Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2009, Vol. 4 Issue (2) : 218-224    https://doi.org/10.1007/s11467-009-0047-1
RESEARCH ARTICLE
Energy spectrum for a atrongly correlated network and local magnetism
Li-li LIU (刘莉丽)1, Qiao BI (毕桥)1,2()
1. Department of Physics, Science School, Wuhan University of Technology, Wuhan 430070, China; 2. Center for Advanced Nanotechnology, University of Toronto, Toronto, ON M5S 3E4, Canada
 Download: PDF(452 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this work, we consider a quantum strongly correlated network described by an Anderson s - d mixing model. By introducing the Green function on the projected formalism of the Schrieffer and Wolf transformation, the energy spectrum of the system can be obtained. Using this result we calculate the survivability distribution of the network and discuss the local magnetism in the network, which shows that the survivability is an important statistical characteristic quantity not just to reflect the network topological property but also dynamics.

Keywords strongly correlated system      quantum network      Green function     
Corresponding Author(s): Qiao BI (毕桥),Email:biqiao@gmail.com   
Issue Date: 05 June 2009
 Cite this article:   
Li-li LIU (刘莉丽),Qiao BI (毕桥). Energy spectrum for a atrongly correlated network and local magnetism[J]. Front. Phys. , 2009, 4(2): 218-224.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-009-0047-1
https://academic.hep.com.cn/fop/EN/Y2009/V4/I2/218
1 P. W. Anderson, Phys. Rev. , 1961, 124: 41
doi: 10.1103/PhysRev.124.41
2 J. R. Schrieffer and P. A. Wolff, Phys. Rev. , 1966, 149: 491
doi: 10.1103/PhysRev.149.491
3 G. Bianconi, arXiv: cond-mat/0204506v2
4 G. Bianconi, Phys. Rev. E , 2002, 66: 056123
doi: 10.1103/PhysRevE.66.056123
5 D. Baeriswyl, D. K. Campbell, J. M. P. Carmelo, F. Guinea, and E. Louis, The Hubbard Model, New York: Pienum Press, 1995
6 J. R. Schrieffer and P. A. Wolff, Phys. Rev. , 1966, 149: 491
doi: 10.1103/PhysRev.149.491
7 L. Z. Zheng, Solid State Theory, Beijing: Higher Education Press, 2002 (in Chinese)
8 I. Antoniou, Y. Melnikov, and Q. Bi, Physica A , 1997, 246: 97
doi: 10.1016/S0378-4371(97)00343-9
9 Q. Bi, H. E. Ruda, M. S. Zhang, and X. H. Zeng, Physica A , 2003, 322: 345
doi: 10.1016/S0378-4371(02)01809-5
[1] Ying-Tao Zhang, Shan Jiang, Qingming Li, Qing-Feng Sun. An analytical solution for quantum scattering through a PT-symmetric delta potential[J]. Front. Phys. , 2021, 16(4): 43503-.
[2] Ying-Xiang Zhen, Ming Yang, Rui-Ning Wang. Thermoelectricity in B80-based single-molecule junctions: First-principles investigation[J]. Front. Phys. , 2019, 14(2): 23603-.
[3] Xiao-Qin Gao, Zai-Chen Zhang, Bin Sheng. Multi-hop teleportation in a quantum network based on mesh topology[J]. Front. Phys. , 2018, 13(5): 130314-.
[4] V. B. Bobrov,S. A. Trigger. On the ground state energy of the inhomogeneous Bose gas[J]. Front. Phys. , 2017, 12(3): 120501-.
[5] Giulio Chiribella,Yuxiang Yang. Quantum superreplication of states and gates[J]. Front. Phys. , 2016, 11(3): 110304-.
[6] Qiao BI (毕桥), Li-li LIU(刘莉丽), Jin-qing FANG(方锦清). Condensation and evolution of a space–time network[J]. Front Phys Chin, 2009, 4(2): 231-234.
[7] Hua WEI(魏华), Zhi-jiao DENG(邓志娇), Wan-li YANG(杨万里), Fei ZHOU(周飞). Cavity quantum networks for quantum information processing in decoherence-free subspace[J]. Front. Phys. , 2009, 4(1): 21-37.
[8] ZHENG Jin-cheng. Recent advances on thermoelectric materials[J]. Front. Phys. , 2008, 3(3): 269-279.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed