|
|
Self-aligned TiOx-based 3D vertical memristor for a high-density synaptic array |
Subaek Lee, Juri Kim, Sungjun Kim( ) |
Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, Republic of Korea |
|
|
Abstract The emerging nonvolatile memory, three-dimensional vertical resistive random-access memory (VRRAM), inspired by the vertical NAND structure, has been proposed to replace NAND flash memory which has reached its integration limit. To improve the vertical ionic diffusion occurring in the conventional VRRAM structure, we propose a Pt/HfO2/TiO2/Ti self-aligned VRRAM with physically confined switching cells through sidewall thermal oxidation. We achieved stable bipolar switching, endurance (>104 cycles), and retention (>104 s) responses, and improved the interlayer leakage current issue through a distinctive self-aligned structure. Additionally, we elucidated the switching mechanism by analyzing current levels concerning ambient temperature. To utilize VRRAM for neuromorphic computing, the biological synaptic functions are emulated by applying pulse stimulation to the synaptic cell. The weight modulation of biological synapses is demonstrated based on potentiation, depression, spike-rate-dependent plasticity, and spike-timing-dependent plasticity. Additionally, we improve the pattern recognition rate by creating a linear conductance modulation with an incremental pulse train in pattern recognition simulations. The stable electrical characteristics and implementation of various synaptic functions demonstrate that self-aligned VRRAM is suitable for neuromorphic systems as a high-density synaptic device.
|
Keywords
3D integration
resistive switching
vertical RRAM
synaptic plasticity
self-aligned insulator
|
Corresponding Author(s):
Sungjun Kim
|
Issue Date: 28 June 2024
|
|
1 |
Monzio Compagnoni C. , Goda A. , S. Spinelli A. , Feeley P. , L. Lacaita A. , Visconti A. . Reviewing the evolution of the NAND flash technology. Proc. IEEE, 2017, 105(9): 1609
https://doi.org/10.1109/JPROC.2017.2665781
|
2 |
Bez R. , Camerlenghi E. , Modelli A. , Visconti A. . Introduction to flash memory. Proc. IEEE, 2003, 91(4): 489
https://doi.org/10.1109/JPROC.2003.811702
|
3 |
Pavan P. , Bez R. , Olivo P. , Zanoni E. . Flash memory cells ‒ An overview. Proc. IEEE, 1997, 85(8): 1248
https://doi.org/10.1109/5.622505
|
4 |
Micheloni R. , Crippa L. , Zambelli C. , Olivo P. . Architectural and integration options for 3D NAND flash memories. Computers, 2017, 6(3): 27
https://doi.org/10.3390/computers6030027
|
5 |
H. Hsiao Y. , T. Lue H. , C. Chen W. , P. Chang K. , H. Shih Y. , Y. Tsui B. , Y. Hsieh K. , Y. Lu C. . Modeling the impact of random grain boundary traps on the electrical behavior of vertical gate 3D NAND flash memory devices. IEEE Trans. Electron Dev., 2014, 61(6): 2064
https://doi.org/10.1109/TED.2014.2318716
|
6 |
Goda A. . Recent progress on 3D nand flash technologies. Electronics (Basel), 2021, 10(24): 3156
https://doi.org/10.3390/electronics10243156
|
7 |
H. Lee G. , Hwang S. , Yu J. , Kim H. . Architecture and process integration overview of 3D nand flash technologies. Appl. Sci. (Basel), 2021, 11(15): 6703
https://doi.org/10.3390/app11156703
|
8 |
Goda A., 3-D NAND technology achievements and future scaling perspectives, IEEE Trans. Electron Dev. 67(4), 1373 (2020)
|
9 |
Y. Lu C. . Future prospects of NAND flash memory technology-the evolution from floating gate to charge trapping to 3D stacking. J. Nanosci. Nanotechnol., 2012, 12(10): 7604
https://doi.org/10.1166/jnn.2012.6650
|
10 |
S. Kim S. , K. Yong S. , Kim W. , Kang S. , W. Park H. , J. Yoon K. , S. Sheen D. , Lee S. , S. Hwang C. . Review of semiconductor flash memory devices for material and process issues. Adv. Mater., 2023, 35(43): 2370310
https://doi.org/10.1002/adma.202370310
|
11 |
S. Meena J. , M. Sze S. , Chand U. , Y. Tseng T. . Overview of emerging nonvolatile memory technologies. Nanoscale Res. Lett., 2014, 9(1): 526
https://doi.org/10.1186/1556-276X-9-526
|
12 |
K. Upadhyay N. , Jiang H. , Wang Z. , Asapu S. , Xia Q. , Joshua Yang J. . Emerging memory devices for neuromorphic computing. Adv. Mater. Technol., 2019, 4(4): 1800589
https://doi.org/10.1002/admt.201800589
|
13 |
Molas G. , Nowak E. . Advances in emerging memory technologies: From data storage to artificial intelligence. Appl. Sci. (Basel), 2021, 11(23): 11254
https://doi.org/10.3390/app112311254
|
14 |
K. Lee J. , Kim S. . Comparative analysis of low-frequency noise based resistive switching phenomenon for filamentary and interfacial RRAM devices. Chaos Solitons Fractals, 2023, 173: 113633
https://doi.org/10.1016/j.chaos.2023.113633
|
15 |
Endoh T. , Koike H. , Ikeda S. , Hanyu T. , Ohno H. . An overview of nonvolatile emerging memories-spintronics for working memories. IEEE J. Emerg. Sel. Top. Circuits Syst., 2016, 6(2): 109
https://doi.org/10.1109/JETCAS.2016.2547704
|
16 |
Zahoor F. , Z. Azni Zulkifli T. , A. Khanday F. . Resistive random access memory (RRAM): An overview of materials, switching mechanism, performance, multilevel cell (MLC) storage, modeling, and applications. Nanoscale Res. Lett., 2020, 15(1): 90
https://doi.org/10.1186/s11671-020-03299-9
|
17 |
Heo J. , Cho Y. , Ji H. , H. Kim M. , H. Lee J. , K. Lee J. , Kim S. . Noise-assisted transport mechanism analysis and synaptic characteristics in ZrOx/HfAlOx-based memristor for neuromorphic systems. APL Mater., 2023, 11(11): 111103
https://doi.org/10.1063/5.0175587
|
18 |
Shen Z. , Zhao C. , Qi Y. , Xu W. , Liu Y. , Z. Mitrovic I. , Yang L. , Zhao C. . Advances of RRAM devices: Resistive switching mechanisms, materials and bionic synaptic application. Nanomaterials (Basel), 2020, 10(8): 1437
https://doi.org/10.3390/nano10081437
|
19 |
Ju D. , Kim S. , Kim S. . Highly uniform resistive switching characteristics of Ti/TaOx/ITO memristor devices for neuromorphic system. J. Alloys Compd., 2023, 961: 170920
https://doi.org/10.1016/j.jallcom.2023.170920
|
20 |
T. Li Y. , B. Long S. , Liu Q. , B. Lü H. , Liu S. , Liu M. . An overview of resistive random access memory devices. Chin. Sci. Bull., 2011, 56(28−29): 3072
https://doi.org/10.1007/s11434-011-4671-0
|
21 |
B. Roldán J. , Miranda E. , Maldonado D. , N. Mikhaylov A. , V. Agudov N. , A. Dubkov A. , N. Koryazhkina M. , B. González M. , A. Villena M. , Poblador S. , Saludes-Tapia M. , Picos R. , Jiménez-Molinos F. , G. Stavrinides S. , Salvador E. , J. Alonso F. , Campabadal F. , Spagnolo B. , Lanza M. , O. Chua L. . Variability in resistive memories. Adv. Intell. Syst., 2023, 5(6): 2200338
https://doi.org/10.1002/aisy.202200338
|
22 |
Stasner P. , Kopperberg N. , Schnieders K. , Hennen T. , Wiefels S. , Menzel S. , Waser R. , J. Wouters D. . Reliability effects of lateral filament confinement by nano-scaling the oxide in memristive devices. Nanoscale Horiz., 2024, 9(5): 764
https://doi.org/10.1039/D3NH00520H
|
23 |
Fang Y. , Yu Z. , Wang Z. , Zhang T. , Yang Y. , Cai Y. , Huang R. . Improvement of HfOx-based RRAM device variation by inserting ALD TiN buffer layer. IEEE Electron Device Lett., 2018, 39(6): 819
https://doi.org/10.1109/LED.2018.2831698
|
24 |
C. Chen Y. , F. Chang Y. , Wu X. , Zhou F. , Guo M. , Y. Lin C. , C. Hsieh C. , Fowler B. , C. Chang T. , C. Lee J. . Dynamic conductance characteristics in HfOx-based resistive random access memory. RSC Adv., 2017, 7(21): 12984
https://doi.org/10.1039/C7RA00567A
|
25 |
K. Li H. , P. Chen T. , G. Hu S. , Liu P. , Liu Y. , S. Lee P. , P. Wang X. , Y. Li H. , Q. Lo G. . Study of multilevel high-resistance states in HfOx-based resistive switching random access memory by impedance spectroscopy. IEEE Trans. Electron Dev., 2015, 62(8): 2684
https://doi.org/10.1109/TED.2015.2445339
|
26 |
L. Urquiza M. , M. Islam M. , C. T. Van Duin A. , Cartoixà X. , Strachan A. . Atomistic insights on the full operation cycle of a HfO2-based resistive random access memory cell from molecular dynamics. ACS Nano, 2021, 15(8): 12945
https://doi.org/10.1021/acsnano.1c01466
|
27 |
De Stefano F. , Houssa M. , V. Afanas’Ev V. , A. Kittl J. , Jurczak M. , Stesmans A. . Nature of the filament formed in HfO2-based resistive random access memory. Thin Solid Films, 2013, 533: 15
https://doi.org/10.1016/j.tsf.2012.12.097
|
28 |
Hardtdegen A. , La Torre C. , Cuppers F. , Menzel S. , Waser R. , Hoffmann-Eifert S. . Improved switching stability and the effect of an internal series resistor in HfO2/TiOx bilayer ReRAM cells. IEEE Trans. Electron Dev., 2018, 65(8): 3229
https://doi.org/10.1109/TED.2018.2849872
|
29 |
Ban S. , Kim O. . Improvement of switching uniformity in HfOx-based resistive random access memory with a titanium film and effects of titanium on resistive switching behaviors. Jpn. J. Appl. Phys., 2014, 53(6S): 06JE15
https://doi.org/10.7567/JJAP.53.06JE15
|
30 |
J. Huang Y. , H. Shen T. , H. Lee L. , Y. Wen C. , C. Lee S. . Low-power resistive random access memory by confining the formation of conducting filaments. AIP Adv., 2016, 6(6): 065022
https://doi.org/10.1063/1.4954974
|
31 |
Y. Liu H. , L. Hsu Y. , X. Zheng Y. . Investigation of oxygen deficiency-rich/oxygen deficiency-poor stacked TiO2 based resistive random access memory by mist chemical vapor deposition. Ceram. Int., 2022, 48(19): 28881
https://doi.org/10.1016/j.ceramint.2022.04.038
|
32 |
Bousoulas P. , Giannopoulos I. , Asenov P. , Karageorgiou I. , Tsoukalas D. . Investigating the origins of high multilevel resistive switching in forming free Ti/TiO2−x-based memory devices through experiments and simulations. J. Appl. Phys., 2017, 121(9): 094501
https://doi.org/10.1063/1.4977063
|
33 |
Park J. , Jung S. , Lee J. , Lee W. , Kim S. , Shin J. , Hwang H. . Resistive switching characteristics of ultra-thin TiOx. Microelectron. Eng., 2011, 88(7): 1136
https://doi.org/10.1016/j.mee.2011.03.050
|
34 |
Yu Y. , Yang F. , Mao S. , Zhu S. , Jia Y. , Yuan L. , Salmen M. , Sun B. . Effect of anodic oxidation time on resistive switching memory behavior based on amorphous TiO2 thin films device. Chem. Phys. Lett., 2018, 706: 477
https://doi.org/10.1016/j.cplett.2018.06.063
|
35 |
Kim J. , H. Choi J. , Kim S. , Choi C. , Kim S. . Transition of short-term to long-term memory of Cu/TaOx/CNT conductive bridge random access memory for neuromorphic engineering. Carbon, 2023, 215: 118438
https://doi.org/10.1016/j.carbon.2023.118438
|
36 |
H. Kim C. , Lim S. , Y. Woo S. , M. Kang W. , T. Seo Y. , T. Lee S. , Lee S. , Kwon D. , Oh S. , Noh Y. , Kim H. , Kim J. , H. Bae J. , H. Lee J. . Emerging memory technologies for neuromorphic computing. Nanotechnology, 2019, 30(3): 032001
https://doi.org/10.1088/1361-6528/aae975
|
37 |
A. Makarov V. , A. Lobov S. , Shchanikov S. , Mikhaylov A. , B. Kazantsev V. . Toward reflective spiking neural networks exploiting memristive devices. Front. Comput. Neurosci., 2022, 16: 859874
https://doi.org/10.3389/fncom.2022.859874
|
38 |
N. Matsukatova A. , V. Prudnikov N. , A. Kulagin V. , Battistoni S. , A. Minnekhanov A. , D. Trofimov A. , A. Nesmelov A. , A. Zavyalov S. , N. Malakhova Y. , Parmeggiani M. , Ballesio A. , L. Marasso S. , N. Chvalun S. , A. Demin V. , V. Emelyanov A. , Erokhin V. . Combination of organic-based reservoir computing and spiking neuromorphic systems for a robust and efficient pattern classification. Adv. Intell. Syst., 2023, 5(6): 2200407
https://doi.org/10.1002/aisy.202200407
|
39 |
Park J. , H. Kim T. , Kwon O. , Ismail M. , Mahata C. , Kim Y. , Kim S. , Kim S. . Implementation of convolutional neural network and 8-bit reservoir computing in CMOS compatible VRRAM. Nano Energy, 2022, 104: 107886
https://doi.org/10.1016/j.nanoen.2022.107886
|
40 |
Yu S. , Y. Chen H. , Gao B. , Kang J. , S. P. Wong H. . HfOx-based vertical resistive switching random access memory suitable for bit-cost-effective three-dimensional cross-point architecture. ACS Nano, 2013, 7(3): 2320
https://doi.org/10.1021/nn305510u
|
41 |
Al-Haddad A. , Wang C. , Qi H. , Grote F. , Wen L. , Bernhard J. , Vellacheri R. , Tarish S. , Nabi G. , Kaiser U. , Lei Y. . Highly-ordered 3D vertical resistive switching memory arrays with ultralow power consumption and ultrahigh density. ACS Appl. Mater. Interfaces, 2016, 8(35): 23348
https://doi.org/10.1021/acsami.6b05424
|
42 |
Jiang Z. , Qin S. , Li H. , Fujii S. , Lee D. , Wong S. , S. P. Wong H. . Next-generation ultrahigh-density 3-D vertical resistive switching memory (VRSM)-Part II: Design guidelines for device, array, and architecture. IEEE Trans. Electron Dev., 2019, 66(12): 5147
https://doi.org/10.1109/TED.2019.2950595
|
43 |
Kim H. , Lee J. , W. Kim H. , Woo J. , H. Kim M. , H. Lee S. . Definition of a localized conducting path via suppressed charge injection in oxide memristors for stable practical hardware neural networks. ACS Appl. Mater. Interfaces, 2023, 15(44): 51444
https://doi.org/10.1021/acsami.3c13514
|
44 |
S. Kim S. , K. Yong S. , Kim J. , M. Choi J. , W. Park T. , Y. Kim H. , J. Kim H. , S. Hwang C. . Fabrication of a hole-type vertical resistive-switching random-access array and intercell interference induced by lateral charge spreading. Adv. Electron. Mater., 2023, 9(3): 2200998
https://doi.org/10.1002/aelm.202200998
|
45 |
A. Mojarad S. , P. Goss J. , S. K. Kwa K. , Zhou Z. , A. S. Al-Hamadany R. , J. R. Appleby D. , K. Ponon N. , Oneill A. . Leakage current asymmetry and resistive switching behavior of SrTiO3. Appl. Phys. Lett., 2012, 101(17): 173507
https://doi.org/10.1063/1.4764544
|
46 |
Ali S. , Bae J. , H. Lee C. , P. Kobayashi N. , Shin S. , Ali A. . Resistive switching device with highly asymmetric current-voltage characteristics: A solution to backward sneak current in passive crossbar arrays. Nanotechnology, 2018, 29(45): 455201
https://doi.org/10.1088/1361-6528/aadd6f
|
47 |
C. Chen Y.C. Lin C.T. Hu S.Y. Lin C.Fowler B.Lee J., A novel resistive switching identification method through relaxation characteristics for sneak-path-constrained selectorless RRAM application, Sci. Rep. 9(1), 12420 (2019)
|
48 |
Yu M. , Cai Y. , Wang Z. , Fang Y. , Liu Y. , Yu Z. , Pan Y. , Zhang Z. , Tan J. , Yang X. , Li M. , Huang R. . Novel vertical 3D structure of TaOx-based RRAM with self-localized switching region by sidewall electrode oxidation. Sci. Rep., 2016, 6(1): 21020
https://doi.org/10.1038/srep21020
|
49 |
A. Koroleva A.S. Kuzmichev D.G. Kozodaev M.V. Zabrosaev I.V. Korostylev E.M. Markeev A., CMOS-compatible self-aligned 3D memristive elements for reservoir computing systems, Appl. Phys. Lett. 122(2), 022905 (2023)
|
50 |
Lee K. , Park K. , J. Lee H. , S. Song M. , C. Lee K. , Namkung J. , H. Lee J. , Park J. , C. Chae S. . Enhanced ferroelectric switching speed of Si-doped HfO2 thin film tailored by oxygen deficiency. Sci. Rep., 2021, 11(1): 6290
https://doi.org/10.1038/s41598-021-85773-7
|
51 |
Xie W. , Li R. , Xu Q. . Enhanced photocatalytic activity of Se-doped TiO2 under visible light irradiation. Sci. Rep., 2018, 8(1): 8752
https://doi.org/10.1038/s41598-018-27135-4
|
52 |
A. Khera E. , Mahata C. , Imran M. , A. Niaz N. , Hussain F. , A. Khalil R. , Rasheed U. . Improved resistive switching characteristics of a multi-stacked HfO2/Al2O3/HfO2 RRAM structure for neuromorphic and synaptic applications: Experimental and computational study. RSC Adv., 2022, 12(19): 11649
https://doi.org/10.1039/D1RA08103A
|
53 |
Wang Q. , Niu G. , Roy S. , Wang Y. , Zhang Y. , Wu H. , Zhai S. , Bai W. , Shi P. , Song S. , Song Z. , H. Xie Y. , G. Ye Z. , Wenger C. , Meng X. , Ren W. . Interface-engineered reliable HfO2-based RRAM for synaptic simulation. J. Mater. Chem. C, 2019, 7(40): 12682
https://doi.org/10.1039/C9TC04880D
|
54 |
Y. Wang S. , W. Huang C. , Y. Lee D. , Y. Tseng T. , C. Chang T. . Multilevel resistive switching in Ti/CuxO/Pt memory devices. J. Appl. Phys., 2010, 108(11): 114110
https://doi.org/10.1063/1.3518514
|
55 |
Stoliar P. , Levy P. , J. Sanchez M. , G. Leyva A. , A. Albornoz C. , Gomez-Marlasca F. , Zanini A. , Toro Salazar C. , Ghenzi N. , J. Rozenberg M. . Nonvolatile multilevel resistive switching memory cell: A transition metal oxide-based circuit. IEEE Trans. Circuits Syst. II Express Briefs, 2014, 61(1): 21
https://doi.org/10.1109/TCSII.2013.2290921
|
56 |
H. Chen P. , Y. Lin C. , C. Chang T. , K. Eshraghian J. , T. Chao Y. , D. Lu W. , M. Sze S. . Investigating selectorless property within niobium devices for storage applications. ACS Appl. Mater. Interfaces, 2022, 14(1): 2343
https://doi.org/10.1021/acsami.1c20460
|
57 |
H. Chen K. , M. Tsai T. , M. Cheng C. , J. Huang S. , C. Chang K. , P. Liang S. , F. Young T. . Schottky emission distance and barrier height properties of bipolar switching Gd: SiOx RRAM devices under different oxygen concentration environments. Materials (Basel), 2017, 11(1): 43
https://doi.org/10.3390/ma11010043
|
58 |
Li Y. , Zhong Y. , Zhang J. , Xu L. , Wang Q. , Sun H. , Tong H. , Cheng X. , Miao X. . Activity-dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems. Sci. Rep., 2014, 4(1): 4906
https://doi.org/10.1038/srep04906
|
59 |
Chen J. , Zhu C. , Cao G. , Liu H. , Bian R. , Wang J. , Li C. , Chen J. , Fu Q. , Liu Q. , Meng P. , Li W. , Liu F. , Liu Z. . Mimicking neuroplasticity via ion migration in van der Waals layered Copper indium thiophosphate. Adv. Mater., 2022, 34(25): 2104676
https://doi.org/10.1002/adma.202104676
|
60 |
Ismail M. , Abbas H. , Sokolov A. , Mahata C. , Choi C. , Kim S. . Emulating synaptic plasticity and resistive switching characteristics through amorphous Ta2O5 embedded layer for neuromorphic computing. Ceram. Int., 2021, 47(21): 30764
https://doi.org/10.1016/j.ceramint.2021.07.257
|
61 |
F. Bear M. , C. Malenka R. . Synaptic plasticity: LTP and LTD. Curr. Opin. Neurobiol., 1994, 4(3): 389
https://doi.org/10.1016/0959-4388(94)90101-5
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|