Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (2) : 23501    https://doi.org/10.1007/s11467-023-1344-9
TOPICAL REVIEW
Recent advances in halide perovskite memristors: From materials to applications
Sixian Liu1, Jianmin Zeng1(), Qilai Chen2(), Gang Liu1()
1. Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2. Aerospace Science & Industry Shenzhen (Group) Co. Ltd., Shenzhen 518000, China
 Download: PDF(13837 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

With the emergence of the Internet of Things (IoT) and the rapid growth of big data generated by edge devices, there has been a growing need for electronic devices that are capable of processing and transmitting data at low power and high speeds. Traditional Complementary Metal-Oxide-Semiconductor (CMOS) devices are nonvolatile and often limited by their ability for certain IoT applications due to their unnecessary power consumption for data movement in von Neuman architecture-based systems. This has led to a surge in research and development efforts aimed at creating innovative electronic components and systems that can overcome these shortcomings and meet the evolving needs of the information era, which share features such as improved energy efficiency, higher processing speeds, and increased functionality. Memristors are a novel type of electronic device that has the potential to break down the barrier between storage and computing. By storing data and processing information within the same device, memristors can minimize the need for data movement, which allows for faster processing speeds and reduced energy consumption. To further improve the energy efficiency and reliability of memristors, there has been a growing trend toward diversifying the selection of dielectric materials used in memristors. Halide perovskites (HPs) have unique electrical and optical properties, including ion migration, charge trapping effect caused by intrinsic defects, excellent optical absorption efficiency, and high charge mobility, which makes them highly promising in applications of memristors. In this paper, we provide a comprehensive overview of the recent development in resistive switching behaviors of HPs and the underlying mechanisms. Furthermore, we summarize the diverse range of HPs, their respective performance metrics, as well as their applications in various fields. Finally, we critically evaluate the current bottlenecks and possible opportunities in the future research of HP memristors.

Keywords halide perovskite      memristor      mechanism      neuromorphic computing      non-volatile memory     
Corresponding Author(s): Jianmin Zeng,Qilai Chen,Gang Liu   
Issue Date: 10 October 2023
 Cite this article:   
Sixian Liu,Jianmin Zeng,Qilai Chen, et al. Recent advances in halide perovskite memristors: From materials to applications[J]. Front. Phys. , 2024, 19(2): 23501.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1344-9
https://academic.hep.com.cn/fop/EN/Y2024/V19/I2/23501
Fig.1  Classification of perovskite materials according to material dimensions. (a) Zero-dimensional QDs. (b) One-dimensional nanowires. (c) Two-dimensional nanowires. (d) Three-dimensional polycrystalline. (a) Reproduced from Ref. [74]. (b) Reproduced from Ref. [75]. (c) Reproduced from Ref. [76]. (d) Reproduced from Ref. [77].
Fig.2  (a) The resistive mechanism of the Ag/CH3NH3PbI3/FTO memristor, in which the upper part of the process involves the electroforming process. (b) Schematic diagram of the filamentary memristors. (c) Current−voltage characteristics of the “set” process in double-logarithmic scale. (d) Current−voltage characteristics of the “reset” process in double-logarithmic scale. (e) The relationship of I and V1/2 in the LRS semi-logarithmic scale in the high voltage region. A schematic diagram of the band evolution corresponding to various states of the device. (f) Initial state and HRS-1 state. The device change (g) from HRS-1 to LRS, (h) from LRS to HRS-1, and (i) Transition from HRS-2 to LRS. (j) Optical response of devices in HRS-1 and (k) HRS-2. (a) Reproduced from Ref. [112]. (b) Reproduced from Ref. [115]. (c) Reproduced from Ref. [76]. (c−e) Reproduced from Ref. [117]. (f−k) Reproduced from Ref. [123].
Fig.3  (a) Schematic diagram of biological neurons and their experimental circuits. Using the above neuron model to demonstrate biologically inspired (b) Spatial integration and fire. (c) Time integration and fire. (d) Conductance changes under the same set of pulses stimulation. (e) The function of the increment of conductance and the value of absolute conductance (under the condition that the conductance is enhanced). The functional relationship between the change of conductance and (f) the number of reset pulses. (g) The level of absolute conductance (under the condition of suppression). (h) The HRS/LRS distribution of the memristor in pulse programming mode under different humidity. (a−c) Reproduced from Ref. [147]. (d−g) Reproduced from Ref. [151]. (h) Reproduced from Ref. [157].
Fig.4  (a) I−V curve in light (365 nm) and dark conditions. (b) Light response with and without laser diodes at 365 nm, 405 nm, 420 nm, and 500 nm. (c) Rise and decay time of light response under 365 nm. (d) Set voltage statistics in light (365 nm) and dark conditions. (e) Schematic diagram structure and (f) optical image of CsPbBr3-based memristor. (a−d) Reproduced from Ref. [123]. (e, f) Reproduced from Ref. [162].
Fig.5  (a) The I−V characteristics of Ag/(CH3NH3)2FeCl4/Cu devices measured in the temperature range from 290 K to 340 K, and (b) the ratio of HRS/LRS at different temperatures when the reading voltage is 0.5 V. (c) The biological synaptic conceptual diagram simulated by the memristor. (d) The long-term potentiation and long-term depression properties of the memristor under continuous pulse sequence stimulation. I−V characteristic curves of Cs2AgBiBr6-based memristor under (e) different humidity and (f) continuous alcohol lamp burning. (a, b) Reproduced from Ref. [175]. (c, d) Reproduced from Ref. [176]. (e, f) Reproduced from Ref. [181].
Fig.6  (a) Designed device structure of simple two-terminal photodetector and the active layer is (C4H9NH3)2PbBr4. (b) Current−voltage characteristics of the device in the dark for four consecutive cycles in a semi-logarithmic scale. (c) Reversible write and erasure using pulses of ± 2.5 V (read voltage is 1 V). (d) Schematic device structure and bias configuration of δ-FAPbI3. Resistive characteristics of δ-FAPbI3: (e) Retention time of LRS and HRS; (f) Multi-valued memory characteristics measured at different current levels. (a−c) Reproduced from Ref. [195]. (d−f) Reproduced from Ref. [196].
Fig.7  (a) Schematic showing MAPbI3 QWs memristors: (i) Device structure of ITO/Ag/MAPbI3/Au/PET; (ii) enlarged schematic of a single QW; (iii) crystal structure of MAPbI3. (b) The durability of different resistance levels of QWs devices is studied, showing the constancy of the on/off ratio and repeatability of the system. (c) For different voltage pulses, multiple different LRS are displayed, and constant amplitude voltage pulses are used to read and erase. (d) The concept of storing data in alphabetical is illustrated matrix design order and the corresponding data time retention. (e) EPSCs of the device under single pulse, illustrated with a schematic diagram of the connection between EPSCs behavior and biological synapse. (f) The change of photocurrent of the device under different light intensity. (g) Structure diagram of synapses and devices. (a−d) Reproduced from Ref. [197]. (e, f) Reproduced from Ref. [199]. (g) Reproduced from Ref. [200].
Fig.8  (a) The evolution and durability of the conductance of devices as volatile devices in diffusion mode. (b) The evolution and durability of conductance of devices as nonvolatile devices in drift mode. (c) The ANN model built to demonstrate storage cell calculation; and (d) Four different neural discharge input modes and their resulting conductance changes in the device (voltage stimulus is 1 V, a read voltage is ±0.5 V). (a−d) Reproduced from Ref. [203].
Fig.9  (a) Schematic of the phototransistor with a CNTs/CsPbBr3-QDs channel. (b) Energy band diagram at the light-off (top panel) and light-on states (bottom panel). (c) Dependence of the EPSC triggered by an optical spike on the source-drain voltage (VD). (d) EPSC of a synaptic transistor at VD = 0.01 V triggered by an optical spike. (e) PPF behavior of a synaptic transistor at VD = 0.01 V. (f) Transition from STM to LTM for a synaptic transistor at VD = 0.01 V with the increasing quantity of optical spikes. (g) Schematic showing the growth of HP QDs on graphene to form the G-HP QDs heterostructures and the proposed applications. (a, b) Reproduced from Ref. [207]. (c−f) Reproduced from Ref. [208]. (g) Reproduced from Ref. [211].
Fig.10  (a) Schematic diagram of the mechanism of optically tunable synaptic behavior. (b) The conductive state retention of the device when the light is selectively turned on. (c) Current curves of memristors with and without PAE processing in pulse programming mode. (d) The structure diagram of the light-induced logic gate. (e) Light-induced switching of the device under HRS (read voltage is 10 mV). (f) The light-induced switch of the device under LRS (the reading voltage is 0.1, 1, and 10 mV). (a, b) Reproduced from Ref. [215]. (c) Reproduced from Ref. [216]. (d−f) Reproduced from Ref. [217].
Fig.11  (a) Optical photographs of centimeter-sized MAPbBr3 single crystal blocks with gold electrodes deposited. (b) J−V characteristic curves of the device. (c) Various resistance states of the device under different bias stimuli. (d) Schematic diagrams of input, reservoir, and readout for the classification of different pulse sequences. (e) Original images of flowers. (f) The sharpened flower image through the filter when the cutoff frequency is 4.8 Hz. (g) The sharpened flower image through the filter when the cutoff frequency is 19 Hz. (a) Reproduced from Ref. [218]. (b−d) Reproduced from Ref. [225]. (e−g) Reproduced from Ref. [226].
Fig.12  (a) The postsynaptic activity is caused by network exposure to specific input patterns. After some epochs, the postsynaptic activity became higher for the selected mode (−22.5°), and the choice of the left and right eyes was the same. (b) The time evolution of the synaptic weight of the left eye and the right eye: the selectivity increased significantly after continuous exposure to the input mode after the random weight matrix was initialized. (c) The device structure of the CsFAMA photovoltaic sensor and the schematic diagram of the crossbar array. (d) The adaptive dynamic process of the overexposed image. (e) The recognition accuracy of the car with the door open, aircraft and bird images increase with the increase of adaptation time. (a, b) Reproduced from Ref. [227]. (c−e) Reproduced from Ref. [231].
Fig.13  (a) Schematic diagram of the recognition results of the self-powered artificial retina system and ANNs. (b) The charge transfer characteristics of HPs can be used as the source of entropy for designing a new type of PUFs. The coexistence of many kinds of switching physics in HPs makes the resistance states highly random, and the encryption key is generated from the difference of the HRS of these memories. (c) Before a cycle of reconstruction. (d) After a cycle of reconstruction, analog-digital maps and digital maps show different results. (a) Reproduced from Ref. [232]. (b−d) Reproduced from Ref. [233].
1 Xiao Z., Huang J.. Energy-efficient hybrid perovskite memristors and synaptic devices. Adv. Electron. Mater., 2016, 2(7): 1600100
https://doi.org/10.1002/aelm.201600100
2 Zhang B.Chen W.Zeng J.Fan F.Gu J. Chen X.Yan L.Xie G.Liu S.Yan Q. J. Baik S.G. Zhang Z.Chen W.Hou J.E. El-Khouly M.Zhang Z.Liu G.Chen Y., 90% yield production of polymer nano-memristor for in-memory computing, Nat. Commun. 12(1), 1984 (2021)
3 Du L., Wang Z., Zhao G.. Novel intelligent devices: Two-dimensional materials based memristors. Front. Phys., 2022, 17(2): 23602
https://doi.org/10.1007/s11467-022-1152-7
4 Li Q., Li T., Zhang Y., Yu Y., Chen Z., Jin L., Li Y., Yang Y., Zhao H., Li J., Yao J.. Nonvolatile photoelectric memory with CsPbBr3 quantum dots embedded in poly(methyl methacrylate) as charge trapping layer. Org. Electron., 2020, 77: 105461
https://doi.org/10.1016/j.orgel.2019.105461
5 Hao Z., Wang H., Jiang S., Qian J., Xu X., Li Y., Pei M., Zhang B., Guo J., Zhao H., Chen J., Tong Y., Wang J., Wang X., Shi Y., Li Y.. Retina-inspired self-powered artificial optoelectronic synapses with selective detection in organic asymmetric heterojunctions. Adv. Sci. (Weinh.), 2022, 9(7): 2103494
https://doi.org/10.1002/advs.202103494
6 Y. Wang T., L. Meng J., Y. He Z., Chen L., Zhu H., Q. Sun Q., J. Ding S., Zhou P., W. Zhang D.. Ultralow power wearable heterosynapse with photoelectric synergistic modulation. Adv. Sci. (Weinh.), 2020, 7(8): 1903480
https://doi.org/10.1002/advs.201903480
7 El-Atab N.. Memsor: Emergence of the in-memory sensing technology for the digital transformation. physica status solidi (a), 2022, 219(2): 2100528
https://doi.org/10.1002/pssa.202100528
8 C. Gonzalez-Rosillo J., Catalano S., Maggio-Aprile I., Gibert M., Obradors X., Palau A., Puig T.. Nanoscale correlations between metal−insulator transition and resistive switching effect in metallic perovskite oxides. Small, 2020, 16(23): 2001307
https://doi.org/10.1002/smll.202001307
9 Li Y., Chu J., Duan W., Cai G., Fan X., Wang X., Wang G., Pei Y.. Analog and digital bipolar resistive switching in solution-combustion-processed NiO memristor. ACS Appl. Mater. Interfaces, 2018, 10(29): 24598
https://doi.org/10.1021/acsami.8b05749
10 Rao J., Fan Z., Hong L., Cheng S., Huang Q., Zhao J., Xiang X., J. Guo E., Guo H., Hou Z., Chen Y., Lu X., Zhou G., Gao X., M. Liu J.. An electroforming-free, analog interface-type memristor based on a SrFeOx epitaxial heterojunction for neuromorphic computing. Mater. Today Phys., 2021, 18: 100392
https://doi.org/10.1016/j.mtphys.2021.100392
11 Guan H., Sha J., Zhang Z., Xiong Y., Dong X., Bao H., Sun K., Wang S., Wang Y.. Optical and oxide modification of CsFAMAPbIBr memristor achieving low power consumption. J. Alloys Compd., 2022, 891: 162096
