|
|
Demonstration of fully-connected quantum communication network exploiting entangled sideband modes |
Fan Li1, Xiaoli Zhang1, Jianbo Li1, Jiawei Wang1, Shaoping Shi1( ), Long Tian1,2, Yajun Wang1,2, Lirong Chen1, Yaohui Zheng1,2( ) |
1. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China 2. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract Quantum communication network scales point-to-point quantum communication protocols to more than two detached parties, which would permit a wide variety of quantum communication applications. Here, we demonstrate a fully-connected quantum communication network, exploiting three pairs of Einstein−Podolsky−Rosen (EPR) entangled sideband modes, with high degree entanglement of 8.0 dB, 7.6 dB, and 7.2 dB. Each sideband modes from a squeezed field are spatially separated by demultiplexing operation, then recombining into new group according to network requirement. Each group of sideband modes are distributed to one of the parties via a single physical path, making sure each pair of parties build their own private communication links with high channel capacity better than any classical scheme.
|
Keywords
quantum network
quantum communication
entangled sideband modes
quantum dense coding
|
Corresponding Author(s):
Shaoping Shi,Yaohui Zheng
|
Issue Date: 13 March 2023
|
|
1 |
Weedbrook C. , Pirandola S. , García-Patrón R. , J. Cerf N. , C. Ralph T. , H. Shapiro J. , Lloyd S. . Gaussian quantum information. Rev. Mod. Phys., 2012, 84(2): 621
https://doi.org/10.1103/RevModPhys.84.621
|
2 |
L. Braunstein S. , van Loock P. . Quantum information with continuous variables. Rev. Mod. Phys., 2005, 77(2): 513
https://doi.org/10.1103/RevModPhys.77.513
|
3 |
J. Kimble H. . The quantum internet. Nature, 2008, 453(7198): 1023
https://doi.org/10.1038/nature07127
|
4 |
Furusawa A. , Takei N. . Quantum teleportation for continuous variables and related quantum information processing. Phys. Rep., 2007, 443(3): 97
https://doi.org/10.1016/j.physrep.2007.03.001
|
5 |
Liu T. , Q. Guo B. , H. Zhou Y. , L. Zhao J. , L. Fang Y. , C. Wu Q. , P. Yang C. . Transfer of quantum entangled states between superconducting qubits and microwave field qubits. Front. Phys., 2022, 17(6): 61502
https://doi.org/10.1007/s11467-022-1166-1
|
6 |
Giovannetti V. , Lloyd S. , Maccone L. . Advances in quantum metrology. Nat. Photonics, 2011, 5(4): 222
https://doi.org/10.1038/nphoton.2011.35
|
7 |
Giovannetti V. , Lloyd S. , Maccone L. . Quantum metrology. Phys. Rev. Lett., 2006, 96(1): 010401
https://doi.org/10.1103/PhysRevLett.96.010401
|
8 |
Pezzè L. , Smerzi A. , K. Oberthaler M. , Schmied R. , Treutlein P. . Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys., 2018, 90(3): 035005
https://doi.org/10.1103/RevModPhys.90.035005
|
9 |
Raussendorf R. , J. Briegel H. . A one-way quantum computer. Phys. Rev. Lett., 2001, 86(22): 5188
https://doi.org/10.1103/PhysRevLett.86.5188
|
10 |
Takeda S. , Furusawa A. . Toward large-scale fault-tolerant universal photonic quantum computing. APL Photonics, 2019, 4(6): 060902
https://doi.org/10.1063/1.5100160
|
11 |
Cheng B. , H. Deng X. , Gu X. , He Y. , C. Hu G. , H. Huang P. , Li J. , C. Lin B. , W. Lu D. , Lu Y. , D. Qiu C. , Wang H. , Xin T. , Yu S. , H. Yung M. , K. Zeng J. , Zhang S. , P. Zhong Y. , H. Peng X. , Nori F. , P. Yu D. . Noisy intermediate-scale quantum computers. Front. Phys., 2023, 18(2): 21308
|
12 |
K. Lo H. , Curty M. , Tamaki K. . Secure quantum key distribution. Nat. Photonics, 2014, 8(8): 595
https://doi.org/10.1038/nphoton.2014.149
|
13 |
Grosshans F. , Van Assche G. , Wenger J. , Brouri R. , J. Cerf N. , Grangier P. . Quantum key distribution using Gaussian-modulated coherent states. Nature, 2003, 421: 238
https://doi.org/10.1038/nature01289
|
14 |
K. Liao S. , Q. Cai W. , Handsteiner J. , Liu B. , Yin J. , Zhang L. , Rauch D. , Fink M. , G. Ren J. , Y. Liu W. , Li Y. , Shen Q. , Cao Y. , Z. Li F. , F. Wang J. , M. Huang Y. , Deng L. , Xi T. , Ma L. , Hu T. , Li L. , L. Liu N. , Koidl F. , Wang P. , A. Chen Y. , B. Wang X. , Steindorfer M. , Kirchner G. , Y. Lu C. , Shu R. , Ursin R. , Scheidl T. , Z. Peng C. , Y. Wang J. , Zeilinger A. , W. Pan J. . Satellite-relayed intercontinental quantum network. Phys. Rev. Lett., 2018, 120(3): 030501
https://doi.org/10.1103/PhysRevLett.120.030501
|
15 |
Y. Liu H. , H. Tian X. , Gu C. , Fan P. , Ni X. , Yang R. , N. Zhang J. , Hu M. , Guo J. , Cao X. , Hu X. , Zhao G. , Q. Lu Y. , X. Gong Y. , Xie Z. , N. Zhu S. . Optical-relayed entanglement distribution using drones as mobile nodes. Phys. Rev. Lett., 2021, 126(2): 020503
https://doi.org/10.1103/PhysRevLett.126.020503
|
16 |
Yonezawa H. , Aoki T. , Furusawa A. . Demonstration of a quantum teleportation network for continuous variables. Nature, 2004, 431(7007): 430
https://doi.org/10.1038/nature02858
|
17 |
Y. Chen T. , Wang J. , Liang H. , Y. Liu W. , Liu Y. , Jiang X. , Wang Y. , Wan X. , Q. Cai W. , Ju L. , K. Chen L. , J. Wang L. , Gao Y. , Chen K. , Z. Peng C. , B. Chen Z. , W. Pan J. . Metropolitan all-pass and inter-city quantum communication network. Opt. Express, 2010, 18(26): 27217
https://doi.org/10.1364/OE.18.027217
|
18 |
Wang W. , Zhang K. , T. Jing J. . Large-scale quantum network over 66 orbital angular momentum optical modes. Phys. Rev. Lett., 2020, 125(14): 140501
https://doi.org/10.1103/PhysRevLett.125.140501
|
19 |
Huo N. , Liu Y. , Li J. , Cui L. , Chen X. , Palivela R. , Xie T. , Li X. , Y. Ou Z. . Direct temporal mode measurement for the characterization of temporally multiplexed high dimensional quantum entanglement in continuous variables. Phys. Rev. Lett., 2020, 124(21): 213603
https://doi.org/10.1103/PhysRevLett.124.213603
|
20 |
Wang X. , Fu J. , Liu S. , Wei Y. , Jing J. . Self-healing of multipartite entanglement in optical quantum net-works. Optica, 2022, 9(6): 663
https://doi.org/10.1364/OPTICA.458939
|
21 |
Asavanant W. , Shiozawa Y. , Yokoyama S. , Charoensombutamon B. , Emura H. , N. Alexander R. , Takeda S. , Yoshikawa J. , C. Menicucci N. , Yonezawa H. , Furusawa A. . Generation of time-domain-multiplexed two-dimensional cluster state. Science, 2019, 366(6463): 373
https://doi.org/10.1126/science.aay2645
|
22 |
V. Larsen M. , Guo X. , R. Breum C. , S. Neergaard-Nielsen J. , L. Andersen U. . Deterministic generation of a two-dimensional cluster state. Science, 2019, 366(6463): 369
https://doi.org/10.1126/science.aay4354
|
23 |
Liu Y. , Huo N. , Li J. , Li X. . Long-distance distribution of the telecom band intensity difference squeezing generated in a fiber optical parametric amplifier. Opt. Lett., 2018, 43(22): 5559
https://doi.org/10.1364/OL.43.005559
|
24 |
Zhuang Q. , Zhang Z. , H. Shapiro J. . Distributed quantum sensing using continuous-variable multipartite entanglement. Phys. Rev. A, 2018, 97(3): 032329
https://doi.org/10.1103/PhysRevA.97.032329
|
25 |
Oh C. , Lee C. , H. Lie S. , Jeong H. . Optimal distributed quantum sensing using Gaussian states. Phys. Rev. Res., 2020, 2(2): 023030
https://doi.org/10.1103/PhysRevResearch.2.023030
|
26 |
D. Wu X. , J. Wang Y. , Zhong H. , Liao Q. , Guo Y. . Plug-and-play dual-phase-modulated continuous-variable quantum key distribution with photon subtraction. Front. Phys., 2019, 14(4): 41501
https://doi.org/10.1007/s11467-019-0881-8
|
27 |
P. Shi S. , Tian L. , J. Wang Y. , H. Zheng Y. , D. Xie C. , C. Peng K. . Demonstration of channel multiplexing quantum communication exploiting entangled sideband modes. Phys. Rev. Lett., 2020, 125(7): 070502
https://doi.org/10.1103/PhysRevLett.125.070502
|
28 |
D. Black E. . An introduction to Pound−Drever−Hall laser frequency stabilization. Am. J. Phys., 2001, 69(1): 79
https://doi.org/10.1119/1.1286663
|
29 |
H. Yang W. , P. Shi S. , J. Wang Y. , G. Ma W. , H. Zheng Y. , C. Peng K. . Detection of stably bright squeezed light with the quantum noise reduction of 12.6 dB by mutually compensating the phase fluctuations. Opt. Lett., 2017, 42(21): 4553
https://doi.org/10.1364/OL.42.004553
|
30 |
Tian L. , P. Shi S. , H. Tian Y. , J. Wang Y. , H. Zheng Y. , C. Peng K. . Resource reduction for simultaneous generation of two types of continuous variable nonclassical states. Front. Phys., 2021, 16(2): 21502
https://doi.org/10.1007/s11467-020-1012-2
|
31 |
Roslund J. , M. de Ara’ujo R. , Jiang S. , Fabre C. , Treps N. . Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nat. Photonics, 2014, 8(2): 109
https://doi.org/10.1038/nphoton.2013.340
|
32 |
Yonezawa H. , L. Braunstein S. , Furusawa A. . Experimental demonstration of quantum teleportation of broadband squeezing. Phys. Rev. Lett., 2007, 99(11): 110503
https://doi.org/10.1103/PhysRevLett.99.110503
|
33 |
Ast S. , Samblowski A. , Mehmet M. , Steinlechner S. , Eberle T. , Schnabel R. . Continuous-wave nonclassical light with gigahertz squeezing bandwidth. Opt. Lett., 2012, 37(12): 2367
https://doi.org/10.1364/OL.37.002367
|
34 |
Ast S. , Ast M. , Mehmet M. , Schnabel R. . Gaussian entanglement distribution with gigahertz bandwidth. Opt. Lett., 2016, 41(21): 5094
https://doi.org/10.1364/OL.41.005094
|
35 |
Mattle K. , Weinfurter H. , G. Kwiat P. , Zeilinger A. . Dense coding in experimental quantum communication. Phys. Rev. Lett., 1996, 76(25): 4656
https://doi.org/10.1103/PhysRevLett.76.4656
|
36 |
L. Braunstein S. , J. Kimble H. . Dense coding for continuous variables. Phys. Rev. A, 2000, 61(4): 042302
https://doi.org/10.1103/PhysRevA.61.042302
|
37 |
L. Jin X. , Su J. , H. Zheng Y. , Y. Chen C. , Z. Wang W. , C. Peng K. . Balanced homodyne detection with high common mode rejection ratio based on parameter compensation of two arbitrary photodiodes. Opt. Express, 2015, 23(18): 23859
https://doi.org/10.1364/OE.23.023859
|
38 |
M. Duan L. , Giedke G. , I. Cirac J. , Zoller P. . Inseparability criterion for continuous variable systems. Phys. Rev. Lett., 2000, 84(12): 2722
https://doi.org/10.1103/PhysRevLett.84.2722
|
39 |
T. Jing J. , Zhang J. , Yan Y. , G. Zhao F. , D. Xie C. , C. Peng K. . Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables. Phys. Rev. Lett., 2003, 90(16): 167903
https://doi.org/10.1103/PhysRevLett.90.167903
|
40 |
Yokoyama S. , Ukai R. , C. Armstrong S. , Sornphiphatphong C. , Kaji T. , Suzuki S. , Yoshikawa J. , Yonezawa H. , C. Menicucci N. , Furusawa A. . Ultra-large-scale continuous-variable cluster states multiplexed in the time domain. Nat. Photonics, 2013, 7(12): 982
https://doi.org/10.1038/nphoton.2013.287
|
41 |
Mizuno J. , Wakui K. , Furusawa A. , Sasaki M. . Experimental demonstration of entanglement-assisted coding using a two-mode squeezed vacuum state. Phys. Rev. A, 2005, 71(1): 012304
https://doi.org/10.1103/PhysRevA.71.012304
|
42 |
Stefszky M. , Ricken R. , Eigner C. , Quiring V. , Herrmann H. , Silberhorn C. . Waveguide cavity resonator as a source of optical squeezing. Phys. Rev. Appl., 2017, 7(4): 044026
https://doi.org/10.1103/PhysRevApplied.7.044026
|
43 |
Dutt A. , Miller S. , Luke K. , Cardenas J. , L. Gaeta A. , Nussenzveig P. , Lipson M. . Tunable squeezing using coupled ring resonators on a silicon nitride chip. Opt. Lett., 2016, 41(2): 223
https://doi.org/10.1364/OL.41.000223
|
44 |
S. Levy J. , Gondarenko A. , A. Foster M. , C. Turner-Foster A. , L. Gaeta A. , Lipson M. . CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat. Photonics, 2010, 4(1): 37
https://doi.org/10.1038/nphoton.2009.259
|
45 |
Masada G. , Miyata K. , Politi A. , Hashimoto T. , L. O’Brien J. , Furusawa A. . Continuous-variable entanglement on a chip. Nat. Photonics, 2015, 9(5): 316
https://doi.org/10.1038/nphoton.2015.42
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|