic generation of single photons from one atom trapped in a cavity. Science, 2004, 303(5666): 1992
https://doi.org/10.1126/science.1095232
20 Liu B. , Jin G. , He J. , M. Wang J. . Suppression of single-cesium atom heating in a microscopic optical dipole trap for demonstration of an 852-nm triggered single-photon source. Phys. Rev. A, 2016, 94(1): 013409
https://doi.org/10.1103/PhysRevA.94.013409
21 Darquié B. , P. A. Jones M. , Dingjan J. , Beugnon J. , Bergamini S. , Sortais Y. , Messin G. , Browaeys A. , Grangier P. . Controlled single-photon emission from a single trapped two-level atom. Science, 2005, 309(5733): 454
https://doi.org/10.1126/science.1113394
22 Stein G. , Bushmakin V. , J. Wang Y. , W. Schell A. , Gerhardt I. . Narrow-band fiber-coupled single-photon source. Phys. Rev. Appl., 2020, 13(5): 054042
https://doi.org/10.1103/PhysRevApplied.13.054042
23 Keller M. , Lange B. , Hayasaka K. , Lange W. , Walther H. . Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature, 2004, 431(7012): 1075
https://doi.org/10.1038/nature02961
24 Y. Lu C. , W. Pan J. . Quantum-dot single-photon sources for the quantum internet. Nat. Nanotechnol., 2021, 16(12): 1294
https://doi.org/10.1038/s41565-021-01033-9
25 Togan E. , Chu Y. , S. Trifonov A. , Jiang L. , Maze J. , Childress L. , V. G. Dutt M. , S. Sorensen A. , R. Hemmer P. , S. Zibrov A. , D. Lukin M. . Quantum entanglement between an optical photon and a solid-state spin qubit. Nature, 2010, 466(7307): 730
https://doi.org/10.1038/nature09256
26 B. Dideriksen K. , Schmieg R. , Zugenmaier M. , S. Polzik E. . Room-temperature single-photon source with near-millisecond built-in memory. Nat. Commun., 2021, 12(1): 3699
https://doi.org/10.1038/s41467-021-24033-8
27 I. Lvovsky A. , Hansen H. , Aichele T. , Benson O. , Mlynek J. , Schiller S. . Quantum state reconstruction of the single- photon Fock state. Phys. Rev. Lett., 2001, 87(5): 050402
https://doi.org/10.1103/PhysRevLett.87.050402
28 Prakash V. , C. Bianchet L. , T. Cuairan M. , Gomez P. , Bruno N. , W. Mitchell M. . Narrowband photon pairs with independent frequency tuning for quantum light−matter interactions. Opt. Express, 2019, 27(26): 38463
https://doi.org/10.1364/OE.382474
29 S. Tang J. , Tang L. , D. Wu H. , Wu Y. , Sun H. , Zhang H. , Li T. , Q. Lu Y. , Xiao M. , Xia K. . Towards on-demand heralded single-photon sources via photon blockade. Phys. Rev. Appl., 2021, 15(6): 064020
https://doi.org/10.1103/PhysRevApplied.15.064020
30 Wakui K. , Takahashi H. , Furusawa A. , Sasaki M. . Photon subtracted squeezed states generated with periodically poled KTiOPO4. Opt. Express, 2007, 15(6): 3568
https://doi.org/10.1364/OE.15.003568
31 Scholz M. , Koch L. , Benson O. . Statistics of narrow- band single photons for quantum memories generated by ultrabright cavity-enhanced parametric down-conversion. Phys. Rev. Lett., 2009, 102(6): 063603
https://doi.org/10.1103/PhysRevLett.102.063603
32 Y. Zhou Z. , S. Ding D. , Li Y. , Y. Wang F. , S. Shi B. . Cavity-enhanced bright photon pairs at telecom wavelengths with a triple-resonance configuration. J. Opt. Soc. Am. B, 2014, 31(1): 128
https://doi.org/10.1364/JOSAB.31.000128
33 Rambach M. , Nikolova A. , J. Weinhold T. , G. White A. . Sub-megahertz linewidth single photon source. APL Photonics, 2016, 1(9): 096101
https://doi.org/10.1063/1.4966915
34 Niizeki K. , Ikeda K. , Y. Zheng M. , P. Xie X. , Okamura K. , Takei N. , Namekata N. , Inoue S. , Kosaka H. , Horikiri T. . Ultrabright narrow-band telecom two-photon source for long-distance quantum communication. Appl. Phys. Express, 2018, 11(4): 042801
https://doi.org/10.7567/APEX.11.042801
35 Moqanaki A. , Massa F. , Walther P. . Novel single-mode narrow-band photon source of high brightness tuned to cesium D2 line. APL Photonics, 2019, 4(9): 090804
https://doi.org/10.1063/1.5095616
36 J. Tsai P. , C. Chen Y. . Ultrabright, narrow-band photon-pair source for atomic quantum memories. Quantum Sci. Technol., 2018, 3(3): 034005
https://doi.org/10.1088/2058-9565/aa86e7
37 Liu J. , Liu J. , Yu P. , Zhang G. . Sub-megahertz narrow-band photon pairs at 606 nm for solid-state quantum memories. APL Photonics, 2020, 5(6): 066105
https://doi.org/10.1063/5.0006021
38 Tian L. , J. Li S. , X. Yuan H. , Wang H. . Generation of narrow-band polarization-entangled photon pairs at a rubidium D1 line. J. Phys. Soc. Jpn., 2016, 85(12): 124403
https://doi.org/10.7566/JPSJ.85.124403
39 Wang J. , F. Huang Y. , Zhang C. , M. Cui J. , Y. Zhou Z. , H. Liu B. , Q. Zhou Z. , S. Tang J. , F. Li C. , C. Guo G. . Universal photonic quantum interface for a quantum network. Phys. Rev. Appl., 2018, 10(5): 054036
https://doi.org/10.1103/PhysRevApplied.10.054036
40 Zhang H. , M. Jin X. , Yang J. , N. Dai H. , J. Yang S. , M. Zhao T. , Rui J. , He Y. , Jiang X. , Yang F. , S. Pan G. , S. Yuan Z. , Deng Y. , B. Chen Z. , H. Bao X. , Chen S. , Zhao B. , W. Pan J. . Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion. Nat. Photonics, 2011, 5(10): 628
https://doi.org/10.1038/nphoton.2011.213
41 Fekete J. , Rieländer D. , Cristiani M. , de Riedmatten H. . Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks. Phys. Rev. Lett., 2013, 110(22): 220502
https://doi.org/10.1103/PhysRevLett.110.220502
42 W. Hansch T. , Couillaud B. . Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity. Opt. Commun., 1980, 35(3): 441
https://doi.org/10.1016/0030-4018(80)90069-3
43 H. Brown R. , Q. Twiss R. . Correlation between photons in two coherent beams of light. Nature, 1956, 177(4497): 27
https://doi.org/10.1038/177027a0
44 S. Chuu C.Y. Yin G.E. Harris S., A miniature ultrabright source of temporally long, narrowband biphotons, Appl. Phys. Lett. 101(5), 051108 (2012)
45 Scholz M. , Koch L. , Benson O. . Analytical treatment of spectral properties and signal-idler intensity correlations for a double-resonant optical parametric oscillator far below threshold. Opt. Commun., 2009, 282(17): 3518
https://doi.org/10.1016/j.optcom.2009.05.056
46 Wolfgramm F. , A. de Icaza Astiz Y. , A. Beduini F. , Cerè A. , W. Mitchell M. . Atom-resonant heralded single photons by interaction-free measurement. Phys. Rev. Lett., 2011, 106(5): 053602
https://doi.org/10.1103/PhysRevLett.106.053602
47 J. Lu Y. , Y. Ou Z. . Optical parametric oscillator far below threshold: Experiment versus theory. Phys. Rev. A, 2000, 62(3): 033804
https://doi.org/10.1103/PhysRevA.62.033804
48 Wahl M. , Röhlicke T. , J. Rahn H. , Erdmann R. , Kell G. , Ahlrichs A. , Kernbach M. , W. Schell A. , Benson O. . Integrated multichannel photon timing instrument with very short dead time and high throughput. Rev. Sci. Instrum., 2013, 84(4): 043102
https://doi.org/10.1063/1.4795828
49 Beck M. . Comparing measurements of g(2)(0) performed with different coincidence detection techniques. J. Opt. Soc. Am. B, 2007, 24(12): 2972
https://doi.org/10.1364/JOSAB.24.002972
50 Paudel U. , J. Wong J. , Goggin M. , G. Kwiat P. , S. Bracker A. , Yakes M. , Gammon D. , G. Steel D. . Direct excitation of a single quantum dot with cavity-SPDC photons. Opt. Express, 2019, 27(11): 16308
https://doi.org/10.1364/OE.27.016308
51 H. Wu C. , Y. Wu T. , C. Yeh Y. , H. Liu P. , H. Chang C. , K. Liu C. , Cheng T. , S. Chuu C. . Bright single photons for light−matter interaction. Phys. Rev. A, 2017, 96(2): 023811
https://doi.org/10.1103/PhysRevA.96.023811
[1] Muhammad Waseem Hafiz, Seong Oun Hwang. A probabilistic model of quantum states for classical data security[J]. Front. Phys. , 2023, 18(5): 51304-.
[2] Yi-Ming Wu, Gang Fan, Fang-Fang Du. Error-detected three-photon hyperparallel Toffoli gate with state-selective reflection[J]. Front. Phys. , 2022, 17(5): 51502-.
[3] Yi-Xuan Wu, Zi-Yan Guan, Sai Li, Zheng-Yuan Xue. Fast quantum state transfer and entanglement for cavity-coupled many qubits via dark pathways[J]. Front. Phys. , 2022, 17(4): 42507-.
[4] Xiao-Tao Mo, Zheng-Yuan Xue. Single-step multipartite entangled states generation from coupled circuit cavities[J]. Front. Phys. , 2019, 14(3): 31602-.
[5] Jing-Wei Zhou, Peng-Fei Wang, Fa-Zhan Shi, Pu Huang, Xi Kong, Xiang-Kun Xu, Qi Zhang, Zi-Xiang Wang, Xing Rong, Jiang-Feng Du. Quantum information processing and metrology with color centers in diamonds[J]. Front. Phys. , 2014, 9(5): 587-597.
[6] Guang-Cun Shan, Zhang-Qi Yin, Chan Hung Shek, Wei Huang. Single photon sources with single semiconductor quantum dots[J]. Front. Phys. , 2014, 9(2): 170-193.
[7] Hua WEI(魏华), Zhi-jiao DENG(邓志娇), Wan-li YANG(杨万里), Fei ZHOU(周飞). Cavity quantum networks for quantum information processing in decoherence-free subspace[J]. Front. Phys. , 2009, 4(1): 21-37.
[8] WAN Jin-yin, WANG Yu-zhu, LIU Liang. Ion trapping for quantum information processing[J]. Front. Phys. , 2007, 2(4): -.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed