Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (4) : 42202    https://doi.org/10.1007/s11467-023-1371-6
RESEARCH ARTICLE
Efficient conversion of acoustic vortex using extremely anisotropic metasurface
Zhanlei Hao1,2, Haojie Chen3, Yuhang Yin2,4, Cheng-Wei Qiu2(), Shan Zhu1(), Huanyang Chen1()
1. Institute of Electromagnetics and Acoustics and Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
2. Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117583, Singapore
3. Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361005, China
4. Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
 Download: PDF(9526 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Vortex wave and plane wave, as two most fundamental forms of wave propagation, are widely applied in various research fields. However, there is currently a lack of basic mechanism to enable arbitrary conversion between them. In this paper, we propose a new paradigm of extremely anisotropic acoustic metasurface (AM) to achieve the efficient conversion from 2D vortex waves with arbitrary orbital angular momentum (OAM) to plane waves. The underlying physics of this conversion process is ensured by the symmetry shift of AM medium parameters and the directional compensation of phase. Moreover, this novel phenomenon is further verified by analytical calculations, numerical demonstrations, and acoustic experiments, and the deflection angle and direction of the converted plane waves are qualitatively and quantitatively confirmed by a simple formula. Our work provides new possibilities for arbitrary manipulation of acoustic vortex, and holds potential applications in acoustic communication and OAM-based devices.

Keywords efficient wave conversion      vortex wave      plane wave      orbital angular momentum      acoustic metasurface     
Corresponding Author(s): Cheng-Wei Qiu,Shan Zhu,Huanyang Chen   
Issue Date: 27 December 2023
 Cite this article:   
Zhanlei Hao,Haojie Chen,Yuhang Yin, et al. Efficient conversion of acoustic vortex using extremely anisotropic metasurface[J]. Front. Phys. , 2024, 19(4): 42202.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1371-6
https://academic.hep.com.cn/fop/EN/Y2024/V19/I4/42202
Fig.1  (a) Conceptual illustration of AM, which efficiently converts the vortex wave with critical OAM of l0 into vertical plane wave. (b) The relationship between phase delay and relative position, where x ranges from ?3λ to 3λ. (c) The analytical process for the deflection angle of the converted plane wave.
Fig.2  Numerical demonstration for the efficient conversion of arbitrary vortex fields in AM (γ = 0). The simulated total acoustic pressure field patterns of vortex waves with (a) lin = ?14, α = ?15.78°; (b) lin = l0 = ?7, α = 0°; (c) lin = 0, α = 15.21°.
Fig.3  Analytic calculation for the efficient conversion of arbitrary vortex waves. (a) The relationship between the normalized transmissivity and the deflection angle in AM (γ = 0). (b) The relationship between Δx and the critical OAM. The solid lines are analytical results, and the symbols represent numerical results.
Fig.4  Experimental demonstration for the efficient conversion of vortex fields. (a) Photograph of experimental setup. The 3D printing fabricated experimental vortex converter sample: (b) CVT-1, and (c) CVT-2. (d) The relationship between the deflection angle α and incident OAM in AM. The experimental total acoustic pressure field patterns of vortex waves with (e) lCVT-1 = ?14, α = ?16.57°; (f) l0 = lCVT-2 = ?7, α = 0°; (g) lin = 0, α = 15.87°.
1 Yu N. , Genevet P. , A. Kats M. , Aieta F. , P. Tetienne J. , Capasso F. , Gaburro Z. . Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science, 2011, 334(6054): 333
https://doi.org/10.1126/science.1210713
2 Assouar B. , Liang B. , Wu Y. , Li Y. , C. Cheng J. , Jing Y. . Acoustic metasurfaces. Nat. Rev. Mater., 2018, 3(12): 460
https://doi.org/10.1038/s41578-018-0061-4
3 Shen C. , Xie Y. , Li J. , A. Cummer S. , Jing Y. . Asymmetric acoustic transmission through near-zero-index and gradient-index metasurfaces. Appl. Phys. Lett., 2016, 108(22): 223502
https://doi.org/10.1063/1.4953264
4 Fu Y. , Shen C. , Cao Y. , Gao L. , Chen H. , T. Chan C. , A. Cummer S. , Xu Y. . Reversal of transmission and reflection based on acoustic metagratings with integer parity design. Nat. Commun., 2019, 10(1): 2326
https://doi.org/10.1038/s41467-019-10377-9
5 D. Fan X. , Zhang L. . Acoustic orbital angular momentum hall effect and realization using a metasurface. Phys. Rev. Res., 2021, 3(1): 013251
https://doi.org/10.1103/PhysRevResearch.3.013251
6 Zou Z. , Lirette R. , Zhang L. . Orbital angular momentum reversal and asymmetry in acoustic vortex beam reflection. Phys. Rev. Lett., 2020, 125(7): 074301
https://doi.org/10.1103/PhysRevLett.125.074301
7 Y. Yermakov O. , I. Ovcharenko A. , A. Bogdanov A. , V. Iorsh I. , Y. Bliokh K. , S. Kivshar Y. . Spin control of light with hyperbolic metasurfaces. Phys. Rev. B, 2016, 94(7): 075446
https://doi.org/10.1103/PhysRevB.94.075446
8 Li L. , Zhao H. , Liu C. , Li L. , J. Cui T. . Intelligent metasurfaces: Control, communication and computing. eLight, 2022, 2: 7
https://doi.org/10.1186/s43593-022-00013-3
9 Fang B. , Feng D. , Chen P. , Shi L. , Cai J. , Li J. , Li C. , Hong Z. , Jing X. . Broadband cross-circular polarization carpet cloaking based on a phase change material metasurface in the mid-infrared region. Front. Phys., 2022, 17(5): 53502
https://doi.org/10.1007/s11467-021-1148-8
10 Hao Z. , Zhuang Y. , Chen Y. , Liu Y. , Chen H. . Effective medium theory of checkboard structures in the long-wavelength limit. Chin. Opt. Lett., 2020, 18(7): 072401
https://doi.org/10.3788/COL202018.072401
11 Jiang X. , Li Y. , Liang B. , Cheng J. , Zhang L. . Convert acoustic resonances to orbital angular momentum. Phys. Rev. Lett., 2016, 117(3): 034301
https://doi.org/10.1103/PhysRevLett.117.034301
12 Fu Y. , Shen C. , Zhu X. , Li J. , Liu Y. , A. Cummer S. , Xu Y. . Sound vortex diffraction via topological charge in phase gradient metagratings. Sci. Adv., 2020, 6(40): eaba9876
https://doi.org/10.1126/sciadv.aba9876
13 Fu Y. , Tian Y. , Li X. , Yang S. , Liu Y. , Xu Y. , Lu M. . Asymmetric generation of acoustic vortex using dual-layer metasurfaces. Phys. Rev. Lett., 2022, 128(10): 104501
https://doi.org/10.1103/PhysRevLett.128.104501
14 Guo S.Ya Z.Wu P.Wan M., A review on acoustic vortices: Generation, characterization, applications and perspectives, J. Appl. Phys. 132(21), 210701 (2022)
15 Y. Bliokh K. , Nori F. . Spin and orbital angular momenta of acoustic beams. Phys. Rev. B, 2019, 99(17): 174310
https://doi.org/10.1103/PhysRevB.99.174310
16 Xie Y. , Fu Y. , Jia Z. , Li J. , Shen C. , Xu Y. , Chen H. , A. Cummer S. . Acoustic imaging with metamaterial Luneburg lenses. Sci. Rep., 2018, 8(1): 16188
https://doi.org/10.1038/s41598-018-34581-7
17 Hu C. , Xue S. , Yin Y. , Hao Z. , Zhou Y. , Chen H. . Acoustic super-resolution imaging based on solid immersion 3D Maxwell’s fish-eye lens. Appl. Phys. Lett., 2022, 120(19): 192202
https://doi.org/10.1063/5.0093339
18 Hao Z. , Zhou Y. , Wu B. , Liu Y. , Chen H. . Improving resolution of superlens based on solid immersion mechanism. Chin. Phys. B, 2023, 32(6): 064211
https://doi.org/10.1088/1674-1056/ac8726
19 D. Muelas-Hurtado R. , Volke-Sepúlveda K. , L. Ealo J. , Nori F. , A. Alonso M. , Y. Bliokh K. , Brasselet E. . Observation of polarization singularities and topological textures in sound waves. Phys. Rev. Lett., 2022, 129(20): 204301
https://doi.org/10.1103/PhysRevLett.129.204301
20 Zhang H. , Sun Y. , Huang J. , Wu B. , Yang Z. , Y. Bliokh K. , Ruan Z. . Topologically crafted spatiotemporal vortices in acoustics. Nat. Commun., 2023, 14(1): 6238
https://doi.org/10.1038/s41467-023-41776-8
21 Liu M. , Zhu W. , Huo P. , Feng L. , Song M. , Zhang C. , Chen L. , J. Lezec H. , Lu Y. , Agrawal A. , Xu T. . Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states. Light: Sci. Appl., 2021, 10(1): 107
https://doi.org/10.1038/s41377-021-00552-3
22 W. Qiu C. , Zhang T. , Hu G. , Kivshar Y. . Quo vadis, metasurfaces. Nano Lett., 2021, 21(13): 5461
https://doi.org/10.1021/acs.nanolett.1c00828
23 Y. Fu Y. , Q. Tao J. , L. Song A. , W. Liu Y. , D. Xu Y. . Controllably asymmetric beam splitting via gap-induced diffraction channel transition in dual-layer binary metagratings. Front. Phys., 2020, 15(5): 52502
https://doi.org/10.1007/s11467-020-0968-2
24 Li Z. , Cao G. , Li C. , Dong S. , Deng Y. , Liu X. , S. Ho J. , W. Qiu C. . Non-Hermitian electromagnetic metasurfaces at exceptional points. Prog. Electromagn. Res., 2021, 171: 1
https://doi.org/10.2528/PIER21051703
25 Zhang L. , Niu Q. . Angular momentum of phonons and the Einstein‒de Haas effect. Phys. Rev. Lett., 2014, 112(8): 085503
https://doi.org/10.1103/PhysRevLett.112.085503
26 Cao Y. , Yu B. , Fu Y. , Gao L. , Xu Y. . Phase-gradient metasurfaces based on local Fabry–Pérot resonances. Chin. Phys. Lett., 2020, 37(9): 097801
https://doi.org/10.1088/0256-307X/37/9/097801
27 Jiang X. , Shi C. , Wang Y. , Smalley J. , Cheng J. , Zhang X. . Nonresonant metasurface for fast decoding in acoustic communications. Phys. Rev. Appl., 2020, 13(1): 014014
https://doi.org/10.1103/PhysRevApplied.13.014014
28 Song H. , Wang N. , Yu K. , Pei J. , P. Wang G. . Disorder-immune metasurfaces with constituents exhibiting the anapole mode. New J. Phys., 2020, 22(11): 113011
https://doi.org/10.1088/1367-2630/abc70d
29 Li Y. , Qi S. , B. Assouar M. . Theory of metascreen-based acoustic passive phased array. New J. Phys., 2016, 18(4): 043024
https://doi.org/10.1088/1367-2630/18/4/043024
30 Chen S. , Fan Y. , Yang F. , Sun K. , Fu Q. , Zheng J. , Zhang F. . Coiling-up space metasurface for high-efficient and wide-angle acoustic wavefront steering. Front. Mater., 2021, 8: 790987
https://doi.org/10.3389/fmats.2021.790987
31 Cao Y. , Fu Y. , Zhou Q. , Ou X. , Gao L. , Chen H. , Xu Y. . Mechanism behind angularly asymmetric diffraction in phase-gradient metasurfaces. Phys. Rev. Appl., 2019, 12(2): 024006
https://doi.org/10.1103/PhysRevApplied.12.024006
32 Hu Z. , He N. , Sun Y. , Jin Y. , He S. . Wideband high-reflection chiral dielectrical metasurface. Prog. Electromagn. Res., 2021, 172: 51
https://doi.org/10.2528/PIER21121903
33 Mazor Y. , Alù A. . Routing optical spin and pseudospin with metasurfaces. Phys. Rev. Appl., 2020, 14(1): 014029
https://doi.org/10.1103/PhysRevApplied.14.014029
34 J. Li S. , Y. Li Z. , S. Huang G. , B. Liu X. , Q. Li R. , Y. Cao X. . Digital coding transmissive metasurface for multi-OAM-beam. Front. Phys., 2022, 17(6): 62501
https://doi.org/10.1007/s11467-022-1179-9
35 Xu Y. , Fu Y. , Chen H. . Planar Gradient Metamaterials. Nat. Rev. Mater., 2016, 1(12): 16067
https://doi.org/10.1038/natrevmats.2016.67
36 Li J. , Díaz-Rubio A. , Shen C. , Jia Z. , Tretyakov S. , Cummer S. . Highly efficient generation of angular momentum with cylindrical bianisotropic metasurfaces. Phys. Rev. Appl., 2019, 11(2): 024016
https://doi.org/10.1103/PhysRevApplied.11.024016
37 Ba Q. , Zhou Y. , Li J. , Xiao W. , Ye L. , Liu Y. , Chen J. , Chen H. . Conformal optical black hole for cavity. eLight, 2022, 2: 19
https://doi.org/10.1186/s43593-022-00026-y
38 Meng X. , Chen X. , Yang L. , Xue W. , Zhang A. , E. I. Sha W. , Cheng Q. . Launcher of high-order Bessel vortex beam carrying orbital angular momentum by designing anisotropic holographic metasurface. Appl. Phys. Lett., 2020, 117(24): 243503
https://doi.org/10.1063/5.0031139
39 Shen Y. , Wang X. , Xie Z. , Min C. , Fu X. , Liu Q. , Gong M. , Yuan X. . Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light: Sci. Appl., 2019, 8(1): 901
https://doi.org/10.1038/s41377-019-0194-2
40 Wang H. , Wang H. , Ruan Q. , Y. E. Chan J. , Zhang W. , Liu H. , D. Rezaei S. , Trisno J. , W. Qiu C. , Gu M. , K. W. Yang J. . Coloured vortex beams with incoherent white light illumination. Nat. Nanotechnol., 2023, 18(3): 2643
https://doi.org/10.1038/s41565-023-01319-0
41 D. Fan X. , Zou Z. , Zhang L. . Acoustic vortices in inhomogeneous media. Phys. Rev. Res., 2019, 1(3): 032014
https://doi.org/10.1103/PhysRevResearch.1.032014
42 Díaz-Rubio A. , S. Asadchy V. , Elsakka A. , A. Tretyakov S. . From the generalized reflection law to the realization of perfect anomalous reflectors. Sci. Adv., 2017, 3(8): e1602714
https://doi.org/10.1126/sciadv.1602714
43 Hao Z. , Chen H. , Yin Y. , Qiu C. , Zhu S. , Chen H. . Asymmetric conversion of arbitrary vortex fields via acoustic metasurface. Appl. Phys. Lett., 2023, 123(20): 201702
https://doi.org/10.1063/5.0171813
44 Jin Z. , Janoschka D. , Deng J. , Ge L. , Dreher P. , Frank B. , Hu G. , Ni J. , Yang Y. , Li J. , Yu C. , Lei D. , Li G. , Xiao S. , Mei S. , Giessen H. , M. zu Heringdorf F. , W. Qiu C. . Phyllotaxis-inspired nanosieves with multiplexed orbital angular momentum. eLight, 2021, 1: 5
https://doi.org/10.1186/s43593-021-00005-9
45 Y. Bliokh K. , Karimi E. , J. Padgett M. , A. Alonso M. , R. Dennis M. . et al.. Roadmap on structured waves. J. Opt., 2023, 25(10): 103001
https://doi.org/10.1088/2040-8986/acea92
46 Jiang X. , Wang N. , Zhang C. , Fang X. , Li S. , Sun X. , Li Y. , Ta D. , Wang W. . Acoustic orbital angular momentum prism for efficient vortex perception. Appl. Phys. Lett., 2021, 118(7): 071901
https://doi.org/10.1063/5.0041398
47 Chen Y. , Hu G. . Broadband and high-transmission metasurface for converting underwater cylindrical waves to plane waves. Phys. Rev. Appl., 2019, 12(4): 044046
https://doi.org/10.1103/PhysRevApplied.12.044046
48 X. Jiang W. , J. Cui T. , F. Ma H. , Y. Zhou X. , Cheng Q. . Cylindrical-to-plane-wave conversion via embedded optical transformation. Appl. Phys. Lett., 2008, 92(26): 261903
https://doi.org/10.1063/1.2953447
49 Guo Y. , Zhu G. , Bian W. , Dong B. , Fang Y. . Orbital angular momentum dichroism caused by the interaction of electric and magnetic dipole moments and the geometrical asymmetry of chiral metal nanoparticles. Phys. Rev. A, 2020, 102(3): 033525
https://doi.org/10.1103/PhysRevA.102.033525
50 Ding F., A review of multifunctional optical gap-surface plasmon metasurfaces, Prog. Electromagn. Res. 174, 55 (2022)
51 Mazanov M. , Yermakov O. . Vortex dynamics and structured darkness of Laguerre‒Gaussian beams transmitted through Q-plates under weak axial-asymmetric incidence. J. Lightwave Technol., 2023, 41(7): 2232
https://doi.org/10.1109/JLT.2022.3226814
52 Kang M. , Ra’di Y. , Farfan D. , Alù A. . Efficient focusing with large numerical aperture using a hybrid metalens. Phys. Rev. Appl., 2020, 13(4): 044016
https://doi.org/10.1103/PhysRevApplied.13.044016
53 Cao Y. , Fu Y. , H. Jiang J. , Gao L. , Xu Y. . Scattering of light with orbital angular momentum from a metallic meta-cylinder with engineered topological charge. ACS Photonics, 2021, 8(7): 2027
https://doi.org/10.1021/acsphotonics.1c00077
54 Pfeiffer C. , Grbic A. . Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett., 2013, 110(19): 197401
https://doi.org/10.1103/PhysRevLett.110.197401
[1] fop-21371-OF-hanzhanlei_suppl_1 Download
[1] Si Jia Li, Zhuo Yue Li, Guo Shai Huang, Xiao Bin Liu, Rui Qi Li, Xiang Yu Cao. Digital coding transmissive metasurface for multi-OAM-beam[J]. Front. Phys. , 2022, 17(6): 62501-.
[2] Hai-Yun Wang, Zhao-Hui Yang, Kun Liu, Ya-Hong Chen, Lin Liu, Fei Wang, Yang-Jian Cai. Generalized high-order twisted partially coherent beams and their propagation characteristics[J]. Front. Phys. , 2022, 17(5): 52506-.
[3] Zhucheng Zhang, Jiancheng Pei, Yi-Ping Wang, Xiaoguang Wang. Measuring orbital angular momentum of vortex beams in optomechanics[J]. Front. Phys. , 2021, 16(3): 32503-.
[4] LIU Xiong-jun, LIU Xin, KWEK Leong-Chuan, OH ChooHiap. Manipulating atomic states via optical orbital angular-momentum[J]. Front. Phys. , 2008, 3(2): 113-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed