Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (5) : 52201    https://doi.org/10.1007/s11467-024-1399-2
Spatiotemporal nonlinear dynamics in multimode fiber laser based on carbon nanotubes
Jingxuan Sun1, Yachen Wang1, Congyu Zhang1, Lijun Xu1, Bo Fu1,2()
1. Key Laboratory of Precision Opto-Mechatronics Technology, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
2. Key Laboratory of Big Data-Based Precision Medicine, Ministry of Industry and Information Technology, School of Engineering Medicine, Beihang University, Beijing 100191, China
 Download: PDF(8744 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We investigated 1-μm multimode fiber laser based on carbon nanotubes, where multiple typical pulse states were observed, including Q-switched, Q-switched mode-locked, and spatiotemporal mode-locked pulses. Particularly, stable spatiotemporal mode-locking was realized with a low threshold, where the pulse duration was 37 ps and the wavelength was centred at 1060.5 nm. Moreover, both the high signal to noise and long-term operation stability proved the reliability of the mode-locked laser. Furthermore, the evolution of the spatiotemporal mode-locked pulses in the cavity was also simulated and discussed. This work exhibits the flexible outputs of spatiotemporal phenomena in multimode lasers based on nanomaterials, providing more possibilities for the development of high-dimensional nonlinear dynamics.

Keywords spatiotemporal mode-locking      multimode fiber      saturable absorber      ultrafast laser     
Corresponding Author(s): Bo Fu   
Issue Date: 09 April 2024
 Cite this article:   
Jingxuan Sun,Yachen Wang,Congyu Zhang, et al. Spatiotemporal nonlinear dynamics in multimode fiber laser based on carbon nanotubes[J]. Front. Phys. , 2024, 19(5): 52201.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-024-1399-2
https://academic.hep.com.cn/fop/EN/Y2024/V19/I5/52201
Fig.1  Setup of the spatiotemporal mode-locked laser at 1 μm. YDF: Ytterbium-doped fiber; PI-ISO: Polarization-insensitive isolator; OC: Output coupler; SA: Saturable absorber; PC: Polarization controller.
Fig.2  Optical properties of carbon nanotubes. (a) Linear transmittance curve of CNTs. (b) Nonlinear transmittance curve of CNTs at 1 μm. αs: Modulation depth; Isat: Saturable intensity.
Fig.3  Q-switched results. (a) Spectrum. Inset: Beam profile. (b) Temporal waveform. (c) Pulse profile. (d) RF spectrum.
Fig.4  Q-switched mode-locked results. (a) Spectrum (Inset: Beam profile). (b) Temporal waveform. (c) Zoomed view of the temporal waveform. (d) RF spectrum.
Fig.5  Spatiotemporal mode-locked results. (a) Spectrum (Inset: Beam profile). (b) Temporal waveform. (c) Pulse profile. (d) RF spectrum. (e) RF spectrum under a larger span. (f) Spectra evolution versus time.
Fig.6  Results of spectral filtering and spatial sampling. (a) Optical (Inset: Beam profiles) and (b) RF spectra of spectral filtering. (c) Optical and (d) RF spectra of spatial sampling.
Fig.7  Simulated results of the spatiotemporal mode-locking. (a) Evolution of pulses in time domain with different roundtrips. (b) Evolution of the time-domain peak positions and the energy of pulses corresponding to different modes. (c) Evolution of stable pulses with different positions in the 300th roundtrip. MMF: Multimode fiber; SF: Spatial filter; SC: Spatial coupling; MMIF: Multimode interference filter; YDF: Yb-doped fiber; OC: Output coupler; SA: Saturable absorber. (d) Spectrum (Inset: Beam profile). (e) Pulse profile.
1 G. Wright L. , N. Christodoulides D. , W. Wise F. . Spatiotemporal mode-locking in multimode fiber lasers. Science, 2017, 358(6359): 94
https://doi.org/10.1126/science.aao0831
2 G. Wright L. , Sidorenko P. , Pourbeyram H. , M. Ziegler Z. , Isichenko A. , A. Malomed B. , R. Menyuk C. , N. Christodoulides D. , W. Wise F. . Mechanisms of spatiotemporal mode-locking. Nat. Phys., 2020, 16(5): 565
https://doi.org/10.1038/s41567-020-0784-1
3 Krupa K. , Tonello A. , Barthélémy A. , Mansuryan T. , Couderc V. , Millot G. , Grelu P. , Modotto D. , A. Babin S. , Wabnitz S. . Multimode nonlinear fiber optics, a spatiotemporal avenue. APL Photonics, 2019, 4(11): 110901
https://doi.org/10.1063/1.5119434
4 Ding Y. , Xiao X. , Liu K. , Fan S. , Zhang X. , Yang C. . Spatiotemporal mode-locking in lasers with large modal dispersion. Phys. Rev. Lett., 2021, 126(9): 093901
https://doi.org/10.1103/PhysRevLett.126.093901
5 Gao C. , Cao B. , Ding Y. , Xiao X. , Yang D. , Fei H. , Yang C. , Bao C. . All-step-index-fiber spatiotemporally mode-locked laser. Optica, 2023, 10(3): 356
https://doi.org/10.1364/OPTICA.479206
6 Teğin U. , Kakkava E. , Rahmani B. , Psaltis D. , Moser C. . Spatiotemporal self-similar fiber laser. Optica, 2019, 6(11): 1412
https://doi.org/10.1364/OPTICA.6.001412
7 Long J. , Gao Y. , Lin W. , Wu J. , Lin X. , Hong W. , Cui H. , Luo Z. , Xu W. , Luo A. . Switchable and spacing tunable dual-wavelength spatiotemporal mode-locked fiber laser. Opt. Lett., 2021, 46(3): 588
https://doi.org/10.1364/OL.412086
8 Fang W. , Ma X. , Zhou Y. , Zhang W. , Chen X. , Huang S. , Liao M. , Ohishiand Y. , Gao W. . Transverse mode switchable fiber laser with a multimodal interference-based beam shaper. Opt. Lett., 2023, 48(1): 53
https://doi.org/10.1364/OL.478033
9 Fu B. , Shang C. , Liu H. , Fan S. , Zhao K. , Zhang Y. , Wageh S. , Al-Ghamdi A. , Wang X. , Xu L. , Xiao X. , Zhang H. . Recent advances and future outlook in mode-locked lasers with multimode fibers. Appl. Phys. Rev., 2023, 10(4): 041305
https://doi.org/10.1063/5.0129662
10 E. Fermann M. , Hartl I. . Ultrafast fibre lasers. Nat. Photonics, 2013, 7(11): 868
https://doi.org/10.1038/nphoton.2013.280
11 Teğin U. , Ortaç B. . All-fiber all-normal-dispersion femtosecond laser with a nonlinear multimodal interference-based saturable absorber. Opt. Lett., 2018, 43(7): 1611
https://doi.org/10.1364/OL.43.001611
12 Teğin U. , Rahmani B. , Kakkava E. , Psaltis D. , Moser C. . All-fiber spatiotemporally mode-locked laser with multimode fiber-based filtering. Opt. Express, 2020, 28(16): 23433
https://doi.org/10.1364/OE.399668
13 Xie S. , Jin L. , Zhang H. , Li X. , Zhang X. , Xu Y. , Ma X. . All-fiber high-power spatiotemporal mode-locked laser based on multimode interference filtering. Opt. Express, 2022, 30(2): 2909
https://doi.org/10.1364/OE.443505
14 Lin X. , Gao Y. , Long J. , Wu J. , Hong W. , Cui H. , Luo Z. , Xu W. , Luo A. . All few-mode fiber spatiotemporal mode-locked figure-eight laser. J. Lightwave Technol., 2021, 39(17): 5611
https://doi.org/10.1109/JLT.2021.3087784
15 Wu J. , Liu G. , Gao Y. , Lin X. , Cui H. , Luo Z. , Xu W. , E. Likhachev M. , S. Aleshkina S. , M. Mashinsky V. , V. Yashkov M. , P. Luo A. . Switchable femtosecond and picosecond spatiotemporal mode-locked fiber laser based on NALM and multimode interference filtering effects. Opt. Laser Technol., 2022, 155: 108414
https://doi.org/10.1016/j.optlastec.2022.108414
16 Cao B. , Gao C. , Ding Y. , Xiao X. , Yang C. , Bao C. . Self-starting spatiotemporal mode-locking using Mamyshev regenerators. Opt. Lett., 2022, 47(17): 4584
https://doi.org/10.1364/OL.469291
17 Huang L. , Zhang Y. , Liu X. . Dynamics of carbon nanotube-based mode-locking fiber lasers. Nanophotonics, 2020, 9(9): 2731
https://doi.org/10.1515/nanoph-2020-0269
18 Fu B. , Hua Y. , Xiao X. , Zhu H. , Sun Z. , Yang C. . Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2 µm. IEEE J. Sel. Top. Quantum Electron., 2014, 20(5): 411
https://doi.org/10.1109/JSTQE.2014.2302361
19 Li Y. , Gao B. , Han Y. , Chen B. , Huo J. . Optoelectronic characteristics and application of black phosphorus and its analogs. Front. Phys., 2021, 16(4): 43301
https://doi.org/10.1007/s11467-021-1052-2
20 Fu B. , Sun J. , Wang C. , Shang C. , Xu L. , Li J. , Zhang H. . MXenes: Synthesis, optical properties, and applications in ultrafast photonics. Small, 2021, 17(11): 2006054
https://doi.org/10.1002/smll.202006054
21 Zhao X. , Jin H. , Liu J. , Chao J. , Liu T. , Zhang H. , Wang G. , Lyu W. , Wageh S. , A. Al-Hartomy O. , G. Al-Sehemi A. , Fu B. , Zhang H. . Integration and applications of nanomaterials for ultra-fast photonics. Laser Photonics Rev., 2022, 16(11): 2200386
https://doi.org/10.1002/lpor.202200386
22 Li X. , Guo Y. , Ren Y. , Peng J. , Liu J. , Wang C. , Zhang H. . Narrow-bandgap materials for optoelectronics applications. Front. Phys., 2022, 17(1): 13304
https://doi.org/10.1007/s11467-021-1055-z
23 Zhao T. , Liu G. , Dai L. , Zhao B. , Cui H. , Mou C. , Luo Z. , Xu W. , Luo A. . Narrow bandwidth spatiotemporal mode-locked Yb-doped fiber laser. Opt. Lett., 2022, 47(15): 3848
https://doi.org/10.1364/OL.465533
24 S. Mohammed W. , W. Smith P. , Gu X. . All-fiber multimode interference bandpass filter. Opt. Lett., 2006, 31(17): 2547
https://doi.org/10.1364/OL.31.002547
25 Mafi A. , Hofmann P. , J. Salvin C. , Schülzgen A. . Low-loss coupling between two single-mode optical fibers with different mode-field diameters using a graded-index multimode optical fiber. Opt. Lett., 2011, 36(18): 3596
https://doi.org/10.1364/OL.36.003596
26 Garmire E. . Resonant optical nonlinearities in semiconductors. IEEE J. Sel. Top. Quantum Electron., 2000, 6(6): 1094
https://doi.org/10.1109/2944.902158
27 Lee J. , Koo J. , Debnath P. , Song Y. , Lee J. . A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber. Laser Phys. Lett., 2013, 10(3): 035103
https://doi.org/10.1088/1612-2011/10/3/035103
28 H. Lin K. , J. Kang J. , H. Wu H. , K. Lee C. , R. Lin G. . Manipulation of operation states by polarization control in an erbium-doped fiber laser with a hybrid saturable absorber. Opt. Express, 2009, 17(6): 4806
https://doi.org/10.1364/OE.17.004806
29 Sun J. , Wang G. , Chao J. , Wang X. , Yang H. , Fu B. . Buildup of multiple spatiotemporal nonlinear dynamics in an all-fiber multimode laser. Opt. Lett., 2023, 48(22): 6019
https://doi.org/10.1364/OL.505331
30 Poletti F. , Horak P. . Description of ultrashort pulse propagation in multimode optical fibers. J. Opt. Soc. Am. B, 2008, 25(10): 1645
https://doi.org/10.1364/JOSAB.25.001645
31 G. Wright L. , H. Renninger W. , N. Christodoulides D. , W. Wise F. . Spatiotemporal dynamics of multimode optical solitons. Opt. Express, 2015, 23(3): 3492
https://doi.org/10.1364/OE.23.003492
32 Kataura H. , Kumazawa Y. , Maniwa Y. , Umezu I. , Suzuki S. , Ohtsuka Y. , Achiba Y. . Optical properties of single-wall carbon nanotubes. Synth. Met., 1999, 103(1-3): 2555
https://doi.org/10.1016/S0379-6779(98)00278-1
33 Yang H. , Fu B. , Li D. , Tian Y. , Chen Y. , Mattila M. , Yong Z. , Li R. , Hassanien A. , Yang C. , Tittonen I. , Ren Z. , Bai J. , Li Q. , I. Kauppinen E. , Lipsanen H. , Sun Z. . Broadband laser polarization control with aligned carbon nanotubes. Nanoscale, 2015, 7(25): 11199
https://doi.org/10.1039/C5NR01904D
34 Martinez A. , Sun Z. . Nanotube and graphene saturable absorbers for fibre lasers. Nat. Photonics, 2013, 7(11): 842
https://doi.org/10.1038/nphoton.2013.304
[1] Xiao-Hui Li, Yi-Xuan Guo, Yujie Ren, Jia-Jun Peng, Ji-Shu Liu, Cong Wang, Han Zhang. Narrow-bandgap materials for optoelectronics applications[J]. Front. Phys. , 2022, 17(1): 13304-.
[2] Ying-Ying Li, Bo Gao, Ying Han, Bing-Kun Chen, Jia-Yu Huo. Optoelectronic characteristics and application of black phosphorus and its analogs[J]. Front. Phys. , 2021, 16(4): 43301-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed