Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (1) : 13401    https://doi.org/10.1007/s11467-023-1335-x
TOPICAL REVIEW
Emerging memristors and applications in reservoir computing
Hao Chen, Xin-Gui Tang(), Zhihao Shen, Wen-Tao Guo, Qi-Jun Sun, Zhenhua Tang, Yan-Ping Jiang
School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
 Download: PDF(12663 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Recently, with the emergence of ChatGPT, the field of artificial intelligence has garnered widespread attention from various sectors of society. Reservoir Computing (RC) is a neuromorphic computing algorithm used to analyze time-series data. Unlike traditional artificial neural networks that require the weight values of all nodes in the trained network, RC only needs to train the readout layer. This makes the training process faster and more efficient, and it has been used in various applications, including speech recognition, image classification, and control systems. Its flexibility and efficiency make it a popular choice for processing large amounts of complex data. A recent research trend is to develop physical RC, which utilizes the nonlinear dynamic and short-term memory properties of physical systems (photonic modules, spintronic devices, memristors, etc.) to construct a fixed random neural network structure for processing input data to reduce computing time and energy. In this paper, we introduced the recent development of memristors and demonstrated the remarkable data processing capability of RC systems based on memristors. Not only do they possess excellent data processing ability comparable to digital RC systems, but they also have lower energy consumption and greater robustness. Finally, we discussed the development prospects and challenges faced by memristors-based RC systems.

Keywords reservoir computing      memristor      resistive switching      artificial synapse      neuromorphic computing     
Corresponding Author(s): Xin-Gui Tang   
Issue Date: 13 September 2023
 Cite this article:   
Hao Chen,Xin-Gui Tang,Zhihao Shen, et al. Emerging memristors and applications in reservoir computing[J]. Front. Phys. , 2024, 19(1): 13401.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1335-x
https://academic.hep.com.cn/fop/EN/Y2024/V19/I1/13401
Fig.1  (a) Schematic illustration of Pt/Mg:HfOx/TiN structure. (b) The RS characteristics by changing the maximum sweep voltages. (a, b) Reproduced from Ref. [39]. (c) Schematic illustration of Pt/Ta2O5/HfO2/TiN structure. (d) Analysis of the RS characteristics. (c, d) Reproduced from Ref. [40]. (e) Typical cross-sectional TEM images of device A and device B. (f) Neural network classification accuracy. (e, f) Reproduced from Ref. [41].
Fig.2  (a) Fabrication procedures of the GdxOy memristors with CSA graphene Bes [44]. (b) The structure of Graphene sheets with different types of defects and varying sizes/concentrations. (c) The process of CF modulated by defective graphene. (b, c) Reproduced from Ref. [45]. (d) The diagram depicts the structure of the memristor with graphene insertion. (e) The switching characteristics with different sized nanopores. (d, e) Reproduced from Ref. [46]. (f) Schematic illustration of the 4 × 4 crossbar array based on Ag/MoS2/Pt structure [47]. (g) Schematic illustration of the memristor with WS2 layer [48]. (h) TEM and FFT images of the WS2 device. (i) TEM image of the different area of the WS2 device. (h, i) Reproduced from Ref. [48].
Fig.3  (a) Schematic diagram of the Au/MAPbI3/ITO memristor, cross-sectional SEM image of the memristor and molecular structure. (b) Schematic illustration of a biological neuron and its experimental circuit. (a, b) Reproduced from Ref. [61]. (c) The structure of the Pd/LBFO/LSMO/STO/Si device. (d) XRD patterns. (e) AFM morphology diagram. (f) PFM phase diagram. (g) PFM hysteresis loop. (h) XPS full spectrum. (c?h) Reproduced from Ref. [62].
Fig.4  (a) Cross-sectional HADDF TEM image of the Au/BM-SFO/SRO device. (b?g) The corresponding EDS mapping image of elements. First-principles calculation for band structures. (h?j) Band structure and PDOS plots of SrFeOx. (k?q) Schematic RS process in the SFO memristor. (a?q) Reproduced from Ref. [67].
Fig.5  (a) Schematics illustration of a synapse how to work. (b) Device structure based on APP. (c) Chemical structure of APP. (d) The cross-section of APP-based device. (a?d) Reproduced from Ref. [77]. (e) Schematics diagram of the ITO/F16CuPc/Al device. (f) The switching characteristics of the F16CuPc-based device with multiple sweep voltage. (e, f) Reproduced from Ref. [78]. (g) Lignin is widely found in plants. (h) Schematics diagram of Au/lignin/ITO/PET device. (i) Schematics diagram of the flexible memristor. (j) Schematics diagram of chemical structure of lignin. (g?j) Reproduced from Ref. [79].
Fig.6  (a) The process of emoticon recognition. (b) The pixel image is converted into pulses of current of different amplitudes. (c) Current response to 16 pulse streams and 14 states can be separated efficiently. (d) Relation between classification accuracy and training epochs. (e) False color confusion matrix. (a?e) Reproduced from Ref. [83]. (f) The process of handwritten digit recognition. (g) Random input signals u test(k) are used to solve a second-order nonlinear dynamic problem. (h) The forecasting results from the memristor-based RC system. (f?h) Reproduced from Ref. [84].
Fig.7  (a) Schematics illustration of dynamic memristor-based RC system with virtual nodes. (b) The input and classification outcome of sinusoidal and square waveforms. (c) The result of Hénon map prediction. (d) The prediction error varies with the two test parameters M and Vmax. (a?d) Reproduced from Ref. [91]. (e) Schematics diagram of the DM-RC hardware system. (f) Memristor-based RC system used to realize dynamic gesture recognition task. (e, f) Reproduced from Ref. [92].
Fig.8  (a) The delayed feedback RC system with virtual nodes for neural activity analysis. (b) False color confusion map. (c) Experimental results vs. ground truth in real-time analysis of neural firing pattern evolution. (d) Classification results in real-time analysis of neural synchronization. (a?d) Reproduced from Ref. [93]. (e) Schematic illustration of handwritten digit recognition. (f) False color confusion map, which is the result of handwritten digit recognition task. (g) Audio waveform corresponding to the digit nine pronounced by a speaker. (h) Results of spoken-digit recognition tasks. (e?h) Reproduced from Ref. [94].
Fig.9  (a) NG-RC, which is equivalent to nonlinear vector autoregression. (b) Structure of the NG-RC reservoir for three-dimensional timing signals predicting. (a, b) Reproduced from Ref. [100].
1 Misra J. , Saha I. . Artificial neural networks in hardware: A survey of two decades of progress. Neurocomputing, 2010, 74(1−3): 239
https://doi.org/10.1016/j.neucom.2010.03.021
2 Liu Z. , Tang J. , Gao B. , Li X. , Yao P. , Lin Y. , Liu D. , Hong B. , Qian H. , Wu H. . Multichannel parallel processing of neural signals in memristor arrays. Sci. Adv., 2020, 6(41): eabc4797
https://doi.org/10.1126/sciadv.abc4797
3 Wang W. , Zhou G. . Moisture influence in emerging neuromorphic device. Front. Phys., 2023, 18(5): 53601
https://doi.org/10.1007/s11467-023-1272-8
4 Ke S. , Jiang L. , Zhao Y. , Xiao Y. , Jiang B. , Cheng G. , Wu F. , Cao G. , Peng Z. , Zhu M. , Ye C. . Brain-like synaptic memristor based on lithium-doped silicate for neuromorphic computing. Front. Phys., 2022, 17(5): 53508
https://doi.org/10.1007/s11467-022-1173-2
5 J. Hopfield J. . Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA, 1982, 79(8): 2554
https://doi.org/10.1073/pnas.79.8.2554
6 J. Werbos P. . Backpropagation through time: What it does and how to do it. Proc. IEEE, 1990, 78(10): 1550
https://doi.org/10.1109/5.58337
7 Lukoševičius M. , Jaeger H. . Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev., 2009, 3(3): 127
https://doi.org/10.1016/j.cosrev.2009.03.005
8 Jaeger H., The “echo state” approach to analysing and training recurrent neural networks – with an Erratum note
9 Antonik P. , Duport F. , Hermans M. , Smerieri A. , Haelterman M. , Massar S. . Online training of an opto-electronic reservoir computer applied to real-time channel equalization. IEEE Trans. Neural Netw. Learn. Syst., 2017, 28(11): 2686
https://doi.org/10.1109/TNNLS.2016.2598655
10 Lao J. , Yan M. , Tian B. , Jiang C. , Luo C. , Xie Z. , Zhu Q. , Bao Z. , Zhong N. , Tang X. , Sun L. , Wu G. , Wang J. , Peng H. , Chu J. , Duan C. . Ultralow‐power machine vision with self‐powered sensor reservoir. Adv. Sci. (Weinh.), 2022, 9(15): 2106092
https://doi.org/10.1002/advs.202106092
11 Zhang M. , Liang Z. , R. Huang Z. . Hardware optimization for photonic time-delay reservoir computer dynamics. Neuromorph. Comput. Eng., 2023, 3(1): 014008
https://doi.org/10.1088/2634-4386/acb8d7
12 Nakane R. , Tanaka G. , Hirose A. . Reservoir computing with spin waves excited in a garnet film. IEEE Access, 2018, 6: 4462
https://doi.org/10.1109/ACCESS.2018.2794584
13 Papp A. , Csaba G. , Porod W. . Characterization of nonlinear spin-wave interference by reservoir-computing metrics. Appl. Phys. Lett., 2021, 119(11): 112403
https://doi.org/10.1063/5.0048982
14 Moon J. , Ma W. , H. Shin J. , Cai F. , Du C. , H. Lee S. , D. Lu W. . Temporal data classification and forecasting using a memristor-based reservoir computing system. Nat. Electron., 2019, 2(10): 480
https://doi.org/10.1038/s41928-019-0313-3
15 Coy H. , Cabrera R. , Sepúlveda N. , E. Fernández F. . Optoelectronic and all-optical multiple memory states in vanadium dioxide. J. Appl. Phys., 2010, 108(11): 113115
https://doi.org/10.1063/1.3518508
16 Liu K. , Cheng C. , Suh J. , Tang-Kong R. , Fu D. , Lee S. , Zhou J. , O. Chua L. , Wu J. . Powerful, multifunctional torsional micromuscles activated by phase transition. Adv. Mater., 2014, 26(11): 1746
https://doi.org/10.1002/adma.201304064
17 Yi W. , K. Tsang K. , K. Lam S. , Bai X. , A. Crowell J. , A. Flores E. . Biological plausibility and stochasticity in scalable VO2 active memristor neurons. Nat. Commun., 2018, 9(1): 4661
https://doi.org/10.1038/s41467-018-07052-w
18 Ismail M. , Abbas H. , Choi C. , Kim S. . Controllable analog resistive switching and synaptic characteristics in ZrO2/ZTO bilayer memristive device for neuromorphic systems. Appl. Surf. Sci., 2020, 529: 147107
https://doi.org/10.1016/j.apsusc.2020.147107
19 Ismail M. , Abbas H. , Choi C. , Kim S. . Stabilized and RESET-voltage controlled multi-level switching characteristics in ZrO2-based memristors by inserting a-ZTO interface layer. J. Alloys Compd., 2020, 835: 155256
https://doi.org/10.1016/j.jallcom.2020.155256
20 G. Hu S. , Liu Y. , P. Chen T. , Liu Z. , Yu Q. , J. Deng L. , Yin Y. , Hosaka S. . Emulating the Ebbinghaus forgetting curve of the human brain with a NiO-based memristor. Appl. Phys. Lett., 2013, 103(13): 133701
https://doi.org/10.1063/1.4822124
21 Li Y. , Chu J. , Duan W. , Cai G. , Fan X. , Wang X. , Wang G. , Pei Y. . Analog and digital bipolar resistive switching in solution-combustion-processed NiO memristor. ACS Appl. Mater. Interfaces, 2018, 10(29): 24598
https://doi.org/10.1021/acsami.8b05749
22 Q. Le V. , H. Do T. , R. D. Retamal J. , W. Shao P. , H. Lai Y. , W. Wu W. , H. He J. , L. Chueh Y. , H. Chu Y. . Van der Waals heteroepitaxial AZO/NiO/AZO/muscovite (ANA/muscovite) transparent flexible memristor. Nano Energy, 2019, 56: 322
https://doi.org/10.1016/j.nanoen.2018.10.042
23 Zhang L. , Tang Z. , Fang J. , Jiang X. , P. Jiang Y. , J. Sun Q. , M. Fan J. , G. Tang X. , Zhong G. . Synaptic and resistive switching behaviors in NiO/Cu2O heterojunction memristor for bioinspired neuromorphic computing. Appl. Surf. Sci., 2022, 606: 154718
https://doi.org/10.1016/j.apsusc.2022.154718
24 Chang T. , H. Jo S. , H. Kim K. , Sheridan P. , Gaba S. , Lu W. . Synaptic behaviors and modeling of a metal oxide memristive device. Appl. Phys. A, 2011, 102(4): 857
https://doi.org/10.1007/s00339-011-6296-1
25 Moon J. , Ma W. , H. Shin J. , Cai F. , Du C. , H. Lee S. , D. Lu W. . Temporal data classification and forecasting using a memristor-based reservoir computing system. Nat. Electron., 2019, 2(10): 480
https://doi.org/10.1038/s41928-019-0313-3
26 Shin J. , Kang M. , Kim S. . Gradual conductance modulation of Ti/WOx/Pt memristor with self-rectification for a neuromorphic system. Appl. Phys. Lett., 2021, 119(1): 012102
https://doi.org/10.1063/5.0053478
27 Tao Y. , Wang Z. , Xu H. , Ding W. , Zhao X. , Lin Y. , Liu Y. . Moisture-powered memristor with interfacial oxygen migration for power-free reading of multiple memory states. Nano Energy, 2020, 71: 104628
https://doi.org/10.1016/j.nanoen.2020.104628
28 Zhang L. , Tang Z. , Yao D. , Fan Z. , Hu S. , J. Sun Q. , G. Tang X. , P. Jiang Y. , Guo X. , Huang M. , Zhong G. , Gao J. . Synaptic behaviors in flexible Au/WOx/Pt/mica memristor for neuromorphic computing system. Mater. Today Phys., 2022, 23: 100650
https://doi.org/10.1016/j.mtphys.2022.100650
29 H. Huang C. , S. Huang J. , M. Lin S. , Y. Chang W. , H. He J. , L. Chueh Y. . ZnO1–x nanorod arrays/ZnO thin film bilayer structure: from homojunction diode and high-performance memristor to complementary 1D1R application. ACS Nano, 2012, 6(9): 8407
https://doi.org/10.1021/nn303233r
30 Park J.Lee S.Lee J.Yong K., A light incident angle switchable ZnO nanorod memristor: Reversible switching behavior between two non-volatile memory devices, Adv. Mater. 25(44), 6423 (2013)
31 Kumar A. , Das M. , Garg V. , S. Sengar B. , T. Htay M. , Kumar S. , Kranti A. , Mukherjee S. . Forming-free high-endurance Al/ZnO/Al memristor fabricated by dual ion beam sputtering. Appl. Phys. Lett., 2017, 110(25): 253509
https://doi.org/10.1063/1.4989802
32 Dirkmann S. , Kaiser J. , Wenger C. , Mussenbrock T. . Filament growth and resistive switching in hafnium oxide memristive devices. ACS Appl. Mater. Interfaces, 2018, 10(17): 14857
https://doi.org/10.1021/acsami.7b19836
33 Ku B. , Abbas Y. , Kim S. , S. Sokolov A. , R. Jeon Y. , Choi C. . Improved resistive switching and synaptic characteristics using Ar plasma irradiation on the Ti/HfO2 interface. J. Alloys Compd., 2019, 797: 277
https://doi.org/10.1016/j.jallcom.2019.05.114
34 S. Kim G. , Song H. , K. Lee Y. , H. Kim J. , Kim W. , H. Park T. , J. Kim H. , Min Kim K. , S. Hwang C. . Defect-engineered electroforming-free analog HfOx memristor and its application to the neural network. ACS Appl. Mater. Interfaces, 2019, 11(50): 47063
https://doi.org/10.1021/acsami.9b16499
35 J. Lee M.B. Lee C.Lee D.R. Lee S.Chang M.H. Hur J.B. Kim Y.J. Kim C.H. Seo D.Seo S.I. Chung U.K. Yoo I.Kim K., A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures, Nat. Mater. 10(8), 625 (2011)
36 Joshua Yang J. , X. Zhang M. , D. Pickett M. , Miao F. , Paul Strachan J. , D. Li W. , Yi W. , A. A. Ohlberg D. , Joon Choi B. , Wu W. , H. Nickel J. , Medeiros-Ribeiro G. , S. Williams R. . Engineering nonlinearity into memristors for passive crossbar applications. Appl. Phys. Lett., 2012, 100(11): 113501
https://doi.org/10.1063/1.3693392
37 Miao F. , Yi W. , Goldfarb I. , J. Yang J. , X. Zhang M. , D. Pickett M. , P. Strachan J. , Medeiros-Ribeiro G. , S. Williams R. . Continuous electrical tuning of the chemical composition of TaOx-based memristors. ACS Nano, 2012, 6(3): 2312
https://doi.org/10.1021/nn2044577
38 Wang Z. , Yin M. , Zhang T. , Cai Y. , Wang Y. , Yang Y. , Huang R. . Engineering incremental resistive switching in TaOx based memristors for brain-inspired computing. Nanoscale, 2016, 8(29): 14015
https://doi.org/10.1039/C6NR00476H
39 H. Li L. , H. Xue K. , Q. Zou L. , H. Yuan J. , Sun H. , Miao X. . Multilevel switching in Mg-doped HfOx memristor through the mutual-ion effect. Appl. Phys. Lett., 2021, 119(15): 153505
https://doi.org/10.1063/5.0065840
40 H. Ryu J. , Mahata C. , Kim S. . Long-term and short-term plasticity of Ta2O5/HfO2 memristor for hardware neuromorphic application. J. Alloys Compd., 2021, 850: 156675
https://doi.org/10.1016/j.jallcom.2020.156675
41 Saleem A. , M. Simanjuntak F. , Chandrasekaran S. , Rajasekaran S. , Y. Tseng T. , Prodromakis T. . Transformation of digital to analog switching in TaOx-based memristor device for neuromorphic applications. Appl. Phys. Lett., 2021, 118(11): 112103
https://doi.org/10.1063/5.0041808
42 Du L. , Wang Z. , Zhao G. . Novel intelligent devices: Two-dimensional materials based memristors. Front. Phys., 2022, 17(2): 23602
https://doi.org/10.1007/s11467-022-1152-7
43 Zhou Z. , Yang F. , Wang S. , Wang L. , Wang X. , Wang C. , Xie Y. , Liu Q. . Emerging of two-dimensional materials in novel memristor. Front. Phys., 2022, 17(2): 23204
https://doi.org/10.1007/s11467-021-1114-5
44 T. Chan Y. , Fu Y. , Yu L. , Y. Wu F. , W. Wang H. , H. Lin T. , H. Chan S. , C. Wu M. , C. Wang J. . Compacted self-assembly graphene with hydrogen plasma surface modification for robust artificial electronic synapses of gadolinium oxide memristors. Adv. Mater. Interfaces, 2020, 7(20): 2000860
https://doi.org/10.1002/admi.202000860
45 Zhao X. , Ma J. , Xiao X. , Liu Q. , Shao L. , Chen D. , Liu S. , Niu J. , Zhang X. , Wang Y. , Cao R. , Wang W. , Di Z. , Lv H. , Long S. , Liu M. . Breaking the current-retention dilemma in cation-based resistive switching devices utilizing graphene with controlled defects. Adv. Mater., 2018, 30(14): 1705193
https://doi.org/10.1002/adma.201705193
46 Lee J. , Du C. , Sun K. , Kioupakis E. , D. Lu W. . Tuning ionic transport in memristive devices by graphene with engineered nanopores. ACS Nano, 2016, 10(3): 3571
https://doi.org/10.1021/acsnano.5b07943
47 Naqi M. . et al.. Multilevel artificial electronic synaptic device of direct grown robust MoS2 based memristor array for in-memory deep neural network. npj 2D Mater. Appl., 2022, 6: 53
https://doi.org/10.1038/s41699-022-00325-5
48 Yan X. , Zhao Q. , P. Chen A. , Zhao J. , Zhou Z. , Wang J. , Wang H. , Zhang L. , Li X. , Xiao Z. , Wang K. , Qin C. , Wang G. , Pei Y. , Li H. , Ren D. , Chen J. , Liu Q. . Vacancy‐induced synaptic behavior in 2D WS2 nanosheet-based memristor for low‐power neuromorphic computing. Small, 2019, 15(24): 1901423
https://doi.org/10.1002/smll.201901423
49 Xie Z. , Duo Y. , Lin Z. , Fan T. , Xing C. , Yu L. , Wang R. , Qiu M. , Zhang Y. , Zhao Y. , Yan X. , Zhang H. . The rise of 2D photothermal materials beyond graphene for clean water production. Adv. Sci. (Weinh.), 2020, 7(5): 1902236
https://doi.org/10.1002/advs.201902236
50 Manzeli S.Ovchinnikov D.Pasquier D.V. Yazyev O.Kis A., 2D transition metal dichalcogenides, Nat. Rev. Mater. 2(8), 17033 (2017)
51 Shi Y. , Liang X. , Yuan B. , Chen V. , Li H. , Hui F. , Yu Z. , Yuan F. , Pop E. , S. P. Wong H. , Lanza M. . Electronic synapses made of layered two-dimensional materials. Nat. Electron., 2018, 1(8): 458
https://doi.org/10.1038/s41928-018-0118-9
52 Moreno C. , Munuera C. , Valencia S. , Kronast F. , Obradors X. , Ocal C. . Reversible resistive switching and multilevel recording in La0.7Sr0.3MnO3 thin films for low cost nonvolatile memories. Nano Lett., 2010, 10(10): 3828
https://doi.org/10.1021/nl1008162
53 Liu D. , Wang N. , Wang G. , Shao Z. , Zhu X. , Zhang C. , Cheng H. . Nonvolatile bipolar resistive switching in amorphous Sr-doped LaMnO3 thin films deposited by radio frequency magnetron sputtering. Appl. Phys. Lett., 2013, 102(13): 134105
https://doi.org/10.1063/1.4800229
54 Liu D. , Cheng H. , Zhu X. , Wang G. , Wang N. . Analog memristors based on thickening/thinning of Ag nanofilaments in amorphous manganite thin films. ACS Appl. Mater. Interfaces, 2013, 5(21): 11258
https://doi.org/10.1021/am403497y
55 Lee N. , Lansac Y. , Hwang H. , H. Jang Y. . Switching mechanism of Al/La1−xSrxMnO3 resistance random access memory. I. Oxygen vacancy formation in perovskites. RSC Adv., 2015, 5(124): 102772
https://doi.org/10.1039/C5RA21982E
56 Szot K. , Speier W. , Bihlmayer G. , Waser R. . Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater., 2006, 5(4): 312
https://doi.org/10.1038/nmat1614
57 Hu Z. , Li Q. , Li M. , Wang Q. , Zhu Y. , Liu X. , Zhao X. , Liu Y. , Dong S. . Ferroelectric memristor based on Pt/BiFeO3/Nb-doped SrTiO3 heterostructure. Appl. Phys. Lett., 2013, 102(10): 102901
https://doi.org/10.1063/1.4795145
58 Messerschmitt F. , Kubicek M. , Schweiger S. , L. M. Rupp J. . Memristor kinetics and diffusion characteristics for mixed anionic-electronic SrTiO3−δ bits: The memristor-based cottrell analysis connecting material to device performance. Adv. Funct. Mater., 2014, 24(47): 7448
https://doi.org/10.1002/adfm.201402286
59 H. Shen Z. , H. Li W. , G. Tang X. , Hu J. , Y. Wang K. , P. Jiang Y. , B. Guo X. , artificial synapse based on Sr(Ti An . Co)O3 films. Mater. Today Commun., 2022, 33: 104754
https://doi.org/10.1016/j.mtcomm.2022.104754
60 Yan X. , Han X. , Fang Z. , Zhao Z. , Zhang Z. , Sun J. , Shao Y. , Zhang Y. , Wang L. , Sun S. , Guo Z. , Jia X. , Zhang Y. , Guan Z. , Shi T. . Reconfigurable memristor based on SrTiO3 thin-film for neuromorphic computing. Front. Phys., 2023, 18(6): 63301
https://doi.org/10.1007/s11467-023-1308-0
61 Q. Yang J. , Wang R. , P. Wang Z. , Y. Ma Q. , Y. Mao J. , Ren Y. , Yang X. , Zhou Y. , T. Han S. . Leaky integrate-and-fire neurons based on perovskite memristor for spiking neural networks. Nano Energy, 2020, 74: 104828
https://doi.org/10.1016/j.nanoen.2020.104828
62 Wang L. , Sun J. , Zhang Y. , Niu J. , Zhao Z. , Guo Z. , Zhang Z. , Shao Y. , Sun S. , Jia X. , Han X. , Yan X. . Ferroelectric memristor based on Li-doped BiFeO3 for information processing. Appl. Phys. Lett., 2022, 121(24): 241901
https://doi.org/10.1063/5.0131063
63 Luo F.M. Zhong W.G. Tang X.Y. Chen J.P. Jiang Y.X. Liu Q., Application of artificial synapse based on all-inorganic perovskite memristor in neuromorphic computing, Nano Mater. Sci., S258996512300003X (2023)
64 M. Zhong W.G. Tang X.L. Bai L.Y. Chen J.F. Dong H.J. Sun Q.P. Jiang Y.X. Liu Q. A halide perovskite thin film diode with modulated depletion layers for artificial synapse, J. Alloys Compd. 960, 170773 (2023)
65 Ye F. , G. Tang X. , Y. Chen J. , M. Zhong W. , Zhang L. , P. Jiang Y. , X. Liu Q. . Neurosynaptic-like behavior of Ce-doped BaTiO3 ferroelectric thin film diodes for visual recognition applications. Appl. Phys. Lett., 2022, 121(17): 171901
https://doi.org/10.1063/5.0120159
66 M. Zhong W. , G. Tang X. , X. Liu Q. , P. Jiang Y. . Artificial optoelectronic synaptic characteristics of Bi2FeMnO6 ferroelectric memristor for neuromorphic computing. Mater. Des., 2022, 222: 111046
https://doi.org/10.1016/j.matdes.2022.111046
67 Su R. , Xiao R. , Shen C. , Song D. , Chen J. , Zhou B. , Cheng W. , Li Y. , Wang X. , Miao X. . Oxygen ion migration induced polarity switchable SrFeOx memristor for high-precision handwriting recognition. Appl. Surf. Sci., 2023, 617: 156620
https://doi.org/10.1016/j.apsusc.2023.156620
68 A. Lapkin D. , V. Emelyanov A. , A. Demin V. , V. Erokhin V. , A. Feigin L. , K. Kashkarov P. , V. Kovalchuk M. . Polyaniline-based memristive microdevice with high switching rate and endurance. Appl. Phys. Lett., 2018, 112(4): 043302
https://doi.org/10.1063/1.5013929
69 A. Lapkin D.V. Emelyanov A.A. Demin V.S. Berzina T.V. Erokhin V., Spike-timing-dependent plasticity of polyaniline-based memristive element, Microelectron. Eng. 185–186, 43 (2018)
70 Gerasimov Y. , Zykov E. , Prudnikov N. , Talanov M. , Toschev A. , Erokhin V. . On the organic memristive device resistive switching efficacy. Chaos Solitons Fractals, 2021, 143: 110549
https://doi.org/10.1016/j.chaos.2020.110549
71 Li S. , Zeng F. , Chen C. , Liu H. , Tang G. , Gao S. , Song C. , Lin Y. , Pan F. , Guo D. . Synaptic plasticity and learning behaviours mimicked through Ag interface movement in an Ag/conducting polymer/Ta memristive system. J. Mater. Chem. C, 2013, 1(34): 5292
https://doi.org/10.1039/c3tc30575a
72 Ali S. , Bae J. , H. Choi K. , H. Lee C. , H. Doh Y. , Shin S. , P. Kobayashi N. . Organic non-volatile memory cell based on resistive elements through electro-hydrodynamic technique. Org. Electron., 2015, 17: 121
https://doi.org/10.1016/j.orgel.2014.11.028
73 C. Nguyen V. , S. Lee P. . Coexistence of write once read many memory and memristor in blend of Poly(3, 4-ethylenedioxythiophene): Polystyrene sulfonate and polyvinyl alcohol. Sci. Rep., 2016, 6(1): 38816
https://doi.org/10.1038/srep38816
74 P. Ma L. , Liu J. , Yang Y. . Organic electrical bistable devices and rewritable memory cells. Appl. Phys. Lett., 2002, 80(16): 2997
https://doi.org/10.1063/1.1473234
75 Kano M. , Orito S. , Tsuruoka Y. , Ueno N. . Nonvolatile memory effect of an Al/2-Amino-4, 5-dicyanoimidazole/Al structure. Synth. Met., 2005, 153(1−3): 265
https://doi.org/10.1016/j.synthmet.2005.07.090
76 Terai M. , Fujita K. , Tsutsui T. . Electrical bistability of organic thin-film device using Ag electrode. Jpn. J. Appl. Phys., 2006, 45(4B): 3754
https://doi.org/10.1143/JJAP.45.3754
77 Zhao Y. , J. Sun W. , Wang J. , H. He J. , Li H. , F. Xu Q. , J. Li N. , Y. Chen D. , M. Lu J. . All‐inorganic ionic polymer‐based memristor for high‐performance and flexible artificial synapse. Adv. Funct. Mater., 2020, 30(39): 2004245
https://doi.org/10.1002/adfm.202004245
78 Li J. , Qian Y. , Li W. , H. Lin Y. , Qian H. , Zhang T. , Sun K. , Wang J. , Zhou J. , Chen Y. , Zhu J. , Zhang G. , Yi M. , Huang W. . Humidity‐enabled organic artificial synaptic devices with ultrahigh moisture resistivity. Adv. Electron. Mater., 2022, 8(10): 2200320
https://doi.org/10.1002/aelm.202200320
79 Park Y. , S. Lee J. . Artificial synapses with short- and long-term memory for spiking neural networks based on renewable materials. ACS Nano, 2017, 11(9): 8962
https://doi.org/10.1021/acsnano.7b03347
80 M. Zhong W. , L. Luo C. , G. Tang X. , B. Lu X. , Y. Dai J. . Dynamic FET-based memristor with relaxor antiferroelectric HfO2 gate dielectric for fast reservoir computing. Mater. Today Nano, 2023, 23: 100357
https://doi.org/10.1016/j.mtnano.2023.100357
81 Choi E. , Schuetz A. , F. Stewart W. , Sun J. . Using recurrent neural network models for early detection of heart failure onset. J. Am. Med. Inform. Assoc., 2017, 24(2): 361
https://doi.org/10.1093/jamia/ocw112
82 Maass W. , Natschläger T. , Markram H. . Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput., 2002, 14(11): 2531
https://doi.org/10.1162/089976602760407955
83 Zhang G. , Y. Xiong Z. , Gong Y. , Zhu Z. , Lv Z. , Wang Y. , Q. Yang J. , Xing X. , P. Wang Z. , Qin J. , Zhou Y. , T. Han S. . Polyoxometalate accelerated cationic migration for reservoir computing. Adv. Funct. Mater., 2022, 32(45): 2204721
https://doi.org/10.1002/adfm.202204721
84 Du C. , Cai F. , A. Zidan M. , Ma W. , H. Lee S. , D. Lu W. . Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun., 2017, 8(1): 2204
https://doi.org/10.1038/s41467-017-02337-y
85 Milano G. , Pedretti G. , Montano K. , Ricci S. , Hashemkhani S. , Boarino L. , Ielmini D. , Ricciardi C. . In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks. Nat. Mater., 2022, 21(2): 195
https://doi.org/10.1038/s41563-021-01099-9
86 N. Matsukatova A. , V. Prudnikov N. , A. Kulagin V. , Battistoni S. , A. Minnekhanov A. , D. Trofimov A. , A. Nesmelov A. , A. Zavyalov S. , N. Malakhova Y. , Parmeggiani M. , Ballesio A. , L. Marasso S. , N. Chvalun S. , A. Demin V. , V. Emelyanov A. , Erokhin V. . Combination of organic‐based reservoir computing and spiking neuromorphic systems for a robust and efficient pattern classification. Adv. Intell. Syst., 2023, 5(6): 2200407
https://doi.org/10.1002/aisy.202200407
87 V. Prudnikov N.A. Kulagin V.Battistoni S.A. Demin V.V. Erokhin V.V. Emelyanov A., Polyaniline‐based memristive devices as key elements of robust reservoir computing for image classification, Phys. Status Solidi A 220(11), 2200700 (2023)
88 A. Koroleva A.S. Kuzmichev D.G. Kozodaev M.V. Zabrosaev I.V. Korostylev E.M. Markeev A., CMOS-compatible self-aligned 3D memristive elements for reservoir computing systems, Appl. Phys. Lett. 122(2), 022905 (2023)
89 Appeltant L. , C. Soriano M. , Van der Sande G. , Danckaert J. , Massar S. , Dambre J. , Schrauwen B. , R. Mirasso C. , Fischer I. . Information processing using a single dynamical node as complex system. Nat. Commun., 2011, 2(1): 468
https://doi.org/10.1038/ncomms1476
90 Appeltant L. , Van der Sande G. , Danckaert J. , Fischer I. . Constructing optimized binary masks for reservoir computing with delay systems. Sci. Rep., 2014, 4(1): 3629
https://doi.org/10.1038/srep03629
91 Zhong Y. , Tang J. , Li X. , Gao B. , Qian H. , Wu H. . Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing. Nat. Commun., 2021, 12(1): 408
https://doi.org/10.1038/s41467-020-20692-1
92 Zhong Y.Tang J.Li X.Liang X.Liu Z.Li Y.Xi Y.Yao P.Hao Z.Gao B.Qian H.Wu H., A memristor-based analogue reservoir computing system for real-time and power-efficient signal processing, Nat. Electron. 5(10), 672 (2022)
93 Zhu X. , Wang Q. , D. Lu W. . Memristor networks for real-time neural activity analysis. Nat. Commun., 2020, 11(1): 2439
https://doi.org/10.1038/s41467-020-16261-1
94 Yang Y. , Cui H. , Ke S. , Pei M. , Shi K. , Wan C. , Wan Q. . Reservoir computing based on electric-double-layer coupled InGaZnO artificial synapse. Appl. Phys. Lett., 2023, 122(4): 043508
https://doi.org/10.1063/5.0137647
95 Jaurigue L. , Lüdge K. . Connecting reservoir computing with statistical forecasting and deep neural networks. Nat. Commun., 2022, 13(1): 227
https://doi.org/10.1038/s41467-021-27715-5
96 Bollt E. . On explaining the surprising success of reservoir computing forecaster of chaos? The universal machine learning dynamical system with contrast to VAR and DMD,. Chaos, 2021, 31(1): 013108
https://doi.org/10.1063/5.0024890
97 Gonon L. , P. Ortega J. . Reservoir computing universality with stochastic inputs. IEEE Trans. Neural Netw. Learn. Syst., 2020, 31(1): 100
https://doi.org/10.1109/TNNLS.2019.2899649
98 G. Hart A. , L. Hook J. , H. P. Dawes J. . Echo State Networks trained by Tikhonov least squares are L2(μ) approximators of ergodic dynamical systems. Physica D, 2021, 421: 132882
https://doi.org/10.1016/j.physd.2021.132882
99 J. Gauthier D. , Bollt E. , Griffith A. , A. S. Barbosa W. . Next generation reservoir computing. Nat. Commun., 2021, 12(1): 5564
https://doi.org/10.1038/s41467-021-25801-2
100 Ren K. , Y. Zhang W. , Wang F. , Y. Guo Z. , S. Shang D. . Next-generation reservoir computing based on memristor array. Acta Physica Sinica, 2022, 71(14): 140701
https://doi.org/10.7498/aps.71.20220082
[1] Sixian Liu, Jianmin Zeng, Qilai Chen, Gang Liu. Recent advances in halide perovskite memristors: From materials to applications[J]. Front. Phys. , 2024, 19(2): 23501-.
[2] Wenbiao Niu, Guanglong Ding, Ziqi Jia, Xin-Qi Ma, JiYu Zhao, Kui Zhou, Su-Ting Han, Chi-Ching Kuo, Ye Zhou. Recent advances in memristors based on two-dimensional ferroelectric materials[J]. Front. Phys. , 2024, 19(1): 13402-.
[3] Xiaobing Yan, Zixuan Zhang, Zhiyuan Guan, Ziliang Fang, Yinxing Zhang, Jianhui Zhao, Jiameng Sun, Xu Han, Jiangzhen Niu, Lulu Wang, Xiaotong Jia, Yiduo Shao, Zhen Zhao, Zhenqiang Guo, Bing Bai. A high-speed true random number generator based on Ag/SiNx/n-Si memristor[J]. Front. Phys. , 2024, 19(1): 13202-.
[4] Jie Yang, Zixuan Jian, Zhongrong Wang, Jianhui Zhao, Zhenyu Zhou, Yong Sun, Mengmeng Hao, Linxia Wang, Pan Liu, Jingjuan Wang, Yifei Pei, Zhen Zhao, Wei Wang, Xiaobing Yan. HfAlO-based ferroelectric memristors for artificial synaptic plasticity[J]. Front. Phys. , 2023, 18(6): 63603-.
[5] Xiaobing Yan, Xu Han, Ziliang Fang, Zhen Zhao, Zixuan Zhang, Jiameng Sun, Yiduo Shao, Yinxing Zhang, Lulu Wang, Shiqing Sun, Zhenqiang Guo, Xiaotong Jia, Yupeng Zhang, Zhiyuan Guan, Tuo Shi. Reconfigurable memristor based on SrTiO3 thin-film for neuromorphic computing[J]. Front. Phys. , 2023, 18(6): 63301-.
[6] Wenhua Wang, Guangdong Zhou. Moisture influence in emerging neuromorphic device[J]. Front. Phys. , 2023, 18(5): 53601-.
[7] Yuchen Cai, Jia Yang, Feng Wang, Shuhui Li, Yanrong Wang, Xueying Zhan, Fengmei Wang, Ruiqing Cheng, Zhenxing Wang, Jun He. Ultrasensitive solar-blind ultraviolet detection and optoelectronic neuromorphic computing using α-In2Se3 phototransistors[J]. Front. Phys. , 2023, 18(3): 33308-.
[8] Shanwu Ke, Li Jiang, Yifan Zhao, Yongyue Xiao, Bei Jiang, Gong Cheng, Facai Wu, Guangsen Cao, Zehui Peng, Min Zhu, Cong Ye. Brain-like synaptic memristor based on lithium-doped silicate for neuromorphic computing[J]. Front. Phys. , 2022, 17(5): 53508-.
[9] Wei Xia, Jie Zou, Xingze Qiu, Xiaopeng Li. The reservoir learning power across quantum many-body localization transition[J]. Front. Phys. , 2022, 17(3): 33506-.
[10] Zhican Zhou, Fengyou Yang, Shu Wang, Lei Wang, Xiaofeng Wang, Cong Wang, Yong Xie, Qian Liu. Emerging of two-dimensional materials in novel memristor[J]. Front. Phys. , 2022, 17(2): 23204-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed