Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (5) : 52307    https://doi.org/10.1007/s11467-023-1326-y
RESEARCH ARTICLE
Measurement of interacting quantum phases: A band mapping scheme
Qi Huang1(), Zijie Zhu2, Yifei Wang3, Libo Liang1, Qinpei Zheng1, Xuzong Chen1()
1. School of Electronics, Peking University, Beijing 100871, China
2. Institute for Quantum Electronics, ETH Zürich, 8093 Zürich, Switzerland
3. Institute for Advanced Study, Tsinghua University, Beijing 100084, China
 Download: PDF(6575 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Band mapping is widely used in various scenarios of cold atom physics to measure the quasi-momentum distribution and band population. However, conventional methods fail in strongly interacting systems. Here we propose and experimentally realize a novel scheme of band mapping that can accurately measure the quasi-momentum of interacting many-body systems. Through an anisotropic control in turning down the three-dimensional optical lattice, we can eliminate the effect of interactions on the band mapping process. Then, based on a precise measurement of the quasi-momentum distribution, we introduce the incoherent fraction as a physical quantity that can quantify the degree of incoherence of quantum many-body states. This method enables precise measurement of processes such as the superfluid to Mott insulator phase transition. Additionally, by analyzing the spatial correlation derived from the quasi-momentum of superfluid-Mott insulator phase transitions, we obtain results consistent with the incoherent fraction. Our scheme broadens the scope of band mapping and provides a method for studying quantum many-body problems.

Keywords ultracold physics      Mott insulator      superfluid      band mapping     
Corresponding Author(s): Qi Huang,Xuzong Chen   
Issue Date: 25 July 2023
 Cite this article:   
Qi Huang,Zijie Zhu,Yifei Wang, et al. Measurement of interacting quantum phases: A band mapping scheme[J]. Front. Phys. , 2023, 18(5): 52307.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1326-y
https://academic.hep.com.cn/fop/EN/Y2023/V18/I5/52307
Fig.1  Sketch of experiment setup, time sequence, and images for band mapping. (a) A schematic diagram of the experimental system. (b) The temporal sequence of the lattice potential along the x, y, and z directions. The potential along the x and y directions is ramped down to zero within 2 ms, while the potential along the z direction is abruptly quenched to zero. (c) We obtained band mapping images with our method at three different lattice depths corresponding to the superfluid regime, the critical point of phase transition, and the deep Mott insulator regime.
Fig.2  Quasi-momentum distribution from two methods. (a) Integration graphs of (c) along the x axis. (b) Quasi-momentum distribution is calculated from the first Brillouin zone of (a). (c) The integrated column density n(x,y ), represented by the optical density (OD) in arbitrary units, is measured from the experiment at 15 Er. The inset shows the quasi-momentum obtained from the first Brillouin zone of momentum distribution. (d) Integrated graphs of band mapping at different lattice depths. Red points represent quasi-momentum distribution calculated from momentum distribution, while blue points represent the data obtained from the new band mapping method. Experimental data are averaged over several realizations. Error bars denote standard deviation; most error bars are smaller than their marker size if not visible.
Fig.3  Incoherent fraction and correlation. (a) Band mapping images reveal the quasi-momentum distribution at various lattice depths, showing a transition from SF to MI as indicated by the diminishing peak and the increasing plateau. (b) Lattice depth dependence of the incoherent fraction. The inset depicts the method for extracting the incoherent fraction from the quasi-momentum distribution. (c) Correlation versus space distance at different lattice depths. The gray area has errors due to inhomogeneous optical lattice.
Fig.4  Transformation of momentum distribution between different Brillouin zones. (a) The momentum distribution in an optical lattice with a potential depth of 15 Er. (b) By extrapolating the momentum distribution within the first Brillouin zone, we derived the complete momentum distribution. (c) We integrated (a) and (b) along the x and y directions, shown as blue and orange lines, respectively.
  Fig.A1 Comparison of conventional method and improved band mapping at several typical lattice depths.
1 Greiner M., Bloch I., Mandel O., W. Hänsch T., Esslinger T.. Exploring phase coherence in a 2D lattice of Bose–Einstein condensates. Phys. Rev. Lett., 2001, 87(16): 160405
https://doi.org/10.1103/PhysRevLett.87.160405
2 Köhl M., Moritz H., Stöferle T., Günter K., Esslinger T.. Fermionic atoms in a three dimensional optical lattice: Observing Fermi surfaces, dynamics, and interactions. Phys. Rev. Lett., 2005, 94(8): 080403
https://doi.org/10.1103/PhysRevLett.94.080403
3 Schneider U., Hackermuller L., Will S., Best T., Bloch I., A. Costi T., Helmes R., Rasch D., Rosch A.. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice. Science, 2008, 322(5907): 1520
https://doi.org/10.1126/science.1165449
4 A. Geiger Z., M. Fujiwara K., Singh K., Senaratne R., V. Rajagopal S., Lipatov M., Shimasaki T., Driben R., V. Konotop V., Meier T., M. Weld D.. Observation and uses of position−space Bloch oscillations in an ultracold gas. Phys. Rev. Lett., 2018, 120(21): 213201
https://doi.org/10.1103/PhysRevLett.120.213201
5 Aidelsburger M., Atala M., Lohse M., T. Barreiro J., Paredes B., Bloch I.. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett., 2013, 111(18): 185301
https://doi.org/10.1103/PhysRevLett.111.185301
6 J. Kennedy C., C. Burton W., C. Chung W., Ketterle W.. Observation of Bose–Einstein condensation in a strong synthetic magnetic field. Nat. Phys., 2015, 11(10): 859
https://doi.org/10.1038/nphys3421
7 H. Kang J., H. Han J., I. Shin Y.. Realization of a cross-linked chiral ladder with neutral fermions in a 1D optical lattice by orbital–momentum coupling. Phys. Rev. Lett., 2018, 121(15): 150403
https://doi.org/10.1103/PhysRevLett.121.150403
8 D. Brown C., W. Chang S., N. Schwarz M., H. Leung T., Kozii V., Avdoshkin A., E. Moore J., Stamper-Kurn D.. Direct geometric probe of singularities in band structure. Science, 2022, 377(6612): 1319
https://doi.org/10.1126/science.abm6442
9 Huang Q., Yao R., Liang L., Wang S., Zheng Q., Li D., Xiong W., Zhou X., Chen W., Chen X., Hu J.. Observation of many-body quantum phase transitions beyond the Kibble–Zurek mechanism. Phys. Rev. Lett., 2021, 127(20): 200601
https://doi.org/10.1103/PhysRevLett.127.200601
10 Tarruell L., Greif D., Uehlinger T., Jotzu G., Esslinger T.. Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice. Nature, 2012, 483(7389): 302
https://doi.org/10.1038/nature10871
11 J. Liu X., T. Law K., K. Ng T., A. Lee P.. Detecting topological phases in cold atoms. Phys. Rev. Lett., 2013, 111(12): 120402
https://doi.org/10.1103/PhysRevLett.111.120402
12 Jotzu G., Messer M., Desbuquois R., Lebrat M., Uehlinger T., Greif D., Esslinger T.. Experimental realization of the topological Haldane model with ultracold fermions. Nature, 2014, 515(7526): 237
https://doi.org/10.1038/nature13915
13 Aidelsburger M., Lohse M., Schweizer C., Atala M., T. Barreiro J., Nascimbène S., Cooper N., Bloch I., Goldman N.. Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nat. Phys., 2015, 11(2): 162
https://doi.org/10.1038/nphys3171
14 Wu Z., Zhang L., Sun W., T. Xu X., Z. Wang B., C. Ji S., Deng Y., Chen S., J. Liu X., W. Pan J.. Realization of two-dimensional spin–orbit coupling for Bose–Einstein condensates. Science, 2016, 354(6308): 83
https://doi.org/10.1126/science.aaf6689
15 Song B., Zhang L., He C., F. J. Poon T., Hajiyev E., Zhang S., J. Liu X., B. Jo G.. Observation of symmetry-protected topological band with ultracold fermions. Sci. Adv., 2018, 4(2): eaao4748
https://doi.org/10.1126/sciadv.aao4748
16 Asteria L., T. Tran D., Ozawa T., Tarnowski M., S. Rem B., Fläschner N., Sengstock K., Goldman N., Weitenberg C.. Measuring quantized circular dichroism in ultracold topological matter. Nat. Phys., 2019, 15(5): 449
https://doi.org/10.1038/s41567-019-0417-8
17 Y. Wang Z., C. Cheng X., Z. Wang B., Y. Zhang J., H. Lu Y., R. Yi C., Niu S., Deng Y., J. Liu X., Chen S., W. Pan J.. Realization of an ideal Weyl semimetal band in a quantum gas with 3D spin–orbit coupling. Science, 2021, 372(6539): 271
https://doi.org/10.1126/science.abc0105
18 Li T., Duca L., Reitter M., Grusdt F., Demler E., Endres M., Schleier-Smith M., Bloch I., Schneider U.. Bloch state tomography using Wilson lines. Science, 2016, 352(6289): 1094
https://doi.org/10.1126/science.aad5812
19 Sun W., R. Yi C., Z. Wang B., W. Zhang W., C. Sanders B., T. Xu X., Y. Wang Z., Schmiedmayer J., Deng Y., J. Liu X., Chen S., W. Pan J.. Uncover topology by quantum quench dynamics. Phys. Rev. Lett., 2018, 121(25): 250403
https://doi.org/10.1103/PhysRevLett.121.250403
20 Zhang L., Zhang L., J. Liu X.. Unified theory to characterize floquet topological phases by quench dynamics. Phys. Rev. Lett., 2020, 125(18): 183001
https://doi.org/10.1103/PhysRevLett.125.183001
21 Heinze J., Götze S., Krauser J., Hundt B., Fläschner N., S. Lühmann D., Becker C., Sengstock K.. Multiband spectroscopy of ultracold fermions: Observation of reduced tunneling in attractive Bose–Fermi mixtures. Phys. Rev. Lett., 2011, 107(13): 135303
https://doi.org/10.1103/PhysRevLett.107.135303
22 Heinze J., Krauser J., Fläschner N., Hundt B., Götze S., Itin A., Mathey L., Sengstock K., Becker C.. Intrinsic photoconductivity of ultracold fermions in optical lattices. Phys. Rev. Lett., 2013, 110(8): 085302
https://doi.org/10.1103/PhysRevLett.110.085302
23 Repellin C., Goldman N.. Detecting fractional Chern insulators through circular dichroism. Phys. Rev. Lett., 2019, 122(16): 166801
https://doi.org/10.1103/PhysRevLett.122.166801
24 Nakajima S., Takei N., Sakuma K., Kuno Y., Marra P., Takahashi Y.. Competition and interplay between topology and quasi-periodic disorder in thouless pumping of ultracold atoms. Nat. Phys., 2021, 17(7): 844
https://doi.org/10.1038/s41567-021-01229-9
25 S. Rem B., Käming N., Tarnowski M., Asteria L., Fläschner N., Becker C., Sengstock K., Weitenberg C.. Identifying quantum phase transitions using artificial neural networks on experimental data. Nat. Phys., 2019, 15(9): 917
https://doi.org/10.1038/s41567-019-0554-0
26 Singh K., J. Fujiwara C., A. Geiger Z., Q. Simmons E., Lipatov M., Cao A., Dotti P., V. Rajagopal S., Senaratne R., Shimasaki T., Heyl M., Eckardt A., M. Weld D.. Quantifying and controlling prethermal nonergodicity in interacting floquet matter. Phys. Rev. X, 2019, 9(4): 041021
https://doi.org/10.1103/PhysRevX.9.041021
27 Wintersperger K., Braun C., N. Ünal F., Eckardt A., D. Liberto M., Goldman N., Bloch I., Aidelsburger M.. Realization of an anomalous floquet topological system with ultracold atoms. Nat. Phys., 2020, 16(10): 1058
https://doi.org/10.1038/s41567-020-0949-y
28 Fölling S., Trotzky S., Cheinet P., Feld M., Saers R., Widera A., Müller T., Bloch I.. Direct observation of second-order atom tunnelling. Nature, 2007, 448(7157): 1029
https://doi.org/10.1038/nature06112
29 Greif D., Uehlinger T., Jotzu G., Tarruell L., Esslinger T.. Short-range quantum magnetism of ultracold fermions in an optical lattice. Science, 2013, 340(6138): 1307
https://doi.org/10.1126/science.1236362
30 Hauke P., Lewenstein M., Eckardt A.. Tomography of band insulators from quench dynamics. Phys. Rev. Lett., 2014, 113(4): 045303
https://doi.org/10.1103/PhysRevLett.113.045303
31 Taie S., Ozawa H., Ichinose T., Nishio T., Nakajima S., Takahashi Y.. Coherent driving and freezing of bosonic matter wave in an optical Lieb lattice. Sci. Adv., 2015, 1(10): e1500854
https://doi.org/10.1126/sciadv.1500854
32 Lohse M., Schweizer C., M. Price H., Zilberberg O., Bloch I.. Exploring 4D quantum hall physics with a 2D topological charge pump. Nature, 2018, 553(7686): 55
https://doi.org/10.1038/nature25000
33 Tarnowski M., N. Ünal F., Fläschner N., S. Rem B., Eckardt A., Sengstock K., Weitenberg C.. Measuring topology from dynamics by obtaining the Chern number from a linking number. Nat. Commun., 2019, 10(1): 1728
https://doi.org/10.1038/s41467-019-09668-y
34 Taie S., Ichinose T., Ozawa H., Takahashi Y.. Spatial adiabatic passage of massive quantum particles in an optical Lieb lattice. Nat. Commun., 2020, 11(1): 257
https://doi.org/10.1038/s41467-019-14165-3
35 T. Brown P., Guardado-Sanchez E., M. Spar B., W. Huang E., P. Devereaux T., S. Bakr W.. Angle-resolved photoemission spectroscopy of a Fermi–Hubbard system. Nat. Phys., 2020, 16(1): 26
https://doi.org/10.1038/s41567-019-0696-0
36 S. Natu S., C. McKay D., DeMarco B., J. Mueller E.. Evolution of condensate fraction during rapid lattice ramps. Phys. Rev. A, 2012, 85(6): 061601
https://doi.org/10.1103/PhysRevA.85.061601
37 P. Fisher M., B. Weichman P., Grinstein G., S. Fisher D.. Boson localization and the superfluid–insulator transition. Phys. Rev. B, 1989, 40(1): 546
https://doi.org/10.1103/PhysRevB.40.546
[1] Genwang Fan, Xiao-Long Chen, Peng Zou. Probing two Higgs oscillations in a one-dimensional Fermi superfluid with Raman-type spin–orbit coupling[J]. Front. Phys. , 2022, 17(5): 52502-.
[2] Jin Peng, X. M. Gu, G. T. Zhou, W. Wang, J. Y. Liu, Yu Wang, Z. Q. Mao, X. S. Wu, Shuai Dong. Electron mass enhancement and magnetic phase separation near the Mott transition in double-layer ruthenates[J]. Front. Phys. , 2018, 13(4): 137108-.
[3] Yao-Wu Guo, Yan Chen. Topological Fulde–Ferrell and Larkin–Ovchinnikov states in spin-orbit-coupled lattice system[J]. Front. Phys. , 2018, 13(2): 137402-.
[4] Shu-Yang Wang, Jing-Wei Jiang, Yue-Ran Shi, Qiongyi He, Qihuang Gong, Wei Zhang. Fulde–Ferrell–Larkin–Ovchinnikov pairing states between s- and p-orbital fermions[J]. Front. Phys. , 2017, 12(5): 126701-.
[5] Yin Zhong,Lan Zhang,Can Shao,Hong-Gang Luo. Superfluid response in heavy fermion superconductors[J]. Front. Phys. , 2017, 12(5): 127101-.
[6] Mike Guidry, Yang Sun. Superconductivity and superfluidity as universal emergent phenomena[J]. Front. Phys. , 2015, 10(4): 107404-.
[7] Alexander Yu. Cherny, Jean-Sébastien Caux, Joachim Brand. Theory of superfluidity and drag force in the one-dimensional Bose gas[J]. Front. Phys. , 2012, 7(1): 54-71.
[8] KOU Su-peng, WENG Zheng-yu, WEN Xiao-gang. Mutual Chern-Simons theory and its applications in condensed matter physics[J]. Front. Phys. , 2007, 2(1): 31-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed