Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2017, Vol. 12 Issue (5) : 128102    https://doi.org/10.1007/s11467-017-0679-5
RESEARCH ARTICLE
Gravitational field around black hole induces photonic spin–orbit interaction that twists light
Deng Pan, Hong-Xing Xu()
School of Physics and Technology, Wuhan University, Wuhan 430072, China
 Download: PDF(1695 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The spin–orbit interaction (SOI) of light has been intensively studied in nanophotonics because it enables sensitive control of photons’ spin degree of freedom and thereby the trajectories of the photons, which is useful for applications such as signal encoding and routing. A recent study [Phys. Rev. Lett. 117, 166803 (2016)] showed that the SOI of photons manifests in the presence of a gradient in the permittivity of the medium through which the photons propagate; this enhances the scattering of circularly polarized light and results in the photons propagating along twisted trajectories. Here we theoretically predict that, because of the equivalence between an inhomogeneous dielectric medium and a gravitational field demonstrated in transformation optics, a significant SOI is induced onto circularly polarized light passing by the gravitational lens of a black hole. This leads to: i) the photons to propagate along chiral trajectories if the size of the black hole is smaller than the wavelength of the incident photons; ii) the resulting image of the gravitational lens to manifest an azimuthal rotation because of these chiral trajectories. The findings open for a way to probe for and discover subwavelength-size black holes using circularly polarized light.

Keywords spin–orbit interation      black hole      gravitational lens      optical angular momentum     
Corresponding Author(s): Hong-Xing Xu   
Issue Date: 22 May 2017
 Cite this article:   
Deng Pan,Hong-Xing Xu. Gravitational field around black hole induces photonic spin–orbit interaction that twists light[J]. Front. Phys. , 2017, 12(5): 128102.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-017-0679-5
https://academic.hep.com.cn/fop/EN/Y2017/V12/I5/128102
1 D.Pan, H.Wei, L.Gao, and H.Xu, Strong spin–orbit interaction of light in plasmonic nanostructures and nanocircuits, Phys. Rev. Lett.117(16), 166803 (2016)
https://doi.org/10.1103/PhysRevLett.117.166803
2 P. J.Wang and J.Zhang, Spin–orbit coupling in Bose– Einstein condensate and degenerate Fermi gases, Front. Phys.9(5), 598 (2014)
https://doi.org/10.1007/s11467-013-0377-x
3 J. K.Wang, W.Yi, and W.Zhang, Two-body physics in quasi-low-dimensional atomic gases under spin–orbit coupling, Front. Phys.11(3), 118102 (2016)
https://doi.org/10.1007/s11467-015-0529-2
4 M.Onoda, S.Murakami, and N.Nagaosa, Hall effect of light, Phys. Rev. Lett.93(8), 083901 (2004)
https://doi.org/10.1103/PhysRevLett.93.083901
5 Y.Gorodetski, A.Niv, V.Kleiner, and E.Hasman, Observation of the spin-based plasmonic effect in nanoscale structures, Phys. Rev. Lett.101(4), 043903 (2008)
https://doi.org/10.1103/PhysRevLett.101.043903
6 K. Y.Bliokh, Y.Gorodetski, V.Kleiner, and E.Hasman, Coriolis effect in optics: Unified geometric phase and spin-Hall effect, Phys. Rev. Lett.101(3), 030404 (2008)
https://doi.org/10.1103/PhysRevLett.101.030404
7 S. Y.Lee, I. M.Lee, J.Park, S.Oh, W.Lee, K. Y.Kim, and B.Lee, Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons, Phys. Rev. Lett.108(21), 213907 (2012)
https://doi.org/10.1103/PhysRevLett.108.213907
8 F. J.Rodríguez-Fortuño, G.Marino, P.Ginzburg, D.O’Connor, A.Martínez, G. A.Wurtz, and A. V.Zayats, Near-field interference for the unidirectional excitation of electromagnetic guided modes, Science340(6130), 328 (2013)
https://doi.org/10.1126/science.1233739
9 J.Lin, J. P. B.Mueller, Q.Wang, G.Yuan, N.Antoniou, X. C.Yuan, and F.Capasso, Polarizationcontrolled tunable directional coupling of surface plasmon polaritons, Science340(6130), 331 (2013)
https://doi.org/10.1126/science.1233746
10 X.Yin, Z.Ye, J.Rho, Y.Wang, and X.Zhang, Photonic spin Hall effect at metasurfaces, Science339(6126), 1405 (2013)
https://doi.org/10.1126/science.1231758
11 N.Shitrit, I.Yulevich, E.Maguid, D.Ozeri, D.Veksler, V.Kleiner, and E.Hasman, Spin–optical metamaterial route to spin-controlled photonics, Science340(6133), 724 (2013)
https://doi.org/10.1126/science.1234892
12 J.Petersen, J.Volz, and A.Rauschenbeutel, Chiral nanophotonic waveguide interface based on spin–orbit interaction of light, Science346(6205), 67 (2014)
https://doi.org/10.1126/science.1257671
13 D.O’Connor, P.Ginzburg, F. J.Rodríguez-Fortuño, G. A.Wurtz, and A. V.Zayats, Spin–orbit coupling in surface plasmon scattering by nanostructures, Nat. Commun.5, 5327 (2014)
https://doi.org/10.1038/ncomms6327
14 J. B.Pendry, Controlling electromagnetic fields, Science312(5781), 1780 (2006)
https://doi.org/10.1126/science.1125907
15 U.Leonhardt, Optical conformal mapping, Science312(5781), 1777 (2006)
https://doi.org/10.1126/science.1126493
16 D. A.Genov, S.Zhang, and X.Zhang, Mimicking celestial mechanics in metamaterials, Nat. Phys.5(9), 687 (2009)
17 W. X.Jiang and B. G.Cai, An electromagnetic black hole made of metamaterials, arXiv: 0910.2159 (2009)
18 C.Sheng, H.Liu, Y.Wang, S. N.Zhu, and D. A.Genov, Trapping light by mimicking gravitational lensing, Nat. Photonics7(11), 902 (2013)
https://doi.org/10.1038/nphoton.2013.247
19 C.Sheng, R.Bekenstein, H.Liu, S.Zhu, and M.Segev, Wavefront shaping through emulated curved space in waveguide settings, Nat. Commun.7, 10747 (2016)
https://doi.org/10.1038/ncomms10747
20 P.Gosselin, A.Bérard, and H.Mohrbach, Spin Hall effect of photons in a static gravitational field, Phys. Rev. D75(8), 084035 (2007)
https://doi.org/10.1103/PhysRevD.75.084035
21 Y. N.Obukhov, Spin, gravity, and inertia, Phys. Rev. Lett.86(2), 192 (2001)
https://doi.org/10.1103/PhysRevLett.86.192
22 S.Dimopoulos and G.Landsberg, Black holes at the large hadron collider, Phys. Rev. Lett.87(16), 161602 (2001)
https://doi.org/10.1103/PhysRevLett.87.161602
23 S. B.Giddings and S.Thomas, High energy colliders as black hole factories: The end of short distance physics, Phys. Rev. D65(5), 056010 (2002)
https://doi.org/10.1103/PhysRevD.65.056010
24 D.Garoli, P.Zilio, F.De Angelis, and Y.Gorodetski, Helicity locking in light emitted from a plasmonic nanotaper, arXiv: 1703.02278 (2017)
25 P. A.Curran, Y.Fan, J. P. U.Fynbo, J.Gorosabel, A.Gomboc, D.Götz, J.Hjorth, Z. P.Jin, S.Kobayashi, C.Kouveliotou, C.Mundell, P. T.O’Brien, E.Pian, A.Rowlinson, D. M.Russell, R.Salvaterra, S.di Serego Alighieri, G.Tagliaferri, S. D.Vergani, J.Elliott, C.Fariña, O. E.Hartoog, R.Karjalainen, S.Klose, F.Knust, A. J.Levan, P.Schady, V.Sudilovsky, and R.Willingale, Circular polarization in the optical afterglow of GRB 121024A, Nature509 (7499), 201 (2014)
https://doi.org/10.1038/nature13237
[1] Zhen-Ming Xu (许震明). Analytic phase structures and thermodynamic curvature for the charged AdS black hole in alternative phase space[J]. Front. Phys. , 2021, 16(2): 24502-.
[2] Mahamat Saleh,Bouetou Thomas Bouetou,Timoleon Crepin Kofane. Hawking radiation from a five-dimensional Lovelock black hole[J]. Front. Phys. , 2015, 10(5): 100401-.
[3] Wei-Zhen Pan(潘伟珍), Xue-Jun Yang(杨学军), Guo-Xiang Yu(余国祥). Quantum nonthermal effect of the Vaidya–Bonner–de Sitter black hole[J]. Front. Phys. , 2014, 9(1): 94-97.
[4] Shuang-Nan Zhang. Black hole binaries and microquasars[J]. Front. Phys. , 2013, 8(6): 630-660.
[5] Henric Krawczynski, Ezequiel Treister. Active galactic nuclei – the physics of individual sources and the cosmic history of formation and evolution[J]. Front. Phys. , 2013, 8(6): 609-629.
[6] Fa-Bo Feng. Radio jets and galaxies as cosmic string probes[J]. Front. Phys. , 2012, 7(4): 461-470.
[7] Han DING (丁翰), Wen-biao LIU (刘文彪). Hawking radiation from a Vaidya black hole by Hamilton–Jacobi method[J]. Front. Phys. , 2011, 6(1): 106-108.
[8] Ji-li HUANG(黄基利), Wen-biao LIU(刘文彪), . Fluctuation around horizon on a Schwarzschild black hole using the null geodesic method[J]. Front. Phys. , 2009, 4(4): 530-533.
[9] Qiao BI (毕桥), Li-li LIU(刘莉丽), Jin-qing FANG(方锦清). Condensation and evolution of a space–time network[J]. Front Phys Chin, 2009, 4(2): 231-234.
[10] Bo LIU (刘博), Wen-biao LIU(刘文彪). The thermodynamics in a dynamical black hole[J]. Front Phys Chin, 2009, 4(1): 94-96.
[11] WU Xue-bing. Weighing black holes in the universe[J]. Front. Phys. , 2006, 1(2): 125-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed