|
|
Energy spectrum for a atrongly correlated network and local magnetism |
Li-li LIU (刘莉丽)1, Qiao BI (毕桥)1,2( ) |
1. Department of Physics, Science School, Wuhan University of Technology, Wuhan 430070, China; 2. Center for Advanced Nanotechnology, University of Toronto, Toronto, ON M5S 3E4, Canada |
|
|
Abstract In this work, we consider a quantum strongly correlated network described by an Anderson s - d mixing model. By introducing the Green function on the projected formalism of the Schrieffer and Wolf transformation, the energy spectrum of the system can be obtained. Using this result we calculate the survivability distribution of the network and discuss the local magnetism in the network, which shows that the survivability is an important statistical characteristic quantity not just to reflect the network topological property but also dynamics.
|
Keywords
strongly correlated system
quantum network
Green function
|
Corresponding Author(s):
Qiao BI (毕桥),Email:biqiao@gmail.com
|
Issue Date: 05 June 2009
|
|
1 |
P. W. Anderson, Phys. Rev. , 1961, 124: 41 doi: 10.1103/PhysRev.124.41
|
2 |
J. R. Schrieffer and P. A. Wolff, Phys. Rev. , 1966, 149: 491 doi: 10.1103/PhysRev.149.491
|
3 |
G. Bianconi, arXiv: cond-mat/0204506v2
|
4 |
G. Bianconi, Phys. Rev. E , 2002, 66: 056123 doi: 10.1103/PhysRevE.66.056123
|
5 |
D. Baeriswyl, D. K. Campbell, J. M. P. Carmelo, F. Guinea, and E. Louis, The Hubbard Model, New York: Pienum Press, 1995
|
6 |
J. R. Schrieffer and P. A. Wolff, Phys. Rev. , 1966, 149: 491 doi: 10.1103/PhysRev.149.491
|
7 |
L. Z. Zheng, Solid State Theory, Beijing: Higher Education Press, 2002 (in Chinese)
|
8 |
I. Antoniou, Y. Melnikov, and Q. Bi, Physica A , 1997, 246: 97 doi: 10.1016/S0378-4371(97)00343-9
|
9 |
Q. Bi, H. E. Ruda, M. S. Zhang, and X. H. Zeng, Physica A , 2003, 322: 345 doi: 10.1016/S0378-4371(02)01809-5
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|