Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (4) : 42303    https://doi.org/10.1007/s11467-023-1269-3
RESEARCH ARTICLE
Demonstration of fully-connected quantum communication network exploiting entangled sideband modes
Fan Li1, Xiaoli Zhang1, Jianbo Li1, Jiawei Wang1, Shaoping Shi1(), Long Tian1,2, Yajun Wang1,2, Lirong Chen1, Yaohui Zheng1,2()
1. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
2. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
 Download: PDF(4699 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Quantum communication network scales point-to-point quantum communication protocols to more than two detached parties, which would permit a wide variety of quantum communication applications. Here, we demonstrate a fully-connected quantum communication network, exploiting three pairs of Einstein−Podolsky−Rosen (EPR) entangled sideband modes, with high degree entanglement of 8.0 dB, 7.6 dB, and 7.2 dB. Each sideband modes from a squeezed field are spatially separated by demultiplexing operation, then recombining into new group according to network requirement. Each group of sideband modes are distributed to one of the parties via a single physical path, making sure each pair of parties build their own private communication links with high channel capacity better than any classical scheme.

Keywords quantum network      quantum communication      entangled sideband modes      quantum dense coding     
Corresponding Author(s): Shaoping Shi,Yaohui Zheng   
Issue Date: 13 March 2023
 Cite this article:   
Fan Li,Xiaoli Zhang,Jianbo Li, et al. Demonstration of fully-connected quantum communication network exploiting entangled sideband modes[J]. Front. Phys. , 2023, 18(4): 42303.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1269-3
https://academic.hep.com.cn/fop/EN/Y2023/V18/I4/42303
Fig.1  Schematic of the experimental setup. MC, mode cleaner; SHG, second harmonic generator; OPA, optical parametric amplifier; FC, filter cavity; WGM, waveguide electro?optic modulator; EOM, electro?optic phase modulator; PS, phase shifter; DBS, dichroic beam splitter; PD, photodetector; AM, amplitude modulator; PM, phase modulator.
Fig.2  Balanced homodyne measurements of the quadrature noise variances. The measurement is recorded at the analysis frequency of 2 MHz; RBW, resolution bandwidth = 300 kHz; VBW, video bandwidth = 200 Hz.
Fig.3  Normalized quantum noise level of amplitude sum and phase difference at three communication links, corresponding to three pairs of entangled sideband modes shared by each two parties. When one half of the EPR beam is blocked, the noise spectrum is higher than the SNL.
Fig.4  Normalized SNR of each communication link based on QDC protocol. Aq, amplitude quadrature; Pq, phase quadrature.
Fig.5  Channel capacity by various channels, measured by mutual information as functions of the average photon number.
1 Weedbrook C. , Pirandola S. , García-Patrón R. , J. Cerf N. , C. Ralph T. , H. Shapiro J. , Lloyd S. . Gaussian quantum information. Rev. Mod. Phys., 2012, 84(2): 621
https://doi.org/10.1103/RevModPhys.84.621
2 L. Braunstein S. , van Loock P. . Quantum information with continuous variables. Rev. Mod. Phys., 2005, 77(2): 513
https://doi.org/10.1103/RevModPhys.77.513
3 J. Kimble H. . The quantum internet. Nature, 2008, 453(7198): 1023
https://doi.org/10.1038/nature07127
4 Furusawa A. , Takei N. . Quantum teleportation for continuous variables and related quantum information processing. Phys. Rep., 2007, 443(3): 97
https://doi.org/10.1016/j.physrep.2007.03.001
5 Liu T. , Q. Guo B. , H. Zhou Y. , L. Zhao J. , L. Fang Y. , C. Wu Q. , P. Yang C. . Transfer of quantum entangled states between superconducting qubits and microwave field qubits. Front. Phys., 2022, 17(6): 61502
https://doi.org/10.1007/s11467-022-1166-1
6 Giovannetti V. , Lloyd S. , Maccone L. . Advances in quantum metrology. Nat. Photonics, 2011, 5(4): 222
https://doi.org/10.1038/nphoton.2011.35
7 Giovannetti V. , Lloyd S. , Maccone L. . Quantum metrology. Phys. Rev. Lett., 2006, 96(1): 010401
https://doi.org/10.1103/PhysRevLett.96.010401
8 Pezzè L. , Smerzi A. , K. Oberthaler M. , Schmied R. , Treutlein P. . Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys., 2018, 90(3): 035005
https://doi.org/10.1103/RevModPhys.90.035005
9 Raussendorf R. , J. Briegel H. . A one-way quantum computer. Phys. Rev. Lett., 2001, 86(22): 5188
https://doi.org/10.1103/PhysRevLett.86.5188
10 Takeda S. , Furusawa A. . Toward large-scale fault-tolerant universal photonic quantum computing. APL Photonics, 2019, 4(6): 060902
https://doi.org/10.1063/1.5100160
11 Cheng B. , H. Deng X. , Gu X. , He Y. , C. Hu G. , H. Huang P. , Li J. , C. Lin B. , W. Lu D. , Lu Y. , D. Qiu C. , Wang H. , Xin T. , Yu S. , H. Yung M. , K. Zeng J. , Zhang S. , P. Zhong Y. , H. Peng X. , Nori F. , P. Yu D. . Noisy intermediate-scale quantum computers. Front. Phys., 2023, 18(2): 21308
12 K. Lo H. , Curty M. , Tamaki K. . Secure quantum key distribution. Nat. Photonics, 2014, 8(8): 595
https://doi.org/10.1038/nphoton.2014.149
13 Grosshans F. , Van Assche G. , Wenger J. , Brouri R. , J. Cerf N. , Grangier P. . Quantum key distribution using Gaussian-modulated coherent states. Nature, 2003, 421: 238
https://doi.org/10.1038/nature01289
14 K. Liao S. , Q. Cai W. , Handsteiner J. , Liu B. , Yin J. , Zhang L. , Rauch D. , Fink M. , G. Ren J. , Y. Liu W. , Li Y. , Shen Q. , Cao Y. , Z. Li F. , F. Wang J. , M. Huang Y. , Deng L. , Xi T. , Ma L. , Hu T. , Li L. , L. Liu N. , Koidl F. , Wang P. , A. Chen Y. , B. Wang X. , Steindorfer M. , Kirchner G. , Y. Lu C. , Shu R. , Ursin R. , Scheidl T. , Z. Peng C. , Y. Wang J. , Zeilinger A. , W. Pan J. . Satellite-relayed intercontinental quantum network. Phys. Rev. Lett., 2018, 120(3): 030501
https://doi.org/10.1103/PhysRevLett.120.030501
15 Y. Liu H. , H. Tian X. , Gu C. , Fan P. , Ni X. , Yang R. , N. Zhang J. , Hu M. , Guo J. , Cao X. , Hu X. , Zhao G. , Q. Lu Y. , X. Gong Y. , Xie Z. , N. Zhu S. . Optical-relayed entanglement distribution using drones as mobile nodes. Phys. Rev. Lett., 2021, 126(2): 020503
https://doi.org/10.1103/PhysRevLett.126.020503
16 Yonezawa H. , Aoki T. , Furusawa A. . Demonstration of a quantum teleportation network for continuous variables. Nature, 2004, 431(7007): 430
https://doi.org/10.1038/nature02858
17 Y. Chen T. , Wang J. , Liang H. , Y. Liu W. , Liu Y. , Jiang X. , Wang Y. , Wan X. , Q. Cai W. , Ju L. , K. Chen L. , J. Wang L. , Gao Y. , Chen K. , Z. Peng C. , B. Chen Z. , W. Pan J. . Metropolitan all-pass and inter-city quantum communication network. Opt. Express, 2010, 18(26): 27217
https://doi.org/10.1364/OE.18.027217
18 Wang W. , Zhang K. , T. Jing J. . Large-scale quantum network over 66 orbital angular momentum optical modes. Phys. Rev. Lett., 2020, 125(14): 140501
https://doi.org/10.1103/PhysRevLett.125.140501
19 Huo N. , Liu Y. , Li J. , Cui L. , Chen X. , Palivela R. , Xie T. , Li X. , Y. Ou Z. . Direct temporal mode measurement for the characterization of temporally multiplexed high dimensional quantum entanglement in continuous variables. Phys. Rev. Lett., 2020, 124(21): 213603
https://doi.org/10.1103/PhysRevLett.124.213603
20 Wang X. , Fu J. , Liu S. , Wei Y. , Jing J. . Self-healing of multipartite entanglement in optical quantum net-works. Optica, 2022, 9(6): 663
https://doi.org/10.1364/OPTICA.458939
21 Asavanant W. , Shiozawa Y. , Yokoyama S. , Charoensombutamon B. , Emura H. , N. Alexander R. , Takeda S. , Yoshikawa J. , C. Menicucci N. , Yonezawa H. , Furusawa A. . Generation of time-domain-multiplexed two-dimensional cluster state. Science, 2019, 366(6463): 373
https://doi.org/10.1126/science.aay2645
22 V. Larsen M. , Guo X. , R. Breum C. , S. Neergaard-Nielsen J. , L. Andersen U. . Deterministic generation of a two-dimensional cluster state. Science, 2019, 366(6463): 369
https://doi.org/10.1126/science.aay4354
23 Liu Y. , Huo N. , Li J. , Li X. . Long-distance distribution of the telecom band intensity difference squeezing generated in a fiber optical parametric amplifier. Opt. Lett., 2018, 43(22): 5559
https://doi.org/10.1364/OL.43.005559
24 Zhuang Q. , Zhang Z. , H. Shapiro J. . Distributed quantum sensing using continuous-variable multipartite entanglement. Phys. Rev. A, 2018, 97(3): 032329
https://doi.org/10.1103/PhysRevA.97.032329
25 Oh C. , Lee C. , H. Lie S. , Jeong H. . Optimal distributed quantum sensing using Gaussian states. Phys. Rev. Res., 2020, 2(2): 023030
https://doi.org/10.1103/PhysRevResearch.2.023030
26 D. Wu X. , J. Wang Y. , Zhong H. , Liao Q. , Guo Y. . Plug-and-play dual-phase-modulated continuous-variable quantum key distribution with photon subtraction. Front. Phys., 2019, 14(4): 41501
https://doi.org/10.1007/s11467-019-0881-8
27 P. Shi S. , Tian L. , J. Wang Y. , H. Zheng Y. , D. Xie C. , C. Peng K. . Demonstration of channel multiplexing quantum communication exploiting entangled sideband modes. Phys. Rev. Lett., 2020, 125(7): 070502
https://doi.org/10.1103/PhysRevLett.125.070502
28 D. Black E. . An introduction to Pound−Drever−Hall laser frequency stabilization. Am. J. Phys., 2001, 69(1): 79
https://doi.org/10.1119/1.1286663
29 H. Yang W. , P. Shi S. , J. Wang Y. , G. Ma W. , H. Zheng Y. , C. Peng K. . Detection of stably bright squeezed light with the quantum noise reduction of 12.6 dB by mutually compensating the phase fluctuations. Opt. Lett., 2017, 42(21): 4553
https://doi.org/10.1364/OL.42.004553
30 Tian L. , P. Shi S. , H. Tian Y. , J. Wang Y. , H. Zheng Y. , C. Peng K. . Resource reduction for simultaneous generation of two types of continuous variable nonclassical states. Front. Phys., 2021, 16(2): 21502
https://doi.org/10.1007/s11467-020-1012-2
31 Roslund J. , M. de Ara’ujo R. , Jiang S. , Fabre C. , Treps N. . Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nat. Photonics, 2014, 8(2): 109
https://doi.org/10.1038/nphoton.2013.340
32 Yonezawa H. , L. Braunstein S. , Furusawa A. . Experimental demonstration of quantum teleportation of broadband squeezing. Phys. Rev. Lett., 2007, 99(11): 110503
https://doi.org/10.1103/PhysRevLett.99.110503
33 Ast S. , Samblowski A. , Mehmet M. , Steinlechner S. , Eberle T. , Schnabel R. . Continuous-wave nonclassical light with gigahertz squeezing bandwidth. Opt. Lett., 2012, 37(12): 2367
https://doi.org/10.1364/OL.37.002367
34 Ast S. , Ast M. , Mehmet M. , Schnabel R. . Gaussian entanglement distribution with gigahertz bandwidth. Opt. Lett., 2016, 41(21): 5094
https://doi.org/10.1364/OL.41.005094
35 Mattle K. , Weinfurter H. , G. Kwiat P. , Zeilinger A. . Dense coding in experimental quantum communication. Phys. Rev. Lett., 1996, 76(25): 4656
https://doi.org/10.1103/PhysRevLett.76.4656
36 L. Braunstein S. , J. Kimble H. . Dense coding for continuous variables. Phys. Rev. A, 2000, 61(4): 042302
https://doi.org/10.1103/PhysRevA.61.042302
37 L. Jin X. , Su J. , H. Zheng Y. , Y. Chen C. , Z. Wang W. , C. Peng K. . Balanced homodyne detection with high common mode rejection ratio based on parameter compensation of two arbitrary photodiodes. Opt. Express, 2015, 23(18): 23859
https://doi.org/10.1364/OE.23.023859
38 M. Duan L. , Giedke G. , I. Cirac J. , Zoller P. . Inseparability criterion for continuous variable systems. Phys. Rev. Lett., 2000, 84(12): 2722
https://doi.org/10.1103/PhysRevLett.84.2722
39 T. Jing J. , Zhang J. , Yan Y. , G. Zhao F. , D. Xie C. , C. Peng K. . Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables. Phys. Rev. Lett., 2003, 90(16): 167903
https://doi.org/10.1103/PhysRevLett.90.167903
40 Yokoyama S. , Ukai R. , C. Armstrong S. , Sornphiphatphong C. , Kaji T. , Suzuki S. , Yoshikawa J. , Yonezawa H. , C. Menicucci N. , Furusawa A. . Ultra-large-scale continuous-variable cluster states multiplexed in the time domain. Nat. Photonics, 2013, 7(12): 982
https://doi.org/10.1038/nphoton.2013.287
41 Mizuno J. , Wakui K. , Furusawa A. , Sasaki M. . Experimental demonstration of entanglement-assisted coding using a two-mode squeezed vacuum state. Phys. Rev. A, 2005, 71(1): 012304
https://doi.org/10.1103/PhysRevA.71.012304
42 Stefszky M. , Ricken R. , Eigner C. , Quiring V. , Herrmann H. , Silberhorn C. . Waveguide cavity resonator as a source of optical squeezing. Phys. Rev. Appl., 2017, 7(4): 044026
https://doi.org/10.1103/PhysRevApplied.7.044026
43 Dutt A. , Miller S. , Luke K. , Cardenas J. , L. Gaeta A. , Nussenzveig P. , Lipson M. . Tunable squeezing using coupled ring resonators on a silicon nitride chip. Opt. Lett., 2016, 41(2): 223
https://doi.org/10.1364/OL.41.000223
44 S. Levy J. , Gondarenko A. , A. Foster M. , C. Turner-Foster A. , L. Gaeta A. , Lipson M. . CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat. Photonics, 2010, 4(1): 37
https://doi.org/10.1038/nphoton.2009.259
45 Masada G. , Miyata K. , Politi A. , Hashimoto T. , L. O’Brien J. , Furusawa A. . Continuous-variable entanglement on a chip. Nat. Photonics, 2015, 9(5): 316
https://doi.org/10.1038/nphoton.2015.42
[1] Xiao-Feng Shi. Fast nuclear-spin gates and electrons−nuclei entanglement of neutral atoms in weak magnetic fields[J]. Front. Phys. , 2024, 19(2): 22203-.
[2] Tinggui Zhang, Naihuan Jing, Shao-Ming Fei. Sharing quantum nonlocality in star network scenarios[J]. Front. Phys. , 2023, 18(3): 31302-.
[3] Mucheng Guo, Shuping Liu, Weiye Sun, Miaomiao Ren, Fudong Wang, Manjin Zhong. Rare-earth quantum memories: The experimental status quo[J]. Front. Phys. , 2023, 18(2): 21303-.
[4] Peng Wang, Chang-Qi Yu, Zi-Xu Wang, Rui-Yang Yuan, Fang-Fang Du, Bao-Cang Ren. Hyperentanglement-assisted hyperdistillation for hyper-encoding photon system[J]. Front. Phys. , 2022, 17(3): 31501-.
[5] Yuyan Wei, Siying Wang, Yajing Zhu, Tao Li. Sender-controlled measurement-device-independent multiparty quantum communication[J]. Front. Phys. , 2022, 17(2): 21503-.
[6] Yu-Yu Jin, Sheng-Xian Qin, Hao Zu, Lan Zhou, Wei Zhong, Yu-Bo Sheng. Heralded amplification of single-photon entanglement with polarization feature[J]. Front. Phys. , 2018, 13(5): 130321-.
[7] Hong Wang, Bao-Cang Ren, Ai Hua Wang, Ahmed Alsaedi, Tasawar Hayat, Fu-Guo Deng. General hyperentanglement concentration for polarizationspatial- time-bin multi-photon systems with linear optics[J]. Front. Phys. , 2018, 13(5): 130315-.
[8] Xiao-Qin Gao, Zai-Chen Zhang, Bin Sheng. Multi-hop teleportation in a quantum network based on mesh topology[J]. Front. Phys. , 2018, 13(5): 130314-.
[9] Ahmed Farouk, J. Batle, M. Elhoseny, Mosayeb Naseri, Muzaffar Lone, Alex Fedorov, Majid Alkhambashi, Syed Hassan Ahmed, M. Abdel-Aty. Robust general N user authentication scheme in a centralized quantum communication network via generalized GHZ states[J]. Front. Phys. , 2018, 13(2): 130306-.
[10] Giulio Chiribella,Yuxiang Yang. Quantum superreplication of states and gates[J]. Front. Phys. , 2016, 11(3): 110304-.
[11] Nicolas Gisin. How far can one send a photon?[J]. Front. Phys. , 2015, 10(6): 100307-.
[12] Li-li LIU (刘莉丽), Qiao BI (毕桥). Energy spectrum for a atrongly correlated network and local magnetism[J]. Front. Phys. , 2009, 4(2): 218-224.
[13] Qiao BI (毕桥), Li-li LIU(刘莉丽), Jin-qing FANG(方锦清). Condensation and evolution of a space–time network[J]. Front. Phys. , 2009, 4(2): 231-234.
[14] Hua WEI(魏华), Zhi-jiao DENG(邓志娇), Wan-li YANG(杨万里), Fei ZHOU(周飞). Cavity quantum networks for quantum information processing in decoherence-free subspace[J]. Front. Phys. , 2009, 4(1): 21-37.
[15] LONG Gui-lu, DENG Fu-guo, WANG Chuan, WEN Kai, WANG Wan-ying, LI Xi-han. Quantum secure direct communication and deterministic secure quantum communication[J]. Front. Phys. , 2007, 2(3): 251-272.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed