Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (2) : 22203    https://doi.org/10.1007/s11467-023-1332-0
RESEARCH ARTICLE
Fast nuclear-spin gates and electrons−nuclei entanglement of neutral atoms in weak magnetic fields
Xiao-Feng Shi()
School of Physics, Xidian University, Xi’an 710071, China
 Download: PDF(6849 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We present a novel class of Rydberg-mediated nuclear-spin entanglement in divalent atoms with global laser pulses. First, we show a fast nuclear-spin controlled phase gate of an arbitrary phase realizable either with two laser pulses when assisted by Stark shifts, or with three pulses. Second, we propose to create an electrons−nuclei-entangled state, which is named a super bell state (SBS) for it mimics a large Bell state incorporating three small Bell states. Third, we show a protocol to create a three-atom electrons-nuclei entangled state which contains the three-body W and Greenberger−Horne−Zeilinger (GHZ) states simultaneously. These protocols possess high intrinsic fidelities, do not require single-site Rydberg addressing, and can be executed with large Rydberg Rabi frequencies in a weak, Gauss-scale magnetic field. The latter two protocols can enable measurement-based preparation of Bell, hyperentangled, and GHZ states, and, specifically, SBS can enable quantum dense coding where one can share three classical bits of information by sending one particle.

Keywords nuclear-spin qubit      electrons−nuclei entanglement      super Bell state      Greenberger−Horne−Zeilinger state      Rydberg-mediated entanglement      quantum dense coding     
Corresponding Author(s): Xiao-Feng Shi   
Issue Date: 27 September 2023
 Cite this article:   
Xiao-Feng Shi. Fast nuclear-spin gates and electrons−nuclei entanglement of neutral atoms in weak magnetic fields[J]. Front. Phys. , 2024, 19(2): 22203.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1332-0
https://academic.hep.com.cn/fop/EN/Y2024/V19/I2/22203
Fig.1  Rydberg excitation of two nuclear-spin qubit states |? and |? in |c?|(6 s2)3P 0| I=1 /2,m I=1/2? and |c?|(6 s2)3P 0| I=1 /2,m I=1 /2 ? to two respective Rydberg states |r ? and |r +?, where c denotes the clock state with 171Yb as an example. In a B-field of several Gauss (1 G= 10 4 T), the two nuclear spin states in the clock state are nearly degenerate compared to the MHz-scale Rabi frequencies considered in this paper. The laser fields are π polarized and tuned to the middle of the gap between |r+? and |r?.
Fig.2  State dynamics for different input states when ignoring Rydberg-state decay in the controlled-phase gate (with β= π as an example here). (a) |Ω x|/Δ as a function of time during the three pulses of the nuclear-spin gate. Here, the largest Rabi frequency is | Ω1|=| Ω 3|=2π× 3.25 MHz, and the relative phases of the three Rabi frequencies are 0,3π/4,π/2. The Rydberg interaction is V0/(2π) =260 MHz (its fluctuation is studied in Section 2.4). (b−d) show the population and phase of the ground-state component in the wavefunction when the input states for the gate protocol are |cc?, |cc?, and |cc?, respectively. The final population errors in the target ground states are 2.6×105, 2.1×105, and 2.4×105 in (b), (c), and (d), respectively, and their final phases are 1.771, 1.587, and 1.816 rad, respectively. The state dynamics for the input state |cc? is similar to that of |cc?.
Fig.3  Rotation error of the nuclear-spin gate (scaled by 105) of Eq. (10) averaged by uniformly varying the Rydberg interaction V in [(1?)V0, (1+?) V0], where V0/(2π) =260 MHz. The fluctuation of V leads to phases different from the desired phases in Eq. (9). The largest Rabi frequency in the simulation is |Ω 1|/(2π)=3.25 MHz shown in Fig.2(a). The gate fidelity 1E ¯ r oE d ec ay is over 0.995 for the ? shown here, where the gate error is dominated by Edecay=4.15× 10 3 due to the short Rydberg state lifetime τ=100 μs.
First pulse Second pulse Third pulse Total duration
Three-pulse gate Rabi frequency 1.6088Δ 0.5932ei3π /4Δ 1.6088eiβ/2Δ 3.14π /Δ
pulse duration 0.805π /Δ 1.532π /Δ 0.805π /Δ or 5.05π /Ω m
Two-pulse gate Rabi frequency 1.6088Δ 1.6088 ei(β/2+κ)Δ (not applicable) 1.61π /Δ
pulse duration 0.805π /Δ 0.805π /Δ or 2.59π /Ω m
Tab.1  Parameters for creating nuclear-spin controlled-phase gate of phase β. In the ideal blockade condition the gate map is diag{eiα, e iβ /2, e iβ /2, eiα}, where α is about 1.79 rad in the three-pulse gate, and is zero in the two-pulse gate. A CZ gate is realized via single-qubit rotations when choosing β=π for both cases here. κ is a phase to compensate an overall phase factor in the frame transform as discussed around Eq. (12).
Fig.4  State dynamics of the two-pulse nuclear-spin gate with β= π and | Ω2|=Ω 12π×3.25 MHz as an example. (a) The two laser pulses have the same strength and duration. The relative phase of the two Rabi frequencies are 0 and π/ 2+κ, where κ is given above Eq. (12). A Stark shift 4Δ 8.08 MHz was assumed in |r? during the second pulse, and the frequency of the laser during the second pulse increases by 2Δ compared to the first pulse. The Rydberg interaction is V0/(2π)=260 MHz. (b−d) show the population and phase of the ground-state component in the wavefunction when the input states for the gate protocol are |cc?, |cc?, and |cc?, respectively. The final population errors in the target ground states are 4.4× 10 5, 1.24× 10 4, and 4.4× 10 5 in (a), (b), and (c), respectively, and their final phases are 0.0213, 1.5583, and 0.0213 rad, respectively.
Fig.5  Rotation error of the nuclear-spin gate (scaled by 104) averaged by uniformly varying the Rydberg interaction V in [(1?)V0, (1+?) V0], where V0/(2π) =260 MHz. Other parameters are the same as in Fig.4. The gate fidelity 1E ¯ r oE d ec ay is over 0.997 for the ? shown here, where the gate error is dominated by Edecay=2.26× 10 3.
Fig.6  State dynamics of the SBS protocol for different input states with V0/(2π) =260 MHz and maximal Rabi frequency Ω(S)/(2π )2.28 MHz when ignoring Rydberg-state decay. (a) Magnitudes of Rabi frequencies in units of Δ. Here, the third pulse is with two-photon laser excitation, where one laser is resonant for the transition |g?|r+? and the other laser resonant for |g?|r?, each with a Rabi frequency Ωeff= 2π×1 MHz. These two lasers can be from one laser source via pulse pickers for shifting the frequency of one sub-beam by 2Δ. (b−d) show the population of the ground-state component in the wavefunction when the input states for the SBS protocol are |cc?, |cc?, and |cc?, respectively. The thin (thick) curves in (b) and (d) denote population in the product (Bell) states. For the target ground states |Φ? e |↑↑? n in (b), |cc? in (c), and |Φ? e |↓↓? n in (d), the final populations are 11.4× 10 4, 1 3.1×105, and 15.5× 10 5 respectively, and the final phases are Δ[ Tp1({S} )+ Tp2({S} )]2.406 rad, 0.009 rad, and Δ[ Tp1({S} )+ Tp2({S} )]0.697 rad, respectively. These are different from those described in Sections 4.1.2 and 4.1.3 for the Rydberg interaction here is finite (its fluctuation is studied in Section 4.2).
Fig.7  Rotation error (scaled by 104) of Eq. (26) averaged by uniformly varying the Rydberg interaction V in [(1? )V0,(1+? )V0] for creating SBS. Here, V0/(2π) =260 MHz, Ωeff/(2π )=1 MHz, and Ω(S) and Δ are given by Eqs. (18) and (19). The fidelity of SBS generation, 1E ¯ r oE d ec ay, is about 0.992 dominated by the Rydberg-state decay Edecay=7.51× 10 3 due to the short Rydberg state lifetime τ=100μs.
Initial state Final state First pulse (clock-Rydberg) Second pulse (clock-Rydberg) Third pulse (ground-Rydberg) Total duration
|SB? | c? +| c?2 1 2(|cc? e |Φ? n +|Φ? e |Ψ? n) Rabi: Ω (S)= 1.608Δ Tp1:2.12π/Ω (S) Rabi: 0.4606Ω (S) T p2:2.85π/Ω (S) Rabi: 0.4393 Ω(S)T p3:2.71π/Ω (S) 7.69π/ Ω(S)
|?? | c? +| c?2 1 2[(3| c cc? e |? ?n +| W ?e |GHZ ?n)] Rabi: Ω (?)=1.976ΔT p1 (?): 5.93π/ Ω(? ) Rabi: 0.3735Ω (?) Tp2(?):1.9π /Ω (?) Rabi: 0.3073 Ω(? )T p3 (?): 3.54π/ Ω(? ) 11.4π/ Ω(? )
Tab.2  Parameters for creating the two-atom super Bell state of Eq. (1) and the three-atom entangled state of Eq. (3).
Fig.8  State dynamics of the |?? protocol for different input states with V0/(2π) =260 MHz and maximal Rabi frequency Ω(? )/(2π) 3.25 MHz when ignoring Rydberg-state decay. (a) Magnitudes of Rabi frequencies in units of Δ. (b−e) show the population of the ground-state component in the wavefunction when the input states for the gate protocol are |ccc?, |ccc? ,| ccc?, and |ccc?, respectively. The thin and thick curves in (b) and (e) denote population in the product and W states, respectively. For the target ground states |W? e |↑↑↑? n in (b), |ccc? in (c), |ccc? in (d), and |W? e |↓↓↓? n in (e), the final populations are 0.9986, 0.9968, 0.9988, and 0.9982 respectively, and the final phases are ϑ1=Δ[ Tp1(? )+ Tp2(? )]2.532 rad, ϑ2=0.7648 rad, ϑ3=0.9795 rad, and ϑ4=Δ[Tp1(? )+ Tp2(? )]0.385 rad, respectively.
Fig.9  Rotation error (scaled by 103) averaged by uniformly varying the Rydberg interaction V in [(1?)V0, (1+?) V0] for creating |??. Here, V0/(2π)=260 MHz, Ωeff(?)/ (2π)=1 MHz, and Ω(?) and Δ are given by Eqs. (31) and (32). The fidelity to generate |?? in the form of Eq. (33), 1E ¯ r oE d ec ay, is about 0.988 for ?=0.8.
Fig.10  Scheme for mapping atomic states to photons. (a) An atom is placed inside a Fabry−Perot resonator. The quantization axis is along z specified by an external magnetic field Bz. Laser fields sent along x or y directions can couple the ground or clock states of the atoms to 6s5d 3D1,F=3/2. (b) The two ground Zeeman substates |g ? and |g? are coupled to the mF=3/2 and mF=3/2 states of 6s5d 3D1,F=3/2 via the intermediate state 6s6p3P1. The detuning at 6s6p 3P1 is large compared to the Zeeman splitting which is not shown in the figure. The lower transition is with a z-polarized field, and the upper field is x-polarized. The dashed arrows show transitions largely detuned so that no transition occurs there. (c) The two nuclear-spin substates |c? and |c? are coupled to the mF=3 /2 and mF= 3/ 2 states of 6s5d 3D1,F=3/2. Dashed arrows indicate detuned transitions where no population transfer occurs. (d) The cavity mode is nearly resonant with the transition 6s5d3D 1,F=3/26s 6p 3P1 ,F=1/2, in which the g factor of the lower state is nearly six times that of the upper state, and the Zeeman splitting between the two transitions indicated by the two arrows is about μBB, which is supposed to be small compared to the cavity linewidth. We assume that the cavity photon is coupled almost perfectly to an optical fibre which is not shown here. Mapping of the the SBS state of atoms to that of photons proceeds as follows. (i) Move the two atoms to two cavities; (ii) The processes in (b) and (d) map the nuclear-spin states in the ground-state atoms to polarization qubits of photons; (iii) Use (c) and (d) to map the nuclear-spin states in the clock-state atoms to polarization qubits of photons. Because of the time gap between the steps (ii) and (iii), the “g” and “c” degree of freedom of atoms is mapped to the time-bin degree of freedom of photons.
  Fig. E1State dynamics of the |?? protocol with a faster speed with V0/(2π)=260 MHz and maximal Rabi frequency Ω(? )/(2π) 3.25 MHz when ignoring Rydberg-state decay. The meaning of the contents are the same as those in Fig.8. In (b) and (e), there is some population not transferred to the Rydberg state at the end of the second pulse, which results in a larger error of the entanglement generation compared to the case described around Fig.8.
  Fig. E2 Rotation error (scaled by 100) averaged by uniformly varying the Rydberg interaction V in [(1? )V0,(1+? )V0] for creating |?? with the parameters of Fig. E1 and Appendix E. The fidelity to generate |?? in the form similar to that in Eq. (33), 1 E ¯ roE decay, is about 0.972 for ?=0.8.
1 Jaksch D., I. Cirac J., Zoller P., L. Rolston S., Cote R., D. Lukin M.. Fast quantum gates for neutral atoms. Phys. Rev. Lett., 2000, 85(10): 2208
https://doi.org/10.1103/PhysRevLett.85.2208
2 D. Lukin M., Fleischhauer M., Cote R., M. Duan L., Jaksch D., I. Cirac J., Zoller P.. Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett., 2001, 87(3): 037901
https://doi.org/10.1103/PhysRevLett.87.037901
3 Wilk T., Gaetan A., Evellin C., Wolters J., Miroshnychenko Y., Grangier P., Browaeys A.. Entanglement of two individual neutral atoms using Rydberg blockade. Phys. Rev. Lett., 2010, 104(1): 010502
https://doi.org/10.1103/PhysRevLett.104.010502
4 Isenhower L., Urban E., L. Zhang X., T. Gill A., Henage T., A. Johnson T., G. Walker T., Saffman M.. Demonstration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett., 2010, 104(1): 010503
https://doi.org/10.1103/PhysRevLett.104.010503
5 L. Zhang X., Isenhower L., T. Gill A., G. Walker T., Saffman M.. Deterministic entanglement of two neutral atoms via Rydberg blockade. Phys. Rev. A, 2010, 82: 030306(R)
https://doi.org/10.1103/PhysRevA.82.030306
6 M. Maller K., T. Lichtman M., Xia T., Sun Y., J. Piotrowicz M., W. Carr A., Isenhower L., Saffman M.. Rydberg-blockade controlled-not gate and entanglement in a two-dimensional array of neutral-atom qubits. Phys. Rev. A, 2015, 92(2): 022336
https://doi.org/10.1103/PhysRevA.92.022336
7 Y. Jau Y., M. Hankin A., Keating T., H. Deutsch I., W. Biedermann G.. Entangling atomic spins with a Rydberg-dressed spin-flip blockade. Nat. Phys., 2016, 12(1): 71
https://doi.org/10.1038/nphys3487
8 Zeng Y., Xu P., He X., Liu Y., Liu M., Wang J., J. Papoular D., V. Shlyapnikov G., Zhan M.. Entangling two individual atoms of different isotopes via Rydberg blockade. Phys. Rev. Lett., 2017, 119(16): 160502
https://doi.org/10.1103/PhysRevLett.119.160502
9 Levine H., Keesling A., Omran A., Bernien H., Schwartz S., S. Zibrov A., Endres M., Greiner M., Vuletíc V., D. Lukin M.. High-fidelity control and entanglement of Rydberg atom qubits. Phys. Rev. Lett., 2018, 121(12): 123603
https://doi.org/10.1103/PhysRevLett.121.123603
10 J. Picken C., Legaie R., McDonnell K., D. Pritchard J.. Entanglement of neutral-atom qubits with long ground-Rydberg coherence times. Quantum Sci. Technol., 2018, 4(1): 015011
https://doi.org/10.1088/2058-9565/aaf019
11 Levine H., Keesling A., Semeghini G., Omran A., T. Wang T., Ebadi S., Bernien H., Greiner M., Vuletíc V., Pichler H., D. Lukin M.. Parallel implementation of high-fidelity multi-qubit gates with neutral atoms. Phys. Rev. Lett., 2019, 123(17): 170503
https://doi.org/10.1103/PhysRevLett.123.170503
12 M. Graham T., Kwon M., Grinkemeyer B., Marra Z., Jiang X., T. Lichtman M., Sun Y., Ebert M., Saffman M.. Rydberg mediated entanglement in a two-dimensional neutral atom qubit array. Phys. Rev. Lett., 2019, 123(23): 230501
https://doi.org/10.1103/PhysRevLett.123.230501
13 Jo H., Song Y., Kim M., Ahn J.. Rydberg atom entanglements in the weak coupling regime. Phys. Rev. Lett., 2020, 124(3): 033603
https://doi.org/10.1103/PhysRevLett.124.033603
14 Fu Z., Xu P., Sun Y., Y. Liu Y., D. He X., Li X., Liu M., B. Li R., Wang J., Liu L., S. Zhan M.. High-fidelity entanglement of neutral atoms via a Rydberg-mediated single-modulated-pulse controlled-PHASE gate. Phys. Rev. A, 2022, 105(4): 042430
https://doi.org/10.1103/PhysRevA.105.042430
15 McDonnell K., F. Keary L., D. Pritchard J.. Demonstration of a quantum gate using electromagnetically induced transparency. Phys. Rev. Lett., 2022, 129(20): 200501
https://doi.org/10.1103/PhysRevLett.129.200501
16 Bluvstein D., Levine H., Semeghini G., T. Wang T., Ebadi S., Kalinowski M., Keesling A., Maskara N., Pichler H., Greiner M., Vuleti’c V., D. Lukin M.. A quantum processor based on coherent transport of entangled atom arrays. Nature, 2022, 604(7906): 451
https://doi.org/10.1038/s41586-022-04592-6
17 M. Graham T., Song Y., Scott J., Poole C., Phuttitarn L., Jooya K., Eichler P., Jiang X., Marra A., Grinkemeyer B., Kwon M., Ebert M., Cherek J., T. Lichtman M., Gillette M., Gilbert J., Bowman D., Ballance T., Campbell C., D. Dahl E., Crawford O., S. Blunt N., Rogers B., Noel T., Saffman M.. Multi-qubit entanglement and algorithms on a neutral-atom quantum computer. Nature, 2022, 604(7906): 457
https://doi.org/10.1038/s41586-022-04603-6
18 J. Evered S.Bluvstein D.Kalinowski M.Ebadi S.Manovitz T. Zhou H.H. Li S.A. Geim A.T. Wang T.Maskara N. Levine H.Semeghini G.Greiner M.Vuletic V.D. Lukin M., High-fidelity parallel entangling gates on a neutral atom quantum computer, arXiv: 2304.05420v1 (2023)
19 S. Madjarov I., P. Covey J., L. Shaw A., Choi J., Kale A., Cooper A., Pichler H., Schkolnik V., R. Williams J., Endres M.. High-fidelity entanglement and detection of alkaline-earth Rydberg atoms. Nat. Phys., 2020, 16(8): 857
https://doi.org/10.1038/s41567-020-0903-z
20 Ma S., P. Burgers A., Liu G., Wilson J., Zhang B., D. Thompson J.. Universal gate operations on nuclear spin qubits in an optical tweezer array of 171Yb atoms. Phys. Rev. X, 2022, 12(2): 021028
https://doi.org/10.1103/PhysRevX.12.021028
21 Schine N., W. Young A., J. Eckner W., J. Martin M., M. Kaufman A.. Long-lived Bell states in an array of optical clock qubits. Nat. Phys., 2022, 18(9): 1067
https://doi.org/10.1038/s41567-022-01678-w
22 Scholl P.L. Shaw A.B. S. Tsai R.Finkelstein R.Choi J. Endres M., Erasure conversion in a high-fidelity Rydberg quantum simulator, arXiv: 2305.03406v1 (2023)
23 Ma S.Liu G. Peng P.Zhang B.Jandura S.P. Burgers A.Pupillo G. Puri S.D. Thompson J., High-fidelity gates with mid-circuit erasure conversion in a metastable neutral atom qubit, arXiv: 2305.05493v1 (2023)
24 Yamamoto R., Kobayashi J., Kuno T., Kato K., Takahashi Y.. An ytterbium quantum gas microscope with narrow-line laser cooling. New J. Phys., 2016, 18(2): 023016
https://doi.org/10.1088/1367-2630/18/2/023016
25 Saskin S., T. Wilson J., Grinkemeyer B., D. Thompson J.. Narrow-line cooling and imaging of ytterbium atoms in an optical tweezer array. Phys. Rev. Lett., 2019, 122(14): 143002
https://doi.org/10.1103/PhysRevLett.122.143002
26 Cooper A., P. Covey J., S. Madjarov I., G. Porsev S., S. Safronova M., Endres M.. Alkaline-earth atoms in optical tweezers. Phys. Rev. X, 2018, 8(4): 041055
https://doi.org/10.1103/PhysRevX.8.041055
27 A. Norcia M., W. Young A., M. Kaufman A.. Microscopic control and detection of ultracold strontium in optical-tweezer arrays. Phys. Rev. X, 2018, 8(4): 041054
https://doi.org/10.1103/PhysRevX.8.041054
28 P. Covey J., S. Madjarov I., Cooper A., Endres M.. 2000-times repeated imaging of strontium atoms in clock-magic tweezer arrays. Phys. Rev. Lett., 2019, 122(17): 173201
https://doi.org/10.1103/PhysRevLett.122.173201
29 T. Wilson J., Saskin S., Meng Y., Ma S., Dilip R., P. Burgers A., D. Thompson J.. Trapping alkaline earth Rydberg atoms optical tweezer arrays. Phys. Rev. Lett., 2022, 128(3): 033201
https://doi.org/10.1103/PhysRevLett.128.033201
30 J. Daley A., M. Boyd M., Ye J., Zoller P.. Quantum computing with alkaline-earth-metal atoms. Phys. Rev. Lett., 2008, 101(17): 170504
https://doi.org/10.1103/PhysRevLett.101.170504
31 V. Gorshkov A., M. Rey A., J. Daley A., M. Boyd M., Ye J., Zoller P., D. Lukin M.. Alkaline-earth-metal atoms as few-qubit quantum registers. Phys. Rev. Lett., 2009, 102(11): 110503
https://doi.org/10.1103/PhysRevLett.102.110503
32 Reichenbach I., H. Deutsch I.. Sideband cooling while preserving coherences in the nuclear spin state in group-II-like atoms. Phys. Rev. Lett., 2007, 99(12): 123001
https://doi.org/10.1103/PhysRevLett.99.123001
33 F. Shi X.. Coherence-preserving cooling of nuclear-spin qubits in a weak magnetic field. Phys. Rev. A, 2023, 107(2): 023102
https://doi.org/10.1103/PhysRevA.107.023102
34 Omanakuttan S., Mitra A., J. Martin M., H. Deutsch I.. Quantum optimal control of ten-level nuclear spin qudits in 87Sr. Phys. Rev. A, 2021, 104(6): L060401
https://doi.org/10.1103/PhysRevA.104.L060401
35 Chen N., Li L., Huie W., Zhao M., Vetter I., H. Greene C., P. Covey J.. Analyzing the Rydberg-based optical-metastable-ground architecture for 171Yb nuclear spins. Phys. Rev. A, 2022, 105(5): 052438
https://doi.org/10.1103/PhysRevA.105.052438
36 M. Boyd M., Zelevinsky T., D. Ludlow A., Blatt S., Zanon-Willette T., M. Foreman S., Ye J.. Nuclear spin effects in optical lattice clocks. Phys. Rev. A, 2007, 76(2): 022510
https://doi.org/10.1103/PhysRevA.76.022510
37 F. Shi X.. Rydberg quantum computation with nuclear spins in two-electron neutral atoms. Front. Phys., 2021, 16(5): 52501
https://doi.org/10.1007/s11467-021-1069-6
38 F. Shi X.. Fast, accurate, and realizable two-qubit entangling gates by quantum interference in detuned Rabi cycles of Rydberg atoms. Phys. Rev. Appl., 2019, 11(4): 044035
https://doi.org/10.1103/PhysRevApplied.11.044035
39 Barnes K., Battaglino P., J. Bloom B., Cassella K., Coxe N., Crisosto N., P. King J., S. Kondov S., Kotru K., C. Larsen S., Lauigan J., J. Lester B., McDonald M., Megidish E., Narayanaswami S., Nishiguchi C., Notermans R., S. Peng L., Ryou A., Y. Wu T., Yarwood M.. Assembly and coherent control of a register of nuclear spin qubits. Nat. Commun., 2022, 13(1): 2779
https://doi.org/10.1038/s41467-022-29977-z
40 Jenkins A., W. Lis J., Senoo A., F. McGrew W., M. Kaufman A.. Ytterbium nuclear-spin qubits in an optical tweezer array. Phys. Rev. X, 2022, 12(2): 021027
https://doi.org/10.1103/PhysRevX.12.021027
41 H. Bennett C., J. Wiesner S.. Communication via one- and two-particle operators on Einstein−Podolsky−Rosen states. Phys. Rev. Lett., 1992, 69(20): 2881
https://doi.org/10.1103/PhysRevLett.69.2881
42 Dür W., Vidal G., I. Cirac J.. Three qubits can be entangled in two inequivalent ways. Phys. Rev. A, 2000, 62(6): 062314
https://doi.org/10.1103/PhysRevA.62.062314
43 Fang B., Menotti M., Liscidini M., E. Sipe J., O. Lorenz V.. Three-photon discrete-energy-entangled W state in an optical fiber. Phys. Rev. Lett., 2019, 123(7): 070508
https://doi.org/10.1103/PhysRevLett.123.070508
44 M. Greenberger D.Horne M.Zeilinger A., Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, edited by M. Kafatos, Kluwer, Dordrecht, 1989
45 F. Shi X.. Hyperentanglement of divalent neutral atoms by Rydberg blockade. Phys. Rev. A, 2021, 104(4): 042422
https://doi.org/10.1103/PhysRevA.104.042422
46 Saffman M., G. Walker T., Mølmer K.. Quantum information with Rydberg atoms. Rev. Mod. Phys., 2010, 82(3): 2313
https://doi.org/10.1103/RevModPhys.82.2313
47 F. Shi X.. Quantum logic and entanglement by neutral Rydberg atoms: Methods and fidelity. Quantum Sci. Technol., 2022, 7(2): 023002
https://doi.org/10.1088/2058-9565/ac18b8
48 P. Burgers A., Ma S., Saskin S., Wilson J., A. Alarcón M., H. Greene C., D. Thompson J.. Controlling Rydberg excitations using ion core transitions in alkaline earth atom tweezer arrays. PRX Quantum, 2022, 3(2): 020326
https://doi.org/10.1103/PRXQuantum.3.020326
49 Ding R., D. Whalen J., K. Kanungo S., C. Killian T., B. Dunning F., Yoshida S., Burgdörfer J.. Spectroscopy of 87Sr triplet Rydberg states. Phys. Rev. A, 2018, 98(4): 042505
https://doi.org/10.1103/PhysRevA.98.042505
50 Lurio A., Mandel M., Novick R.. Second-order hyperfine and Zeeman corrections for an (sl) configuration. Phys. Rev., 1962, 126(5): 1758
https://doi.org/10.1103/PhysRev.126.1758
51 F. Shi X.. Rydberg quantum gates free from blockade error. Phys. Rev. Appl., 2017, 7(6): 064017
https://doi.org/10.1103/PhysRevApplied.7.064017
52 F. Shi X.. Accurate quantum logic gates by spin echo in Rydberg atoms. Phys. Rev. Appl., 2018, 10(3): 034006
https://doi.org/10.1103/PhysRevApplied.10.034006
53 P. Williams C., Explorations in Quantum Computing, 2nd Ed., edited by D. Gries and F. B. Schneider, Texts in Computer Science, Springer-Verlag, London, 2011
54 Saffman M., G. Walker T.. Analysis of a quantum logic device based on dipole−dipole interactions of optically trapped Rydberg atoms. Phys. Rev. A, 2005, 72(2): 022347
https://doi.org/10.1103/PhysRevA.72.022347
55 H. Pedersen L., M. Møller N., Mølmer K.. Fidelity of quantum operations. Phys. Lett. A, 2007, 367(1−2): 47
https://doi.org/10.1016/j.physleta.2007.02.069
56 F. Shi X.. Deutsch, Toffoli, and CNOT gates via rydberg blockade of neutral atoms. Phys. Rev. Appl., 2018, 9: 051001(R)
https://doi.org/10.1103/PhysRevApplied.9.051001
57 F. Shi X.. Transition slow-down by Rydberg interaction of neutral atoms and a fast controlled-NOT quantum gate. Phys. Rev. Appl., 2020, 14(5): 054058
https://doi.org/10.1103/PhysRevApplied.14.054058
58 L. Wu J., Wang Y., X. Han J., L. Su S., Xia Y., Jiang Y., Song J.. Unselective ground-state blockade of Rydberg atoms for implementing quantum gates. Front. Phys., 2022, 17(2): 22501
https://doi.org/10.1007/s11467-021-1104-7
59 Liu S., H. Shen J., H. Zheng R., H. Kang Y., C. Shi Z., Song J., Xia Y.. Optimized nonadiabatic holonomic quantum computation based on Förster resonance in Rydberg atoms. Front. Phys., 2022, 17(2): 21502
https://doi.org/10.1007/s11467-021-1108-3
60 M. Stojanović V., K. Nauth J.. Interconversion of W and Greenberger−Horne−Zeilinger states for Ising-coupled qubits with transverse global control. Phys. Rev. A, 2022, 106(5): 052613
https://doi.org/10.1103/PhysRevA.106.052613
61 Wu X., Liang X., Tian Y., Yang F., Chen C., C. Liu Y., K. Tey M., You L.. A concise review of Rydberg atom based quantum computation and quantum simulation. Chin. Phys. B, 2021, 30(2): 020305
https://doi.org/10.1088/1674-1056/abd76f
62 R. Chong D., Kim M., Ahn J., Jeong H.. Machine learning identification of symmetrized base states of Rydberg atoms. Front. Phys., 2022, 17(1): 12504
https://doi.org/10.1007/s11467-021-1099-0
63 Zhang H., Wu J., Artoni M., C. La Rocca G.. Single-photon-level light storage with distributed Rydberg excitations in cold atoms. Front. Phys., 2022, 17(2): 22502
https://doi.org/10.1007/s11467-021-1105-6
64 P. Covey J., Sipahigil A., Szoke S., Sinclair N., Endres M., Painter O.. Telecom-band quantum optics with ytterbium atoms and silicon nanophotonics. Phys. Rev. Appl., 2019, 11(3): 034044
https://doi.org/10.1103/PhysRevApplied.11.034044
65 D. Boozer A., Boca A., Miller R., E. Northup T., J. Kimble H.. Reversible state transfer between light and a single trapped atom. Phys. Rev. Lett., 2007, 98(19): 193601
https://doi.org/10.1103/PhysRevLett.98.193601
66 Wu Y., Kolkowitz S., Puri S., D. Thompson J.. Erasure conversion for fault-tolerant quantum computing in alkaline earth Rydberg atom arrays. Nat. Commun., 2022, 13(1): 4657
https://doi.org/10.1038/s41467-022-32094-6
67 Mitra A., J. Martin M., W. Biedermann G., M. Marino A., M. Poggi P., H. Deutsch I.. Robust Mølmer−Sørensen gate for neutral atoms using rapid adiabatic Rydberg dressing. Phys. Rev. A, 2020, 101: 030301(R)
https://doi.org/10.1103/PhysRevA.101.030301
68 L. Pham K., F. Gallagher T., Pillet P., Lepoutre S., Cheinet P.. A coherent light shift on alkaline-earth Rydberg atoms from isolated core excitation without auto-ionization. PRX Quantum, 2022, 3(2): 020327
https://doi.org/10.1103/PRXQuantum.3.020327
[1] Fan Li, Xiaoli Zhang, Jianbo Li, Jiawei Wang, Shaoping Shi, Long Tian, Yajun Wang, Lirong Chen, Yaohui Zheng. Demonstration of fully-connected quantum communication network exploiting entangled sideband modes[J]. Front. Phys. , 2023, 18(4): 42303-.
[2] Jin-Xuan Han, Jin-Lei Wu, Zhong-Hui Yuan, Yan Xia, Yong-Yuan Jiang, Jie Song. Fast topological pumping for the generation of large-scale Greenberger−Horne−Zeilinger states in a superconducting circuit[J]. Front. Phys. , 2022, 17(6): 62504-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed