|
|
Spatiotemporal nonlinear dynamics in multimode fiber laser based on carbon nanotubes |
Jingxuan Sun1, Yachen Wang1, Congyu Zhang1, Lijun Xu1, Bo Fu1,2( ) |
1. Key Laboratory of Precision Opto-Mechatronics Technology, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China 2. Key Laboratory of Big Data-Based Precision Medicine, Ministry of Industry and Information Technology, School of Engineering Medicine, Beihang University, Beijing 100191, China |
|
|
Abstract We investigated 1-μm multimode fiber laser based on carbon nanotubes, where multiple typical pulse states were observed, including Q-switched, Q-switched mode-locked, and spatiotemporal mode-locked pulses. Particularly, stable spatiotemporal mode-locking was realized with a low threshold, where the pulse duration was 37 ps and the wavelength was centred at 1060.5 nm. Moreover, both the high signal to noise and long-term operation stability proved the reliability of the mode-locked laser. Furthermore, the evolution of the spatiotemporal mode-locked pulses in the cavity was also simulated and discussed. This work exhibits the flexible outputs of spatiotemporal phenomena in multimode lasers based on nanomaterials, providing more possibilities for the development of high-dimensional nonlinear dynamics.
|
Keywords
spatiotemporal mode-locking
multimode fiber
saturable absorber
ultrafast laser
|
Corresponding Author(s):
Bo Fu
|
Issue Date: 09 April 2024
|
|
1 |
G. Wright L. , N. Christodoulides D. , W. Wise F. . Spatiotemporal mode-locking in multimode fiber lasers. Science, 2017, 358(6359): 94
https://doi.org/10.1126/science.aao0831
|
2 |
G. Wright L. , Sidorenko P. , Pourbeyram H. , M. Ziegler Z. , Isichenko A. , A. Malomed B. , R. Menyuk C. , N. Christodoulides D. , W. Wise F. . Mechanisms of spatiotemporal mode-locking. Nat. Phys., 2020, 16(5): 565
https://doi.org/10.1038/s41567-020-0784-1
|
3 |
Krupa K. , Tonello A. , Barthélémy A. , Mansuryan T. , Couderc V. , Millot G. , Grelu P. , Modotto D. , A. Babin S. , Wabnitz S. . Multimode nonlinear fiber optics, a spatiotemporal avenue. APL Photonics, 2019, 4(11): 110901
https://doi.org/10.1063/1.5119434
|
4 |
Ding Y. , Xiao X. , Liu K. , Fan S. , Zhang X. , Yang C. . Spatiotemporal mode-locking in lasers with large modal dispersion. Phys. Rev. Lett., 2021, 126(9): 093901
https://doi.org/10.1103/PhysRevLett.126.093901
|
5 |
Gao C. , Cao B. , Ding Y. , Xiao X. , Yang D. , Fei H. , Yang C. , Bao C. . All-step-index-fiber spatiotemporally mode-locked laser. Optica, 2023, 10(3): 356
https://doi.org/10.1364/OPTICA.479206
|
6 |
Teğin U. , Kakkava E. , Rahmani B. , Psaltis D. , Moser C. . Spatiotemporal self-similar fiber laser. Optica, 2019, 6(11): 1412
https://doi.org/10.1364/OPTICA.6.001412
|
7 |
Long J. , Gao Y. , Lin W. , Wu J. , Lin X. , Hong W. , Cui H. , Luo Z. , Xu W. , Luo A. . Switchable and spacing tunable dual-wavelength spatiotemporal mode-locked fiber laser. Opt. Lett., 2021, 46(3): 588
https://doi.org/10.1364/OL.412086
|
8 |
Fang W. , Ma X. , Zhou Y. , Zhang W. , Chen X. , Huang S. , Liao M. , Ohishiand Y. , Gao W. . Transverse mode switchable fiber laser with a multimodal interference-based beam shaper. Opt. Lett., 2023, 48(1): 53
https://doi.org/10.1364/OL.478033
|
9 |
Fu B. , Shang C. , Liu H. , Fan S. , Zhao K. , Zhang Y. , Wageh S. , Al-Ghamdi A. , Wang X. , Xu L. , Xiao X. , Zhang H. . Recent advances and future outlook in mode-locked lasers with multimode fibers. Appl. Phys. Rev., 2023, 10(4): 041305
https://doi.org/10.1063/5.0129662
|
10 |
E. Fermann M. , Hartl I. . Ultrafast fibre lasers. Nat. Photonics, 2013, 7(11): 868
https://doi.org/10.1038/nphoton.2013.280
|
11 |
Teğin U. , Ortaç B. . All-fiber all-normal-dispersion femtosecond laser with a nonlinear multimodal interference-based saturable absorber. Opt. Lett., 2018, 43(7): 1611
https://doi.org/10.1364/OL.43.001611
|
12 |
Teğin U. , Rahmani B. , Kakkava E. , Psaltis D. , Moser C. . All-fiber spatiotemporally mode-locked laser with multimode fiber-based filtering. Opt. Express, 2020, 28(16): 23433
https://doi.org/10.1364/OE.399668
|
13 |
Xie S. , Jin L. , Zhang H. , Li X. , Zhang X. , Xu Y. , Ma X. . All-fiber high-power spatiotemporal mode-locked laser based on multimode interference filtering. Opt. Express, 2022, 30(2): 2909
https://doi.org/10.1364/OE.443505
|
14 |
Lin X. , Gao Y. , Long J. , Wu J. , Hong W. , Cui H. , Luo Z. , Xu W. , Luo A. . All few-mode fiber spatiotemporal mode-locked figure-eight laser. J. Lightwave Technol., 2021, 39(17): 5611
https://doi.org/10.1109/JLT.2021.3087784
|
15 |
Wu J. , Liu G. , Gao Y. , Lin X. , Cui H. , Luo Z. , Xu W. , E. Likhachev M. , S. Aleshkina S. , M. Mashinsky V. , V. Yashkov M. , P. Luo A. . Switchable femtosecond and picosecond spatiotemporal mode-locked fiber laser based on NALM and multimode interference filtering effects. Opt. Laser Technol., 2022, 155: 108414
https://doi.org/10.1016/j.optlastec.2022.108414
|
16 |
Cao B. , Gao C. , Ding Y. , Xiao X. , Yang C. , Bao C. . Self-starting spatiotemporal mode-locking using Mamyshev regenerators. Opt. Lett., 2022, 47(17): 4584
https://doi.org/10.1364/OL.469291
|
17 |
Huang L. , Zhang Y. , Liu X. . Dynamics of carbon nanotube-based mode-locking fiber lasers. Nanophotonics, 2020, 9(9): 2731
https://doi.org/10.1515/nanoph-2020-0269
|
18 |
Fu B. , Hua Y. , Xiao X. , Zhu H. , Sun Z. , Yang C. . Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2 µm. IEEE J. Sel. Top. Quantum Electron., 2014, 20(5): 411
https://doi.org/10.1109/JSTQE.2014.2302361
|
19 |
Li Y. , Gao B. , Han Y. , Chen B. , Huo J. . Optoelectronic characteristics and application of black phosphorus and its analogs. Front. Phys., 2021, 16(4): 43301
https://doi.org/10.1007/s11467-021-1052-2
|
20 |
Fu B. , Sun J. , Wang C. , Shang C. , Xu L. , Li J. , Zhang H. . MXenes: Synthesis, optical properties, and applications in ultrafast photonics. Small, 2021, 17(11): 2006054
https://doi.org/10.1002/smll.202006054
|
21 |
Zhao X. , Jin H. , Liu J. , Chao J. , Liu T. , Zhang H. , Wang G. , Lyu W. , Wageh S. , A. Al-Hartomy O. , G. Al-Sehemi A. , Fu B. , Zhang H. . Integration and applications of nanomaterials for ultra-fast photonics. Laser Photonics Rev., 2022, 16(11): 2200386
https://doi.org/10.1002/lpor.202200386
|
22 |
Li X. , Guo Y. , Ren Y. , Peng J. , Liu J. , Wang C. , Zhang H. . Narrow-bandgap materials for optoelectronics applications. Front. Phys., 2022, 17(1): 13304
https://doi.org/10.1007/s11467-021-1055-z
|
23 |
Zhao T. , Liu G. , Dai L. , Zhao B. , Cui H. , Mou C. , Luo Z. , Xu W. , Luo A. . Narrow bandwidth spatiotemporal mode-locked Yb-doped fiber laser. Opt. Lett., 2022, 47(15): 3848
https://doi.org/10.1364/OL.465533
|
24 |
S. Mohammed W. , W. Smith P. , Gu X. . All-fiber multimode interference bandpass filter. Opt. Lett., 2006, 31(17): 2547
https://doi.org/10.1364/OL.31.002547
|
25 |
Mafi A. , Hofmann P. , J. Salvin C. , Schülzgen A. . Low-loss coupling between two single-mode optical fibers with different mode-field diameters using a graded-index multimode optical fiber. Opt. Lett., 2011, 36(18): 3596
https://doi.org/10.1364/OL.36.003596
|
26 |
Garmire E. . Resonant optical nonlinearities in semiconductors. IEEE J. Sel. Top. Quantum Electron., 2000, 6(6): 1094
https://doi.org/10.1109/2944.902158
|
27 |
Lee J. , Koo J. , Debnath P. , Song Y. , Lee J. . A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber. Laser Phys. Lett., 2013, 10(3): 035103
https://doi.org/10.1088/1612-2011/10/3/035103
|
28 |
H. Lin K. , J. Kang J. , H. Wu H. , K. Lee C. , R. Lin G. . Manipulation of operation states by polarization control in an erbium-doped fiber laser with a hybrid saturable absorber. Opt. Express, 2009, 17(6): 4806
https://doi.org/10.1364/OE.17.004806
|
29 |
Sun J. , Wang G. , Chao J. , Wang X. , Yang H. , Fu B. . Buildup of multiple spatiotemporal nonlinear dynamics in an all-fiber multimode laser. Opt. Lett., 2023, 48(22): 6019
https://doi.org/10.1364/OL.505331
|
30 |
Poletti F. , Horak P. . Description of ultrashort pulse propagation in multimode optical fibers. J. Opt. Soc. Am. B, 2008, 25(10): 1645
https://doi.org/10.1364/JOSAB.25.001645
|
31 |
G. Wright L. , H. Renninger W. , N. Christodoulides D. , W. Wise F. . Spatiotemporal dynamics of multimode optical solitons. Opt. Express, 2015, 23(3): 3492
https://doi.org/10.1364/OE.23.003492
|
32 |
Kataura H. , Kumazawa Y. , Maniwa Y. , Umezu I. , Suzuki S. , Ohtsuka Y. , Achiba Y. . Optical properties of single-wall carbon nanotubes. Synth. Met., 1999, 103(1-3): 2555
https://doi.org/10.1016/S0379-6779(98)00278-1
|
33 |
Yang H. , Fu B. , Li D. , Tian Y. , Chen Y. , Mattila M. , Yong Z. , Li R. , Hassanien A. , Yang C. , Tittonen I. , Ren Z. , Bai J. , Li Q. , I. Kauppinen E. , Lipsanen H. , Sun Z. . Broadband laser polarization control with aligned carbon nanotubes. Nanoscale, 2015, 7(25): 11199
https://doi.org/10.1039/C5NR01904D
|
34 |
Martinez A. , Sun Z. . Nanotube and graphene saturable absorbers for fibre lasers. Nat. Photonics, 2013, 7(11): 842
https://doi.org/10.1038/nphoton.2013.304
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|