Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2009, Vol. 4 Issue (2) : 231-234    https://doi.org/10.1007/s11467-009-0049-z
RESEARCH ARTICLE
Condensation and evolution of a space–time network
Qiao BI (毕桥)1,3(), Li-li LIU(刘莉丽)1,3, Jin-qing FANG(方锦清)2,3
1. Department of Physics, Science School, Wuhan University of Technology, Wuhan 430070, China; 2. China Institute of Atomic Energy, P.O. Box 275-27, Beijng 102413, China; 3. International Noble Academy, 1075 Ellesmere Road, Toronto, M1P 5C3 Canada
 Download: PDF(335 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this work, we try to propose in a novel way, using the Bose and Fermi quantum network approach, a framework studying condensation and evolution of a space–time network described by the Loop quantum gravity. Considering quantum network connectivity features in Loop quantum gravity, we introduce a link operator, and through extending the dynamical equation for the evolution of the quantum network posed by Ginestra Bianconi to an operator equation, we get the solution of the link operator. This solution is relevant to the Hamiltonian of the network, and then is related to the energy distribution of network nodes. Showing that tremendous energy distribution induces a huge curved space–time network may indicate space time condensation in high-energy nodes. For example, in the case of black holes, quantum energy distribution is related to the area, thus the eigenvalues of the link operator of the nodes can be related to the quantum number of the area, and the eigenvectors are just the spin network states. This reveals that the degree distribution of nodes for the space–time network is quantized, which can form space–time network condensation. The black hole is a sort of result of space–time network condensation, however there may be more extensive space–time network condensations, such as the universe singularity (big bang).

Keywords Loop quantum gravity      spin network      complex network      quantum network      black hole     
Corresponding Author(s): Qiao BI (毕桥),Email:biqiao@gmail.com   
Issue Date: 05 June 2009
 Cite this article:   
Qiao BI (毕桥),Li-li LIU(刘莉丽),Jin-qing FANG(方锦清). Condensation and evolution of a space–time network[J]. Front. Phys. , 2009, 4(2): 231-234.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-009-0049-z
https://academic.hep.com.cn/fop/EN/Y2009/V4/I2/231
1 C. Rovelli, Quantum Gravity, Cambridge: Cambridge University Press, 2004
2 R. Albert and A.-L. Barabasi, Rev. Mod. Phys. , 2002, 74: 47
doi: 10.1103/RevModPhys.74.47
3 G. Bianconi, Phys. Rev. E , 2002, 66: 056123
doi: 10.1103/PhysRevE.66.056123
4 G. Bianconi and A.-L. Barabasi, Phys. Rev. Lett. , 2001, 86: 5632
doi: 10.1103/PhysRevLett.86.5632
5 T. Thiemann, Modern Canonical Quantum General Relativity, Cambridge: Cambridge University Press, 2007
6 C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, San Francisco: W. H. Freeman and Company, 1973
[1] Zhen-Ming Xu (许震明). Analytic phase structures and thermodynamic curvature for the charged AdS black hole in alternative phase space[J]. Front. Phys. , 2021, 16(2): 24502-.
[2] Heng Guo, Jia-Yang Zhang, Yong Zou, Shu-Guang Guan. Cross and joint ordinal partition transition networks for multivariate time series analysis[J]. Front. Phys. , 2018, 13(5): 130508-.
[3] Xiao-Qin Gao, Zai-Chen Zhang, Bin Sheng. Multi-hop teleportation in a quantum network based on mesh topology[J]. Front. Phys. , 2018, 13(5): 130314-.
[4] Li-Min Ying, Jie Zhou, Ming Tang, Shu-Guang Guan, Yong Zou. Mean-field approximations of fixation time distributions of evolutionary game dynamics on graphs[J]. Front. Phys. , 2018, 13(1): 130201-.
[5] Yi-Min Ding, Jun Meng, Jing-Fang Fan, Fang-Fu Ye, Xiao-Song Chen. Statistical properties of random clique networks[J]. Front. Phys. , 2017, 12(5): 128909-.
[6] Deng Pan, Hong-Xing Xu. Gravitational field around black hole induces photonic spin–orbit interaction that twists light[J]. Front. Phys. , 2017, 12(5): 128102-.
[7] Xiang-Dong Zhang. Immirzi parameter and quasinormal modes in four and higher spacetime dimensions[J]. Front. Phys. , 2016, 11(4): 110401-.
[8] Giulio Chiribella,Yuxiang Yang. Quantum superreplication of states and gates[J]. Front. Phys. , 2016, 11(3): 110304-.
[9] Mahamat Saleh,Bouetou Thomas Bouetou,Timoleon Crepin Kofane. Hawking radiation from a five-dimensional Lovelock black hole[J]. Front. Phys. , 2015, 10(5): 100401-.
[10] Wei-Zhen Pan(潘伟珍), Xue-Jun Yang(杨学军), Guo-Xiang Yu(余国祥). Quantum nonthermal effect of the Vaidya–Bonner–de Sitter black hole[J]. Front. Phys. , 2014, 9(1): 94-97.
[11] Shuang-Nan Zhang. Black hole binaries and microquasars[J]. Front. Phys. , 2013, 8(6): 630-660.
[12] Henric Krawczynski, Ezequiel Treister. Active galactic nuclei – the physics of individual sources and the cosmic history of formation and evolution[J]. Front. Phys. , 2013, 8(6): 609-629.
[13] Xiang-Dong Zhang, Yong-Ge Ma. Loop quantum modified gravity and its cosmological application[J]. Front. Phys. , 2013, 8(1): 80-93.
[14] Han DING (丁翰), Wen-biao LIU (刘文彪). Hawking radiation from a Vaidya black hole by Hamilton–Jacobi method[J]. Front. Phys. , 2011, 6(1): 106-108.
[15] Ji-li HUANG(黄基利), Wen-biao LIU(刘文彪), . Fluctuation around horizon on a Schwarzschild black hole using the null geodesic method[J]. Front. Phys. , 2009, 4(4): 530-533.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed