|
|
Fast nuclear-spin gates and electrons−nuclei entanglement of neutral atoms in weak magnetic fields |
Xiao-Feng Shi( ) |
School of Physics, Xidian University, Xi’an 710071, China |
|
|
Abstract We present a novel class of Rydberg-mediated nuclear-spin entanglement in divalent atoms with global laser pulses. First, we show a fast nuclear-spin controlled phase gate of an arbitrary phase realizable either with two laser pulses when assisted by Stark shifts, or with three pulses. Second, we propose to create an electrons−nuclei-entangled state, which is named a super bell state (SBS) for it mimics a large Bell state incorporating three small Bell states. Third, we show a protocol to create a three-atom electrons-nuclei entangled state which contains the three-body W and Greenberger−Horne−Zeilinger (GHZ) states simultaneously. These protocols possess high intrinsic fidelities, do not require single-site Rydberg addressing, and can be executed with large Rydberg Rabi frequencies in a weak, Gauss-scale magnetic field. The latter two protocols can enable measurement-based preparation of Bell, hyperentangled, and GHZ states, and, specifically, SBS can enable quantum dense coding where one can share three classical bits of information by sending one particle.
|
Keywords
nuclear-spin qubit
electrons−nuclei entanglement
super Bell state
Greenberger−Horne−Zeilinger state
Rydberg-mediated entanglement
quantum dense coding
|
Corresponding Author(s):
Xiao-Feng Shi
|
Issue Date: 27 September 2023
|
|
1 |
Jaksch D., I. Cirac J., Zoller P., L. Rolston S., Cote R., D. Lukin M.. Fast quantum gates for neutral atoms. Phys. Rev. Lett., 2000, 85(10): 2208
https://doi.org/10.1103/PhysRevLett.85.2208
|
2 |
D. Lukin M., Fleischhauer M., Cote R., M. Duan L., Jaksch D., I. Cirac J., Zoller P.. Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett., 2001, 87(3): 037901
https://doi.org/10.1103/PhysRevLett.87.037901
|
3 |
Wilk T., Gaetan A., Evellin C., Wolters J., Miroshnychenko Y., Grangier P., Browaeys A.. Entanglement of two individual neutral atoms using Rydberg blockade. Phys. Rev. Lett., 2010, 104(1): 010502
https://doi.org/10.1103/PhysRevLett.104.010502
|
4 |
Isenhower L., Urban E., L. Zhang X., T. Gill A., Henage T., A. Johnson T., G. Walker T., Saffman M.. Demonstration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett., 2010, 104(1): 010503
https://doi.org/10.1103/PhysRevLett.104.010503
|
5 |
L. Zhang X., Isenhower L., T. Gill A., G. Walker T., Saffman M.. Deterministic entanglement of two neutral atoms via Rydberg blockade. Phys. Rev. A, 2010, 82: 030306(R)
https://doi.org/10.1103/PhysRevA.82.030306
|
6 |
M. Maller K., T. Lichtman M., Xia T., Sun Y., J. Piotrowicz M., W. Carr A., Isenhower L., Saffman M.. Rydberg-blockade controlled-not gate and entanglement in a two-dimensional array of neutral-atom qubits. Phys. Rev. A, 2015, 92(2): 022336
https://doi.org/10.1103/PhysRevA.92.022336
|
7 |
Y. Jau Y., M. Hankin A., Keating T., H. Deutsch I., W. Biedermann G.. Entangling atomic spins with a Rydberg-dressed spin-flip blockade. Nat. Phys., 2016, 12(1): 71
https://doi.org/10.1038/nphys3487
|
8 |
Zeng Y., Xu P., He X., Liu Y., Liu M., Wang J., J. Papoular D., V. Shlyapnikov G., Zhan M.. Entangling two individual atoms of different isotopes via Rydberg blockade. Phys. Rev. Lett., 2017, 119(16): 160502
https://doi.org/10.1103/PhysRevLett.119.160502
|
9 |
Levine H., Keesling A., Omran A., Bernien H., Schwartz S., S. Zibrov A., Endres M., Greiner M., Vuletíc V., D. Lukin M.. High-fidelity control and entanglement of Rydberg atom qubits. Phys. Rev. Lett., 2018, 121(12): 123603
https://doi.org/10.1103/PhysRevLett.121.123603
|
10 |
J. Picken C., Legaie R., McDonnell K., D. Pritchard J.. Entanglement of neutral-atom qubits with long ground-Rydberg coherence times. Quantum Sci. Technol., 2018, 4(1): 015011
https://doi.org/10.1088/2058-9565/aaf019
|
11 |
Levine H., Keesling A., Semeghini G., Omran A., T. Wang T., Ebadi S., Bernien H., Greiner M., Vuletíc V., Pichler H., D. Lukin M.. Parallel implementation of high-fidelity multi-qubit gates with neutral atoms. Phys. Rev. Lett., 2019, 123(17): 170503
https://doi.org/10.1103/PhysRevLett.123.170503
|
12 |
M. Graham T., Kwon M., Grinkemeyer B., Marra Z., Jiang X., T. Lichtman M., Sun Y., Ebert M., Saffman M.. Rydberg mediated entanglement in a two-dimensional neutral atom qubit array. Phys. Rev. Lett., 2019, 123(23): 230501
https://doi.org/10.1103/PhysRevLett.123.230501
|
13 |
Jo H., Song Y., Kim M., Ahn J.. Rydberg atom entanglements in the weak coupling regime. Phys. Rev. Lett., 2020, 124(3): 033603
https://doi.org/10.1103/PhysRevLett.124.033603
|
14 |
Fu Z., Xu P., Sun Y., Y. Liu Y., D. He X., Li X., Liu M., B. Li R., Wang J., Liu L., S. Zhan M.. High-fidelity entanglement of neutral atoms via a Rydberg-mediated single-modulated-pulse controlled-PHASE gate. Phys. Rev. A, 2022, 105(4): 042430
https://doi.org/10.1103/PhysRevA.105.042430
|
15 |
McDonnell K., F. Keary L., D. Pritchard J.. Demonstration of a quantum gate using electromagnetically induced transparency. Phys. Rev. Lett., 2022, 129(20): 200501
https://doi.org/10.1103/PhysRevLett.129.200501
|
16 |
Bluvstein D., Levine H., Semeghini G., T. Wang T., Ebadi S., Kalinowski M., Keesling A., Maskara N., Pichler H., Greiner M., Vuleti’c V., D. Lukin M.. A quantum processor based on coherent transport of entangled atom arrays. Nature, 2022, 604(7906): 451
https://doi.org/10.1038/s41586-022-04592-6
|
17 |
M. Graham T., Song Y., Scott J., Poole C., Phuttitarn L., Jooya K., Eichler P., Jiang X., Marra A., Grinkemeyer B., Kwon M., Ebert M., Cherek J., T. Lichtman M., Gillette M., Gilbert J., Bowman D., Ballance T., Campbell C., D. Dahl E., Crawford O., S. Blunt N., Rogers B., Noel T., Saffman M.. Multi-qubit entanglement and algorithms on a neutral-atom quantum computer. Nature, 2022, 604(7906): 457
https://doi.org/10.1038/s41586-022-04603-6
|
18 |
J. Evered S.Bluvstein D.Kalinowski M.Ebadi S.Manovitz T. Zhou H.H. Li S.A. Geim A.T. Wang T.Maskara N. Levine H.Semeghini G.Greiner M.Vuletic V.D. Lukin M., High-fidelity parallel entangling gates on a neutral atom quantum computer, arXiv: 2304.05420v1 (2023)
|
19 |
S. Madjarov I., P. Covey J., L. Shaw A., Choi J., Kale A., Cooper A., Pichler H., Schkolnik V., R. Williams J., Endres M.. High-fidelity entanglement and detection of alkaline-earth Rydberg atoms. Nat. Phys., 2020, 16(8): 857
https://doi.org/10.1038/s41567-020-0903-z
|
20 |
Ma S., P. Burgers A., Liu G., Wilson J., Zhang B., D. Thompson J.. Universal gate operations on nuclear spin qubits in an optical tweezer array of 171Yb atoms. Phys. Rev. X, 2022, 12(2): 021028
https://doi.org/10.1103/PhysRevX.12.021028
|
21 |
Schine N., W. Young A., J. Eckner W., J. Martin M., M. Kaufman A.. Long-lived Bell states in an array of optical clock qubits. Nat. Phys., 2022, 18(9): 1067
https://doi.org/10.1038/s41567-022-01678-w
|
22 |
Scholl P.L. Shaw A.B. S. Tsai R.Finkelstein R.Choi J. Endres M., Erasure conversion in a high-fidelity Rydberg quantum simulator, arXiv: 2305.03406v1 (2023)
|
23 |
Ma S.Liu G. Peng P.Zhang B.Jandura S.P. Burgers A.Pupillo G. Puri S.D. Thompson J., High-fidelity gates with mid-circuit erasure conversion in a metastable neutral atom qubit, arXiv: 2305.05493v1 (2023)
|
24 |
Yamamoto R., Kobayashi J., Kuno T., Kato K., Takahashi Y.. An ytterbium quantum gas microscope with narrow-line laser cooling. New J. Phys., 2016, 18(2): 023016
https://doi.org/10.1088/1367-2630/18/2/023016
|
25 |
Saskin S., T. Wilson J., Grinkemeyer B., D. Thompson J.. Narrow-line cooling and imaging of ytterbium atoms in an optical tweezer array. Phys. Rev. Lett., 2019, 122(14): 143002
https://doi.org/10.1103/PhysRevLett.122.143002
|
26 |
Cooper A., P. Covey J., S. Madjarov I., G. Porsev S., S. Safronova M., Endres M.. Alkaline-earth atoms in optical tweezers. Phys. Rev. X, 2018, 8(4): 041055
https://doi.org/10.1103/PhysRevX.8.041055
|
27 |
A. Norcia M., W. Young A., M. Kaufman A.. Microscopic control and detection of ultracold strontium in optical-tweezer arrays. Phys. Rev. X, 2018, 8(4): 041054
https://doi.org/10.1103/PhysRevX.8.041054
|
28 |
P. Covey J., S. Madjarov I., Cooper A., Endres M.. 2000-times repeated imaging of strontium atoms in clock-magic tweezer arrays. Phys. Rev. Lett., 2019, 122(17): 173201
https://doi.org/10.1103/PhysRevLett.122.173201
|
29 |
T. Wilson J., Saskin S., Meng Y., Ma S., Dilip R., P. Burgers A., D. Thompson J.. Trapping alkaline earth Rydberg atoms optical tweezer arrays. Phys. Rev. Lett., 2022, 128(3): 033201
https://doi.org/10.1103/PhysRevLett.128.033201
|
30 |
J. Daley A., M. Boyd M., Ye J., Zoller P.. Quantum computing with alkaline-earth-metal atoms. Phys. Rev. Lett., 2008, 101(17): 170504
https://doi.org/10.1103/PhysRevLett.101.170504
|
31 |
V. Gorshkov A., M. Rey A., J. Daley A., M. Boyd M., Ye J., Zoller P., D. Lukin M.. Alkaline-earth-metal atoms as few-qubit quantum registers. Phys. Rev. Lett., 2009, 102(11): 110503
https://doi.org/10.1103/PhysRevLett.102.110503
|
32 |
Reichenbach I., H. Deutsch I.. Sideband cooling while preserving coherences in the nuclear spin state in group-II-like atoms. Phys. Rev. Lett., 2007, 99(12): 123001
https://doi.org/10.1103/PhysRevLett.99.123001
|
33 |
F. Shi X.. Coherence-preserving cooling of nuclear-spin qubits in a weak magnetic field. Phys. Rev. A, 2023, 107(2): 023102
https://doi.org/10.1103/PhysRevA.107.023102
|
34 |
Omanakuttan S., Mitra A., J. Martin M., H. Deutsch I.. Quantum optimal control of ten-level nuclear spin qudits in 87Sr. Phys. Rev. A, 2021, 104(6): L060401
https://doi.org/10.1103/PhysRevA.104.L060401
|
35 |
Chen N., Li L., Huie W., Zhao M., Vetter I., H. Greene C., P. Covey J.. Analyzing the Rydberg-based optical-metastable-ground architecture for 171Yb nuclear spins. Phys. Rev. A, 2022, 105(5): 052438
https://doi.org/10.1103/PhysRevA.105.052438
|
36 |
M. Boyd M., Zelevinsky T., D. Ludlow A., Blatt S., Zanon-Willette T., M. Foreman S., Ye J.. Nuclear spin effects in optical lattice clocks. Phys. Rev. A, 2007, 76(2): 022510
https://doi.org/10.1103/PhysRevA.76.022510
|
37 |
F. Shi X.. Rydberg quantum computation with nuclear spins in two-electron neutral atoms. Front. Phys., 2021, 16(5): 52501
https://doi.org/10.1007/s11467-021-1069-6
|
38 |
F. Shi X.. Fast, accurate, and realizable two-qubit entangling gates by quantum interference in detuned Rabi cycles of Rydberg atoms. Phys. Rev. Appl., 2019, 11(4): 044035
https://doi.org/10.1103/PhysRevApplied.11.044035
|
39 |
Barnes K., Battaglino P., J. Bloom B., Cassella K., Coxe N., Crisosto N., P. King J., S. Kondov S., Kotru K., C. Larsen S., Lauigan J., J. Lester B., McDonald M., Megidish E., Narayanaswami S., Nishiguchi C., Notermans R., S. Peng L., Ryou A., Y. Wu T., Yarwood M.. Assembly and coherent control of a register of nuclear spin qubits. Nat. Commun., 2022, 13(1): 2779
https://doi.org/10.1038/s41467-022-29977-z
|
40 |
Jenkins A., W. Lis J., Senoo A., F. McGrew W., M. Kaufman A.. Ytterbium nuclear-spin qubits in an optical tweezer array. Phys. Rev. X, 2022, 12(2): 021027
https://doi.org/10.1103/PhysRevX.12.021027
|
41 |
H. Bennett C., J. Wiesner S.. Communication via one- and two-particle operators on Einstein−Podolsky−Rosen states. Phys. Rev. Lett., 1992, 69(20): 2881
https://doi.org/10.1103/PhysRevLett.69.2881
|
42 |
Dür W., Vidal G., I. Cirac J.. Three qubits can be entangled in two inequivalent ways. Phys. Rev. A, 2000, 62(6): 062314
https://doi.org/10.1103/PhysRevA.62.062314
|
43 |
Fang B., Menotti M., Liscidini M., E. Sipe J., O. Lorenz V.. Three-photon discrete-energy-entangled W state in an optical fiber. Phys. Rev. Lett., 2019, 123(7): 070508
https://doi.org/10.1103/PhysRevLett.123.070508
|
44 |
M. Greenberger D.Horne M.Zeilinger A., Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, edited by M. Kafatos, Kluwer, Dordrecht, 1989
|
45 |
F. Shi X.. Hyperentanglement of divalent neutral atoms by Rydberg blockade. Phys. Rev. A, 2021, 104(4): 042422
https://doi.org/10.1103/PhysRevA.104.042422
|
46 |
Saffman M., G. Walker T., Mølmer K.. Quantum information with Rydberg atoms. Rev. Mod. Phys., 2010, 82(3): 2313
https://doi.org/10.1103/RevModPhys.82.2313
|
47 |
F. Shi X.. Quantum logic and entanglement by neutral Rydberg atoms: Methods and fidelity. Quantum Sci. Technol., 2022, 7(2): 023002
https://doi.org/10.1088/2058-9565/ac18b8
|
48 |
P. Burgers A., Ma S., Saskin S., Wilson J., A. Alarcón M., H. Greene C., D. Thompson J.. Controlling Rydberg excitations using ion core transitions in alkaline earth atom tweezer arrays. PRX Quantum, 2022, 3(2): 020326
https://doi.org/10.1103/PRXQuantum.3.020326
|
49 |
Ding R., D. Whalen J., K. Kanungo S., C. Killian T., B. Dunning F., Yoshida S., Burgdörfer J.. Spectroscopy of 87Sr triplet Rydberg states. Phys. Rev. A, 2018, 98(4): 042505
https://doi.org/10.1103/PhysRevA.98.042505
|
50 |
Lurio A., Mandel M., Novick R.. Second-order hyperfine and Zeeman corrections for an (sl) configuration. Phys. Rev., 1962, 126(5): 1758
https://doi.org/10.1103/PhysRev.126.1758
|
51 |
F. Shi X.. Rydberg quantum gates free from blockade error. Phys. Rev. Appl., 2017, 7(6): 064017
https://doi.org/10.1103/PhysRevApplied.7.064017
|
52 |
F. Shi X.. Accurate quantum logic gates by spin echo in Rydberg atoms. Phys. Rev. Appl., 2018, 10(3): 034006
https://doi.org/10.1103/PhysRevApplied.10.034006
|
53 |
P. Williams C., Explorations in Quantum Computing, 2nd Ed., edited by D. Gries and F. B. Schneider, Texts in Computer Science, Springer-Verlag, London, 2011
|
54 |
Saffman M., G. Walker T.. Analysis of a quantum logic device based on dipole−dipole interactions of optically trapped Rydberg atoms. Phys. Rev. A, 2005, 72(2): 022347
https://doi.org/10.1103/PhysRevA.72.022347
|
55 |
H. Pedersen L., M. Møller N., Mølmer K.. Fidelity of quantum operations. Phys. Lett. A, 2007, 367(1−2): 47
https://doi.org/10.1016/j.physleta.2007.02.069
|
56 |
F. Shi X.. Deutsch, Toffoli, and CNOT gates via rydberg blockade of neutral atoms. Phys. Rev. Appl., 2018, 9: 051001(R)
https://doi.org/10.1103/PhysRevApplied.9.051001
|
57 |
F. Shi X.. Transition slow-down by Rydberg interaction of neutral atoms and a fast controlled-NOT quantum gate. Phys. Rev. Appl., 2020, 14(5): 054058
https://doi.org/10.1103/PhysRevApplied.14.054058
|
58 |
L. Wu J., Wang Y., X. Han J., L. Su S., Xia Y., Jiang Y., Song J.. Unselective ground-state blockade of Rydberg atoms for implementing quantum gates. Front. Phys., 2022, 17(2): 22501
https://doi.org/10.1007/s11467-021-1104-7
|
59 |
Liu S., H. Shen J., H. Zheng R., H. Kang Y., C. Shi Z., Song J., Xia Y.. Optimized nonadiabatic holonomic quantum computation based on Förster resonance in Rydberg atoms. Front. Phys., 2022, 17(2): 21502
https://doi.org/10.1007/s11467-021-1108-3
|
60 |
M. Stojanović V., K. Nauth J.. Interconversion of W and Greenberger−Horne−Zeilinger states for Ising-coupled qubits with transverse global control. Phys. Rev. A, 2022, 106(5): 052613
https://doi.org/10.1103/PhysRevA.106.052613
|
61 |
Wu X., Liang X., Tian Y., Yang F., Chen C., C. Liu Y., K. Tey M., You L.. A concise review of Rydberg atom based quantum computation and quantum simulation. Chin. Phys. B, 2021, 30(2): 020305
https://doi.org/10.1088/1674-1056/abd76f
|
62 |
R. Chong D., Kim M., Ahn J., Jeong H.. Machine learning identification of symmetrized base states of Rydberg atoms. Front. Phys., 2022, 17(1): 12504
https://doi.org/10.1007/s11467-021-1099-0
|
63 |
Zhang H., Wu J., Artoni M., C. La Rocca G.. Single-photon-level light storage with distributed Rydberg excitations in cold atoms. Front. Phys., 2022, 17(2): 22502
https://doi.org/10.1007/s11467-021-1105-6
|
64 |
P. Covey J., Sipahigil A., Szoke S., Sinclair N., Endres M., Painter O.. Telecom-band quantum optics with ytterbium atoms and silicon nanophotonics. Phys. Rev. Appl., 2019, 11(3): 034044
https://doi.org/10.1103/PhysRevApplied.11.034044
|
65 |
D. Boozer A., Boca A., Miller R., E. Northup T., J. Kimble H.. Reversible state transfer between light and a single trapped atom. Phys. Rev. Lett., 2007, 98(19): 193601
https://doi.org/10.1103/PhysRevLett.98.193601
|
66 |
Wu Y., Kolkowitz S., Puri S., D. Thompson J.. Erasure conversion for fault-tolerant quantum computing in alkaline earth Rydberg atom arrays. Nat. Commun., 2022, 13(1): 4657
https://doi.org/10.1038/s41467-022-32094-6
|
67 |
Mitra A., J. Martin M., W. Biedermann G., M. Marino A., M. Poggi P., H. Deutsch I.. Robust Mølmer−Sørensen gate for neutral atoms using rapid adiabatic Rydberg dressing. Phys. Rev. A, 2020, 101: 030301(R)
https://doi.org/10.1103/PhysRevA.101.030301
|
68 |
L. Pham K., F. Gallagher T., Pillet P., Lepoutre S., Cheinet P.. A coherent light shift on alkaline-earth Rydberg atoms from isolated core excitation without auto-ionization. PRX Quantum, 2022, 3(2): 020327
https://doi.org/10.1103/PRXQuantum.3.020327
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|