https://doi.org/10.1016/j.jallcom.2021.162096
12 Abbas G.Hassan M.Khan Q.Wang H.Zhou G. Zubair M.Xu X.Peng Z., A low power-consumption and transient nonvolatile memory based on highly dense all-inorganic perovskite films, Adv. Electron. Mater. 8(9), 2101412 (2022)
13 Lanza M., Sebastian A., D. Lu W., Le Gallo M., F. Chang M., Akinwande D., M. Puglisi F., N. Alshareef H., Liu M., B. Roldan J.. Memristive technologies for data storage, computation, encryption, and radio-frequency communication. Science, 2022, 376(6597): eabj9979
https://doi.org/10.1126/science.abj9979
14 Yan X., Zhao Q., P. Chen A., Zhao J., Zhou Z., Wang J., Wang H., Zhang L., Li X., Xiao Z., Wang K., Qin C., Wang G., Pei Y., Li H., Ren D., Chen J., Liu Q.. Vacancy-induced synaptic behavior in 2D WS2 nanosheet-based memristor for low-power neuromorphic computing. Small, 2019, 15(24): 1901423
https://doi.org/10.1002/smll.201901423
15 M. Yang J., H. Lee J., K. Jung Y., Y. Kim S., H. Kim J., G. Kim S., H. Kim J., Seo S., A. Park D., W. Lee J., Walsh A., H. Park J., G. Park N.. Mixed-dimensional formamidinium bismuth iodides featuring in-situ formed type-I band structure for convolution neural networks. Adv. Sci. (Weinh.), 2022, 9(14): 2200168
https://doi.org/10.1002/advs.202200168
16 Xiao X., Hu J., Tang S., Yan K., Gao B., Chen H., Zou D.. Recent advances in halide perovskite memristors: Materials, structures, mechanisms, and applications. Adv. Mater. Technol., 2020, 5(6): 1900914
https://doi.org/10.1002/admt.201900914
17 B. Yan Z., M. Liu J.. Resistance switching memory in perovskite oxides. Ann. Phys., 2015, 358: 206
https://doi.org/10.1016/j.aop.2015.03.028
18 Kang K., Hu W., Tang X.. Halide perovskites for resistive switching memory. J. Phys. Chem. Lett., 2021, 12(48): 11673
https://doi.org/10.1021/acs.jpclett.1c03408
19 Majumdar S., Chen B., H. Qin Q., S. Majumdar H., Van Dijken S.. Electrode dependence of tunneling electroresistance and switching stability in organic ferroelectric P(VDF-TrFE)-based tunnel junctions. Adv. Funct. Mater., 2018, 28(15): 1703273
https://doi.org/10.1002/adfm.201703273
20 K. Johnsen G.. An introduction to the memristor – a valuable circuit element in bioelectricity and bioimpedance. J. Electr. Bioimpedance, 2012, 3(1): 20
https://doi.org/10.5617/jeb.305
21 Spaziani L.Lu L., Silicon, GaN and SiC: There’s room for all: An application space overview of device considerations, in: 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 13−17 May, 2018, pp 8−11
22 N. Zhong Y., Wang T., Gao X., L. Xu J., D. Wang S.. Synapse-like organic thin film memristors. Adv. Funct. Mater., 2018, 28(22): 1800854
https://doi.org/10.1002/adfm.201800854
23 Hao Y.. Gallium oxide: Promise to provide more efficient life. J. Semicond., 2019, 40(1): 010301
https://doi.org/10.1088/1674-4926/40/1/010301
24 A. Tulina N., Y. Borisenko I., V. Sirotkin V.. Reproducible resistive switching effect for memory applications in heterocontacts based on strongly correlated electron systems. Phys. Lett. A, 2008, 372(44): 6681
https://doi.org/10.1016/j.physleta.2008.09.015
25 I. Park W., M. Yoon J., Park M., Lee J., K. Kim S., W. Jeong J., Kim K., Y. Jeong H., Jeon S., S. No K., Y. Lee J., S. Jung Y.. Self-assembly-induced formation of high-density silicon oxide memristor nanostructures on graphene and metal electrodes. Nano Lett., 2012, 12(3): 1235
https://doi.org/10.1021/nl203597d
26 Ma Z., Ge J., Chen W., Cao X., Diao S., Liu Z., Pan S.. Reliable memristor based on ultrathin native silicon oxide. ACS Appl. Mater. Interfaces, 2022, 14(18): 21207
https://doi.org/10.1021/acsami.2c03266
27 N. Mikhaylov A., I. Belov A., V. Guseinov D., S. Korolev D., N. Antonov I., V. Efimovykh D., V. Tikhov S., P. Kasatkin A., N. Gorshkov O., I. Tetelbaum D., I. Bobrov A., V. Malekhonova N., A. Pavlov D., G. Gryaznov E., P. Yatmanov A.. Bipolar resistive switching and charge transport in silicon oxide memristor. Mater. Sci. Eng. B, 2015, 194: 48
https://doi.org/10.1016/j.mseb.2014.12.029
28 Gao Q., Huang A., Hu Q., Zhang X., Chi Y., Li R., Ji Y., Chen X., Zhao R., Wang M., Shi H., Wang M., Cui Y., Xiao Z., K. Chu P.. Stability and repeatability of a Karst-like hierarchical porous silicon oxide-based memristor. ACS Appl. Mater. Interfaces, 2019, 11(24): 21734
https://doi.org/10.1021/acsami.9b06855
29 Kim S., Kim H., Hwang S., H. Kim M., F. Chang Y., G. Park B.. Analog synaptic behavior of a silicon nitride memristor. ACS Appl. Mater. Interfaces, 2017, 9(46): 40420
https://doi.org/10.1021/acsami.7b11191
30 Kim S., Jung S., H. Kim M., C. Chen Y., F. Chang Y., C. Ryoo K., Cho S., H. Lee J., G. Park B.. Scaling effect on silicon nitride memristor with highly doped Si substrate. Small, 2018, 14(19): 1704062
https://doi.org/10.1002/smll.201704062
31 Kim D., Kim S., Kim S.. Logic-in-memory application of CMOS compatible silicon nitride memristor. Chaos Solitons Fractals, 2021, 153: 111540
https://doi.org/10.1016/j.chaos.2021.111540
32 A. Gismatulin A., A. Gritsenko V., J. Yen T., Chin A.. Charge transport mechanism in SiNx-based memristor. Appl. Phys. Lett., 2019, 115(25): 253502
https://doi.org/10.1063/1.5127039
33 A. Gismatulin A., M. Orlov O., A. Gritsenko V., N. Kruchinin V., S. Mizginov D., Y. Krasnikov G.. Charge transport mechanism in the metal–nitride–oxide–silicon forming-free memristor structure. Appl. Phys. Lett., 2020, 116(20): 203502
https://doi.org/10.1063/5.0001950
34 Schmitt R., Kubicek M., Sediva E., Trassin M., C. Weber M., Rossi A., Hutter H., Kreisel J., Fiebig M., L. M. Rupp J.. Accelerated ionic motion in amorphous memristor oxides for nonvolatile memories and neuromorphic computing. Adv. Funct. Mater., 2019, 29(5): 1804782
https://doi.org/10.1002/adfm.201804782
35 Lu Q., Chen Y., Bluhm H., Yildiz B.. Electronic structure evolution of SrCoOx during electrochemically driven phase transition probed by in situ X-ray spectroscopy. J. Phys. Chem. C, 2016, 120(42): 24148
https://doi.org/10.1021/acs.jpcc.6b07544
36 Nili H., Ahmed T., Walia S., Ramanathan R., E. Kandjani A., Rubanov S., Kim J., Kavehei O., Bansal V., Bhaskaran M., Sriram S.. Microstructure and dynamics of vacancy-induced nanofilamentary switching network in donor doped SrTiO3−x memristors. Nanotechnology, 2016, 27(50): 505210
https://doi.org/10.1088/0957-4484/27/50/505210
37 Mikheev V., Chouprik A., Lebedinskii Y., Zarubin S., M. Markeev A., V. Zenkevich A., Negrov D.. Memristor with a ferroelectric HfO2 layer: In which case it is a ferroelectric tunnel junction. Nanotechnology, 2020, 31(21): 215205
https://doi.org/10.1088/1361-6528/ab746d
38 U. Siddiqui G., M. Rehman M., H. Choi K.. Enhanced resistive switching in all-printed, hybrid and flexible memory device based on perovskite ZnSnO3 via PVOH polymer. Polymer (Guildf.), 2016, 100: 102
https://doi.org/10.1016/j.polymer.2016.07.081
39 Ahmed T., Walia S., L. H. Mayes E., Ramanathan R., Guagliardo P., Bansal V., Bhaskaran M., J. Yang J., Sriram S.. Inducing tunable switching behavior in a single memristor. Appl. Mater. Today, 2018, 11: 280
https://doi.org/10.1016/j.apmt.2018.03.003
40 Marinkovic S., Fernandez-Rodriguez A., Collienne S., B. Alvarez S., Melinte S., Maiorov B., Rius G., Granados X., Mestres N., Palau A., V. Silhanek A.. Direct visualization of current-stimulated oxygen migration in YBa2Cu3O7−δ thin films. ACS Nano, 2020, 14(9): 11765
https://doi.org/10.1021/acsnano.0c04492
41 Shen Z., Zhao C., Qi Y., Z. Mitrovic I., Yang L., Wen J., Huang Y., Li P., Zhao C.. Memristive non-volatile memory based on graphene materials. Micromachines (Basel), 2020, 11(4): 341
https://doi.org/10.3390/mi11040341
42 T. Zhang H., J. Park T., N. M. N. Islam A., S. J. Tran D., Manna S., Wang Q., Mondal S., Yu H., Banik S., Cheng S., Zhou H., Gamage S., Mahapatra S., Zhu Y., Abate Y., Jiang N., K. R. S. Sankaranarayanan S., Sengupta A., Teuscher C., Ramanathan S.. Reconfigurable perovskite nickelate electronics for artificial intelligence. Science, 2022, 375(6580): 533
https://doi.org/10.1126/science.abj7943
43 J. Choi B., C. Torrezan A., P. Strachan J., G. Kotula P., J. Lohn A., J. Marinella M., Li Z., S. Williams R., J. Yang J.. High-speed and low-energy nitride memristors. Adv. Funct. Mater., 2016, 26(29): 5290
https://doi.org/10.1002/adfm.201600680
44 J. Choi B., J. Yang J., X. Zhang M., J. Norris K., A. Ohlberg D., P. Kobayashi N., Medeiros-Ribeiro G., S. Williams R.. Nitride memristors. Appl. Phys A, 2012, 109(1): 1
https://doi.org/10.1007/s00339-012-7052-x
45 K. Perla V., K. Ghosh S., Mallick K.. Transport mechanism of copper sulfide embedded carbon nitride thin films: A formation free memristor. Mater. Adv., 2020, 1(2): 228
https://doi.org/10.1039/D0MA00062K
46 Zhang W., Gao H., Deng C., Lv T., Hu S., Wu H., Xue S., Tao Y., Deng L., Xiong W.. An ultrathin memristor based on a two-dimensional WS2/MoS2 heterojunction. Nanoscale, 2021, 13(26): 11497
https://doi.org/10.1039/D1NR01683K
47 N. Belov A., A. Golishnikov A., M. Mastinin A., A. Perevalov A., I. Shevyakov V.. Study of the formation process of memristor structures based on copper sulfide. Semiconductors, 2019, 53(15): 2024
https://doi.org/10.1134/S1063782619150041
48 Patel M., R. Hemanth N., Gosai J., Mohili R., Solanki A., Roy M., Fang B., K. Chaudhari N.. Mxenes: Promising 2D memristor materials for neuromorphic computing components. Trends Chem., 2022, 4(9): 835
https://doi.org/10.1016/j.trechm.2022.06.004
49 He N., Liu X., Gao F., Zhang Q., Zhang M., Wang Y., Shen X., Wan X., Lian X., Hu E., He L., Xu J., Tong Y.. Demonstration of 2D mxene memristor: Stability, conduction mechanism, and synaptic plasticity. Mater. Lett., 2020, 266: 127413
https://doi.org/10.1016/j.matlet.2020.127413
50 Wang K.Jia Y.Yan X., A biomimetic afferent nervous system based on the flexible artificial synapse, Nano Energy 100, 107486 (2022)
51 Qi Y.Sun B. Fu G.Li T. Zhu S.Zheng L.Mao S.Kan X.Lei M. Chen Y., A nonvolatile organic resistive switching memory based on lotus leaves, Chem. Phys. 516, 168 (2019)
52 Berzina T., Smerieri A., Bernabò M., Pucci A., Ruggeri G., Erokhin V., P. Fontana M.. Optimization of an organic memristor as an adaptive memory element. J. Appl. Phys., 2009, 105(12): 124515
https://doi.org/10.1063/1.3153944
53 Sun K., Chen J., Yan X.. The future of memristors: Materials engineering and neural networks. Adv. Funct. Mater., 2021, 31(8): 2006773
https://doi.org/10.1002/adfm.202006773
54 Nasrin K., Sudharshan V., Subramani K., Sathish M.. Insights into 2D/2D MXene heterostructures for improved synergy in structure toward next-generation supercapacitors: A review. Adv. Funct. Mater., 2022, 32(18): 2110267
https://doi.org/10.1002/adfm.202110267
55 Feng X.Yu Z.Sun Y.Shan M.Long R. Li X., 3D MXene/Ag2S material as schottky junction catalyst with stable and enhanced photocatalytic activity and photocorrosion resistance, Separ. Purif. Tech. 266, 118606 (2021)
56 Zhang L., Khan K., Zou J., Zhang H., Li Y.. Recent advances in emerging 2D material-based gas sensors: Potential in disease diagnosis. Adv. Mater. Interfaces, 2019, 6(22): 1901329
https://doi.org/10.1002/admi.201901329
57 Jonker G., Van Santen J.. Ferromagnetic compounds of manganese with perovskite structure. Physica, 1950, 16(3): 337
58 N. Jeong D., M. Yang J., G. Park N.. Roadmap on halide perovskite and related devices. Nanotechnology, 2020, 31(15): 152001
https://doi.org/10.1088/1361-6528/ab59ed
59 Fang Y., Zhai S., Chu L., Zhong J.. Advances in halide perovskite memristor from lead-based to lead-free materials. ACS Appl. Mater. Interfaces, 2021, 13(15): 17141
https://doi.org/10.1021/acsami.1c03433
60 Yan K., Dong B., Xiao X., Chen S., Chen B., Gao X., Hu H., Wen W., Zhou J., Zou D.. Memristive property’s effects on the IV characteristics of perovskite solar cells. Sci. Rep., 2017, 7(1): 6025
https://doi.org/10.1038/s41598-017-05508-5
61 J. Gogoi H., T. Mallajosyula A.. Enhancing the switching performance of CH3NH3PbI3 memristors by the control of size and characterization parameters. Adv. Electron. Mater., 2021, 7(11): 2100472
https://doi.org/10.1002/aelm.202100472
62 J. Kwak K., H. Baek J., E. Lee D., H. Im I., Kim J., J. Kim S., J. Lee Y., Y. Kim J., W. Jang H.. Ambient stable all inorganic CsCu2I3 artificial synapses for neurocomputing. Nano Lett., 2022, 22(14): 6010
https://doi.org/10.1021/acs.nanolett.2c01272
63 Feng Y., Gao X., N. Zhong Y., L. Wu J., L. Xu J., D. Wang S.. Solution‐processed polymer thin‐film memristors with an electrochromic feature and frequency‐dependent synaptic plasticity. Adv. Intell. Syst., 2019, 1(3): 1900022
https://doi.org/10.1002/aisy.201900022
64 A. John R., Yantara N., F. Ng Y., Narasimman G., Mosconi E., Meggiolaro D., R. Kulkarni M., K. Gopalakrishnan P., A. Nguyen C., De Angelis F., G. Mhaisalkar S., Basu A., Mathews N.. Ionotronic halide perovskite drift-diffusive synapses for low-power neuromorphic computation. Adv. Mater., 2018, 30(51): 1805454
https://doi.org/10.1002/adma.201805454
65 Li D., Wu H., C. Cheng H., Wang G., Huang Y., Duan X.. Electronic and ionic transport dynamics in organolead halide perovskites. ACS Nano, 2016, 10(7): 6933
https://doi.org/10.1021/acsnano.6b02795
66 Ramasamy P., H. Lim D., Kim B., H. Lee S., S. Lee M., S. Lee J.. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun. (Camb.), 2016, 52(10): 2067
https://doi.org/10.1039/C5CC08643D
67 Hu X., Zhang X., Liang L., Bao J., Li S., Yang W., Xie Y.. High-performance flexible broadband photodetector based on organolead halide perovskite. Adv. Funct. Mater., 2014, 24(46): 7373
https://doi.org/10.1002/adfm.201402020
68 Joseph E., P. Madhusudanan S., Mohanta K., Karthega M., K. Batabyal S.. Multiple negative differential resistance in perovskite (CH3NH3PbI3) decorated electrospun TiO2 nanofibers. Appl. Phys A, 2020, 126(9): 707
https://doi.org/10.1007/s00339-020-03877-9
69 Hao D., Zhang J., Dai S., Zhang J., Huang J.. Perovskite/organic semiconductor-based photonic synaptic transistor for artificial visual system. ACS Appl. Mater. Interfaces, 2020, 12(35): 39487
https://doi.org/10.1021/acsami.0c10851
70 Wang P., Bai X., Sun C., Zhang X., Zhang T., Zhang Y.. Multicolor fluorescent light-emitting diodes based on cesium lead halide perovskite quantum dots. Appl. Phys. Lett., 2016, 109(6): 063106
https://doi.org/10.1063/1.4960662
71 Sun Y., Qian L., Xie D., Lin Y., Sun M., Li W., Ding L., Ren T., Palacios T.. Photoelectric synaptic plasticity realized by 2D perovskite. Adv. Funct. Mater., 2019, 29(28): 1902538
https://doi.org/10.1002/adfm.201902538
72 Sun Y.. et al.. Research progress of solution processed all-inorganic perovskite solar cell. Acta Phys. Sin., 2019, 68(15): 158806
https://doi.org/10.7498/aps.68.20190355
73 You Q., Huang F., Fang F., Zhu J., Zheng Y., Fang S., Zhou B., Li H., Han C., Shi Y.. Controllable volatile-to-nonvolatile memristive switching in single-crystal lead-free double perovskite with ultralow switching electric field. Sci. China Mater., 2023, 66(1): 241
https://doi.org/10.1007/s40843-022-2113-y
74 Protesescu L., Yakunin S., I. Bodnarchuk M., Krieg F., Caputo R., H. Hendon C., X. Yang R., Walsh A., V. Kovalenko M., Nanocrystals of cesium lead halide perovskites (CsPbX, X = Cl. Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett., 2015, 15(6): 3692
https://doi.org/10.1021/nl5048779
75 D. Folie B., A. Tan J., Huang J., C. Sercel P., Delor M., Lai M., L. Lyons J., Bernstein N., L. Efros A., Yang P., S. Ginsberg N.. Effect of anisotropic confinement on electronic structure and dynamics of band edge excitons in inorganic perovskite nanowires. J. Phys. Chem. A, 2020, 124(9): 1867
https://doi.org/10.1021/acs.jpca.9b11981
76 Li P., Chen Y., Yang T., Wang Z., Lin H., Xu Y., Li L., Mu H., N. Shivananju B., Zhang Y., Zhang Q., Pan A., Li S., Tang D., Jia B., Zhang H., Bao Q.. Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers. ACS Appl. Mater. Interfaces, 2017, 9(14): 12759
https://doi.org/10.1021/acsami.7b01709
77 Liu X., Wang Y., Wu T., He X., Meng X., Barbaud J., Chen H., Segawa H., Yang X., Han L.. Efficient and stable tin perovskite solar cells enabled by amorphous-polycrystalline structure. Nat. Commun., 2020, 11(1): 2678
https://doi.org/10.1038/s41467-020-16561-6
78 M. Lee M., Teuscher J., Miyasaka T., N. Murakami T., J. Snaith H.. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338(6107): 643
https://doi.org/10.1126/science.1228604
79 S. Kim H., R. Lee C., H. Im J., B. Lee K., Moehl T., Marchioro A., J. Moon S., Humphry-Baker R., H. Yum J., E. Moser J., Grätzel M., G. Park N.. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep., 2012, 2(1): 591
https://doi.org/10.1038/srep00591
80 Kojima A., Teshima K., Shirai Y., Miyasaka T.. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009, 131(17): 6050
https://doi.org/10.1021/ja809598r
81 NREL, Best Research-Cell Efficiency Chart, URL: www.nrel.gov/pv/cell-efficiency.html
82 C. Schmidt L., Pertegás A., González-Carrero S., Malinkiewicz O., Agouram S., Minguez Espallargas G., J. Bolink H., E. Galian R., Pérez-Prieto J.. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc., 2014, 136(3): 850
https://doi.org/10.1021/ja4109209
83 H. Kim Y., S. Kim J., W. Lee T.. Strategies to improve luminescence efficiency of metal‐halide perovskites and light‐emitting diodes. Adv. Mater., 2019, 31(47): 1804595
https://doi.org/10.1002/adma.201804595
84 C. Wang H., Wang W., C. Tang A., Y. Tsai H., Bao Z., Ihara T., Yarita N., Tahara H., Kanemitsu Y., Chen S., S. Liu R.. High‐performance CsPb1−xSnxBr3 perovskite quantum dots for light‐emitting diodes. Angew. Chem., 2017, 129(44): 13838
https://doi.org/10.1002/ange.201706860
85 Basiricò L., Ciavatti A., Fraboni B.. Solution-grown organic and perovskite X-ray detectors: A new paradigm for the direct detection of ionizing radiation. Adv. Mater. Technol., 2021, 6(1): 2000475
https://doi.org/10.1002/admt.202000475
86 Ahmadi M.Wu T.Hu B., A review on organic–inorganic halide perovskite photodetectors: Device engineering and fundamental physics, Adv. Mater. 29(41), 1605242 (2017)
87 F. Leung S.T. Ho K.K. Kung P.K. S. Hsiao V.N. Alshareef H.L. Wang Z.H. He J., A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity, Adv. Mater. 30(8), 1704611 (2018)
88 H. Kim Y., Kim S., Kakekhani A., Park J., Park J., H. Lee Y., Xu H., Nagane S., B. Wexler R., H. Kim D., H. Jo S., Martínez-Sarti L., Tan P., Sadhanala A., S. Park G., W. Kim Y., Hu B., J. Bolink H., Yoo S., H. Friend R., M. Rappe A., W. Lee T.. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photonics, 2021, 15(2): 148
https://doi.org/10.1038/s41566-020-00732-4
89 Hu M., Jia S., Liu Y., Cui J., Zhang Y., Su H., Cao S., Mo L., Chu D., Zhao G., Zhao K., Yang Z., F. Liu S.. Large and dense organic–inorganic hybrid perovskite CH3NH3PbI3 wafer fabricated by one-step reactive direct wafer production with high X-ray sensitivity. ACS Appl. Mater. Interfaces, 2020, 12(14): 16592
https://doi.org/10.1021/acsami.9b23158
90 Tress W., Marinova N., Moehl T., M. Zakeeruddin S., K. Nazeeruddin M., Grätzel M.. Understanding the rate-dependent JV hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: The role of a compensated electric field. Energy Environ. Sci., 2015, 8(3): 995
https://doi.org/10.1039/C4EE03664F
91 Shao Y., Xiao Z., Bi C., Yuan Y., Huang J.. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun., 2014, 5(1): 5784
https://doi.org/10.1038/ncomms6784
92 L. Unger E., T. Hoke E., D. Bailie C., H. Nguyen W., R. Bowring A., Heumüller T., G. Christoforo M., D. Mcgehee M.. Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci., 2014, 7(11): 3690
https://doi.org/10.1039/C4EE02465F
93 S. Yang W., W. Park B., H. Jung E., J. Jeon N., C. Kim Y., U. Lee D., S. Shin S., Seo J., K. Kim E., H. Noh J., I. Seok S.. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 2017, 356(6345): 1376
https://doi.org/10.1126/science.aan2301
94 Yu Y., Li J., Geng D., Wang J., Zhang L., L. Andrew T., S. Arnold M., Wang X.. Development of lead iodide perovskite solar cells using three-dimensional titanium dioxide nanowire architectures. ACS Nano, 2015, 9(1): 564
https://doi.org/10.1021/nn5058672
95 S. Sanchez R., Gonzalez-Pedro V., W. Lee J., G. Park N., S. Kang Y., Mora-Sero I., Bisquert J.. Slow dynamic processes in lead halide perovskite solar cells: Characteristic times and hysteresis. J. Phys. Chem. Lett., 2014, 5(13): 2357
https://doi.org/10.1021/jz5011187
96 H. Heo J., H. Song D., J. Han H., Y. Kim S., H. Kim J., Kim D., W. Shin H., K. Ahn T., Wolf C., W. Lee T., H. Im S.. Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate. Adv. Mater., 2015, 27(22): 3424
https://doi.org/10.1002/adma.201500048
97 Zawal P., Mazur T., Lis M., Chiolerio A., Szacilowski K.. Light-induced synaptic effects controlled by incorporation of charge-trapping layer into hybrid perovskite memristor. Adv. Electron. Mater., 2022, 8(4): 2100838
https://doi.org/10.1002/aelm.202100838
98 Eames C., M. Frost J., R. F. Barnes P., C. O’regan B., Walsh A., S. Islam M.. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun., 2015, 6(1): 7497
https://doi.org/10.1038/ncomms8497
99 M. Azpiroz J., Mosconi E., Bisquert J., De Angelis F.. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci., 2015, 8(7): 2118
https://doi.org/10.1039/C5EE01265A
100 Liu P., Wang W., Liu S., Yang H., Shao Z.. Fundamental understanding of photocurrent hysteresis in perovskite solar cells. Adv. Energy Mater., 2019, 9(13): 1803017
https://doi.org/10.1002/aenm.201803017
101 Kim H., S. Han J., Choi J., Y. Kim S., W. Jang H.. Halide perovskites for applications beyond photovoltaics. Small Methods, 2018, 2(3): 1700310
https://doi.org/10.1002/smtd.201700310
102 Li T., Yu H., H. Y. Chen S., Zhou Y., T. Han S.. The strategies of filament control for improving the resistive switching performance. J. Mater. Chem. C, 2020, 8(46): 16295
https://doi.org/10.1039/D0TC03639K
103 Li T.Yu H. Xiong Z.Gao Z.Zhou Y.T. Han S., 2D oriented covalent organic frameworks for alcohol-sensory synapses, Mater. Horiz. 8(7), 2041 (2021)
104 Yang Y., Gao W., Xie Z., Wang Y., Yuan G., M. Liu J.. An all-inorganic, transparent, flexible, and nonvolatile resistive memory. Adv. Electron. Mater., 2018, 4(12): 1800412
https://doi.org/10.1002/aelm.201800412
105 Tian X., Wang L., Wei J., Yang S., Wang W., Xu Z., Bai X.. Filament growth dynamics in solid electrolyte-based resistive memories revealed by in situ tem. Nano Res., 2014, 7(7): 1065
https://doi.org/10.1007/s12274-014-0469-0
106 Chen J., Feng Z., Luo M., Wang J., Wang Z., Gong Y., Huang S., Qian F., Zhou Y., T. Han S.. High-performance perovskite memristor by integrating a tip-shape contact. J. Mater. Chem. C, 2021, 9(43): 15435
https://doi.org/10.1039/D1TC04164A
107 L. Park H., H. Kim M., H. Lee S.. Introduction of interfacial load polymeric layer to organic flexible memristor for regulating conductive filament growth. Adv. Electron. Mater., 2020, 6(10): 2000582
https://doi.org/10.1002/aelm.202000582
108 Chen Q., Lin M., Wang Z., Zhao X., Cai Y., Liu Q., Fang Y., Yang Y., He M., Huang R.. Low power parylene-based memristors with a graphene barrier layer for flexible electronics applications. Adv. Electron. Mater., 2019, 5(9): 1800852
https://doi.org/10.1002/aelm.201800852
109 Yoo E., Lyu M., H. Yun J., Kang C., Choi Y., Wang L.. Bifunctional resistive switching behavior in an organolead halide perovskite based Ag/CH3NH3PbI3−xClx/FTO structure. J. Mater. Chem. C, 2016, 4(33): 7824
https://doi.org/10.1039/C6TC02503J
110 Choi J., V. Le Q., Hong K., W. Moon C., S. Han J., C. Kwon K., R. Cha P., Kwon Y., Y. Kim S., W. Jang H.. Enhanced endurance organolead halide perovskite resistive switching memories operable under an extremely low bending radius. ACS Appl. Mater. Interfaces, 2017, 9(36): 30764
https://doi.org/10.1021/acsami.7b08197
111 Lee S., Wolfe S., Torres J., Yun M., K. Lee J.. Asymmetric bipolar resistive switching of halide perovskite film in contact with TiO2 layer. ACS Appl. Mater. Interfaces, 2021, 13(23): 27209
https://doi.org/10.1021/acsami.1c06278
112 Ku B., Koo B., S. Sokolov A., J. Ko M., Choi C.. Two-terminal artificial synapse with hybrid organic-inorganic perovskite (CH3NH3)PbI3 and low operating power energy (similar to 47 fJ/μm2). J. Alloys Compd., 2020, 833: 155064
https://doi.org/10.1016/j.jallcom.2020.155064
113 Gonzales C., Guerrero A.. Mechanistic and kinetic analysis of perovskite memristors with buffer layers: The case of a two-step set process. J. Phys. Chem. Lett., 2023, 14(6): 1395
https://doi.org/10.1021/acs.jpclett.2c03669
114 Tan H., Liu G., Zhu X., Yang H., Chen B., Chen X., Shang J., D. Lu W., Wu Y., W. Li R.. An optoelectronic resistive switching memory with integrated demodulating and arithmetic functions. Adv. Mater., 2015, 27(17): 2797
https://doi.org/10.1002/adma.201500039
115 Ruan W., Hu Y., Qiu T., Bai F., Zhang S., Xu F.. Morphological regulation of all-inorganic perovskites for multilevel resistive switching. J. Phys. Chem. Solids, 2019, 127: 258
https://doi.org/10.1016/j.jpcs.2018.12.033
116 Ge S., Guan X., Wang Y., H. Lin C., Cui Y., Huang Y., Zhang X., Zhang R., Yang X., Wu T.. Low-dimensional lead-free inorganic perovskites for resistive switching with ultralow bias. Adv. Funct. Mater., 2020, 30(25): 2002110
https://doi.org/10.1002/adfm.202002110
117 Paramanik S., Maiti A., Chatterjee S., J. Pal A.. Large resistive switching and artificial synaptic behaviors in layered Cs3Sb2I9 lead-free perovskite memory devices. Adv. Electron. Mater., 2022, 8(1): 2100237
https://doi.org/10.1002/aelm.202100237
118 Liu Z., Cheng P., Li Y., Kang R., Zhou J., Zhao J., Zuo Z.. Multilevel halide perovskite memristors based on optical & electrical resistive switching effects. Mater. Chem. Phys., 2022, 288: 126393
https://doi.org/10.1016/j.matchemphys.2022.126393
119 Wu S., Ren L., Qing J., Yu F., Yang K., Yang M., Wang Y., Meng M., Zhou W., Zhou X., Li S.. Bipolar resistance switching in transparent ITO/LaAlO3/SrTiO3 memristors. ACS Appl. Mater. Interfaces, 2014, 6(11): 8575
https://doi.org/10.1021/am501387w
120 Nili H., Walia S., Balendhran S., B. Strukov D., Bhaskaran M., Sriram S.. Nanoscale resistive switching in amorphous perovskite oxide (a-SrTiO3) memristors. Adv. Funct. Mater., 2014, 24(43): 6741
https://doi.org/10.1002/adfm.201401278
121 S. Han J., V. Le Q., Choi J., Kim H., G. Kim S., Hong K., W. Moon C., L. Kim T., Y. Kim S., W. Jang H.. Lead-free all-inorganic cesium tin iodide perovskite for filamentary and interface-type resistive switching toward environment-friendly and temperature-tolerant nonvolatile memories. ACS Appl. Mater. Interfaces, 2019, 11(8): 8155
https://doi.org/10.1021/acsami.8b15769
122 Xu J., Wu Y., Li Z., Liu X., Cao G., Yao J.. Resistive switching in nonperovskite-phase CsPbI3 film-based memory devices. ACS Appl. Mater. Interfaces, 2020, 12(8): 9409
https://doi.org/10.1021/acsami.9b17680
123 Zhang X., Yang H., Jiang Z., Zhang Y., Wu S., Pan H., Khisro N., Chen X.. Photoresponse of nonvolatile resistive memory device based on all-inorganic perovskite CsPbBr3 nanocrystals. J. Phys. D, 2019, 52(12): 125103
https://doi.org/10.1088/1361-6463/aafe8e
124 Cho B., Song S., Ji Y., W. Kim T., Lee T.. Organic resistive memory devices: Performance enhancement, integration, and advanced architectures. Adv. Funct. Mater., 2011, 21(15): 2806
https://doi.org/10.1002/adfm.201100686
125 N. Murgatroyd P.. Theory of space-charge-limited current enhanced by Frenkel effect. J. Phys. D, 1970, 3(2): 151
https://doi.org/10.1088/0022-3727/3/2/308
126 Luo Q., Zhang X., Hu Y., Gong T., Xu X., Yuan P., Ma H., Dong D., Lv H., Long S., Liu Q., Liu M.. Self-rectifying and forming-free resistive-switching device for embedded memory application. IEEE Electron Device Lett., 2018, 39(5): 664
https://doi.org/10.1109/LED.2018.2821162
127 S. Anjali B., S. Patial B., Thakur N.. High field conduction in Pb doped amorphous Se−Te system. AIP Conf. Proc., 2018, 1953(1): 090032
https://doi.org/10.1063/1.5032879
128 H. Liu Z., I. Ng G., Arulkumaran S., K. T. Maung Y., Zhou H.. Temperature-dependent forward gate current transport in atomic-layer-deposited Al2O3/AlGaN/GaN metal−insulator−semiconductor high electron mobility transistor. Appl. Phys. Lett., 2011, 98(16): 163501
https://doi.org/10.1063/1.3573794
129 Xu C., Zhang B., C. Wang A., Cai W., Zi Y., Feng P., L. Wang Z.. Effects of metal work function and contact potential difference on electron thermionic emission in contact electrification. Adv. Funct. Mater., 2019, 29(29): 1903142
https://doi.org/10.1002/adfm.201903142
130 Li W.Jena D. G. Xing H., A unified thermionic and thermionic-field emission (TE–TFE) model for ideal Schottky reverse-bias leakage current, J. Appl. Phys. 131(1), 015702 (2022)
131 Kunwar S.B. Somodi C.A. Lalk R.X. Rutherford B.Corey Z. Roy P.Zhang D.Hellenbrand M.Xiao M.L. Macmanus-Driscoll J.Jia Q.Wang H.Joshua Yang J.Nie W.Chen A., Protons: Critical species for resistive switching in interface-type memristors Adv. Electron. Mater. 9(1), 2200816 (2023)
132 Bagdzevicius S., Maas K., Boudard M., Burriel M.. Interface-type resistive switching in perovskite materials. J. Electroceram., 2017, 39(1−4): 157
https://doi.org/10.1007/s10832-017-0087-9
133 Drozdowski D., Gągor A., Stefańska D., K. Zarȩba J., Fedoruk K., Mączka M., Sieradzki A.. Three-dimensional methylhydrazinium lead halide perovskites: Structural changes and effects on dielectric, linear, and nonlinear optical properties entailed by the halide tuning. J. Phys. Chem. C, 2022, 126(3): 1600
https://doi.org/10.1021/acs.jpcc.1c07911
134 Tang G., Xiao Z., Hong J.. Designing two-dimensional properties in three-dimensional halide perovskites via orbital engineering. J. Phys. Chem. Lett., 2019, 10(21): 6688
https://doi.org/10.1021/acs.jpclett.9b02530
135 Saparov B., B. Mitzi D.. Organic–inorganic perovskites: Structural versatility for functional materials design. Chem. Rev., 2016, 116(7): 4558
https://doi.org/10.1021/acs.chemrev.5b00715
136 Tao S., Schmidt I., Brocks G., Jiang J., Tranca I., Meerholz K., Olthof S.. Absolute energy level positions in tin- and lead-based halide perovskites. Nat. Commun., 2019, 10(1): 2560
https://doi.org/10.1038/s41467-019-10468-7
137 L. Z. Hoye R., Hidalgo J., A. Jagt R., P. Correa-Baena J., Fix T., L. Macmanus-Driscoll J.. The role of dimensionality on the optoelectronic properties of oxide and halide perovskites, and their halide derivatives. Adv. Energy Mater., 2022, 12(4): 2100499
https://doi.org/10.1002/aenm.202100499
138 Deng Y., Peng E., Shao Y., Xiao Z., Dong Q., Huang J.. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy Environ. Sci., 2015, 8(5): 1544
https://doi.org/10.1039/C4EE03907F
139 Xiao Z., Bi C., Shao Y., Dong Q., Wang Q., Yuan Y., Wang C., Gao Y., Huang J.. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci., 2014, 7(8): 2619
https://doi.org/10.1039/C4EE01138D
140 Miyata A., Mitioglu A., Plochocka P., Portugall O., T. W. Wang J., D. Stranks S., J. Snaith H., J. Nicholas R.. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys., 2015, 11(7): 582
https://doi.org/10.1038/nphys3357
141 C. Stoumpos C., G. Kanatzidis M.. Halide perovskites: Poor man’s high-performance semiconductors. Adv. Mater., 2016, 28(28): 5778
https://doi.org/10.1002/adma.201600265
142 Zhao X., Xu H., Wang Z., Lin Y., Liu Y.. Memristors with organic-inorganic halide perovskites. InfoMat, 2019, 1(2): 183
https://doi.org/10.1002/inf2.12012
143 Liu Y., A. Renna L., B. Thompson H., A. Page Z., Emrick T., D. Barnes M., Bag M., Venkataraman D., P. Russell T.. Role of ionic functional groups on ion transport at perovskite interfaces. Adv. Energy Mater., 2017, 7(21): 1701235
https://doi.org/10.1002/aenm.201701235
144 Gupta V., Lucarelli G., Castro-Hermosa S., Brown T., Ottavi M.. Investigation of hysteresis in hole transport layer free metal halide perovskites cells under dark conditions. Nanotechnology, 2020, 31(44): 445201
https://doi.org/10.1088/1361-6528/aba713
145 Haque F., Mativenga M.. Halide perovskite memtransistor enabled by ion migration. Jpn. J. Appl. Phys., 2020, 59(8): 081002
https://doi.org/10.35848/1347-4065/aba5e1
146 Patil H., Kim H., D. Kadam K., Rehman S., A. Patil S., Aziz J., D. Dongale T., Ali Sheikh Z., Khalid Rahmani M., F. Khan M., K. Kim D.. Flexible organic–inorganic halide perovskite-based diffusive memristor for artificial nociceptors. ACS Appl. Mater. Interfaces, 2023, 15(10): 13238
https://doi.org/10.1021/acsami.2c16481
147 Q. Yang J., Wang R., P. Wang Z., Y. Ma Q., Y. Mao J., Ren Y., Yang X., Zhou Y., T. Han S.. Leaky integrate-and-fire neurons based on perovskite memristor for spiking neural networks. Nano Energy, 2020, 74: 104828
https://doi.org/10.1016/j.nanoen.2020.104828
148 M. Samardzic N., S. Bajic J., L. Sekulic D., Dautovic S.. Volatile memristor in leaky integrate-and-fire neurons: Circuit simulation and experimental study. Electronics (Basel), 2022, 11(6): 894
https://doi.org/10.3390/electronics11060894
149 J. Lee T., K. Kim S., Y. Seong T.. Sputtering-deposited amorphous SrVOx-based memristor for use in neuromorphic computing. Sci. Rep., 2020, 10(1): 5761
https://doi.org/10.1038/s41598-020-62642-3
150 Gong Y., Xing X., Lv Z., Chen J., Xie P., Wang Y., Huang S., Zhou Y., T. Han S.. Ultrasensitive flexible memory phototransistor with detectivity of 1.8 × 1013 Jones for artificial visual nociceptor. Adv. Intell. Syst., 2022, 4(8): 2100257
https://doi.org/10.1002/aisy.202100257
151 A. John R., Yantara N., E. Ng S., I. B. Patdillah M., R. Kulkarni M., F. Jamaludin N., Basu J., G. Ankit S., G. Mhaisalkar S., Basu A., Mathews N.. Diffusive and drift halide perovskite memristive barristors as nociceptive and synaptic emulators for neuromorphic computing. Adv. Mater., 2021, 33(15): 2007851
https://doi.org/10.1002/adma.202007851
152 Das U., Sarkar P., Paul B., Roy A.. Halide perovskite two-terminal analog memristor capable of photo-activated synaptic weight modulation for neuromorphic computing. Appl. Phys. Lett., 2021, 118(18): 182103
https://doi.org/10.1063/5.0049161
153 Wang S.Xiong Y.Dong X.Sha J.Wu Y. Li W.Wang Y. Capacitive coupling behaviors based on triple cation organic−inorganic hybrid perovskite memristor J. Alloys Compd. 874, 159884 (2021)
154 Zhou G., Sun B., Ren Z., Wang L., Xu C., Wu B., Li P., Yao Y., Duan S.. Resistive switching behaviors and memory logic functions in single MnOx nanorod modulated by moisture. Chem. Commun. (Camb.), 2019, 55(67): 9915
https://doi.org/10.1039/C9CC04069B
155 A. Haque M.Syed A.H. Akhtar F.Shevate R.Singh S. V. Peinemann K.Baran D.Wu T., Giant humidity effect on hybrid halide perovskite microstripes: Reversibility and sensing mechanism ACS Appl. Mater. Interfaces 11(33), 29821 (2019)
156 M. A. Leguy A., Hu Y., Campoy-Quiles M., I. Alonso M., J. Weber O., Azarhoosh P., Van Schilfgaarde M., T. Weller M., Bein T., Nelson J., Docampo P., R. F. Barnes P.. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem. Mater., 2015, 27(9): 3397
https://doi.org/10.1021/acs.chemmater.5b00660
157 Zhang X., Zhao X., Shan X., Tian Q., Wang Z., Lin Y., Xu H., Liu Y.. Humidity effect on resistive switching characteristics of the CH3NH3PbI3 memristor. ACS Appl. Mater. Interfaces, 2021, 13(24): 28555
https://doi.org/10.1021/acsami.1c05590
158 Kulbak M., Cahen D., Hodes G.. How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. J. Phys. Chem. Lett., 2015, 6(13): 2452
https://doi.org/10.1021/acs.jpclett.5b00968
159 Yin Y.Yao Z.Xia Y.Chen H., A method to improve the performance of all-inorganic halide perovskite CsPbBr3 memory, Mater. Res. Express 9(6), 065007 (2022)
160 Wang Y., Li X., Song J., Xiao L., Zeng H., Sun H.. All-inorganic colloidal perovskite quantum dots: A new class of lasing materials with favorable characteristics. Adv. Mater., 2015, 27(44): 7101
https://doi.org/10.1002/adma.201503573
161 Liu S., Guan J., Yin L., Zhou L., Huang J., Mu Y., Han S., Pi X., Liu G., Gao P., Zhou S.. Solution-processed synaptic memristors based on halide perovskite nanocrystals. J. Phys. Chem. Lett., 2022, 13(47): 10994
https://doi.org/10.1021/acs.jpclett.2c02900
162 Cheng C., Zhu C., Huang B., Zhang H., Zhang H., Chen R., Pei W., Chen Q., Chen H.. Processing halide perovskite materials with semiconductor technology. Adv. Mater. Technol., 2019, 4(7): 1800729
https://doi.org/10.1002/admt.201800729
163 Liu Z., Cheng P., Li Y., Kang R., Zhang Z., Zuo Z., Zhao J.. High temperature CsPbBrxI3−x memristors based on hybrid electrical and optical resistive switching effects. ACS Appl. Mater. Interfaces, 2021, 13(49): 58885
https://doi.org/10.1021/acsami.1c13561
164 Zhai S., Gong J., Feng Y., Que Z., Mao W., He X., Xie Y., A. Li X., Chu L.. Multilevel resistive switching in stable all-inorganic n−i−p double perovskite memristor. iScience, 2023, 26(4): 106461
https://doi.org/10.1016/j.isci.2023.106461
165 D. Dissanayake P., M. Yeom K., Sarkar B., S. Alessi D., Hou D., Rinklebe J., H. Noh J., S. Ok Y.. Environmental impact of metal halide perovskite solar cells and potential mitigation strategies: A critical review. Environ. Res., 2023, 219: 115066
https://doi.org/10.1016/j.envres.2022.115066
166 Zheng Y.Luo F.Ruan L.Tong J.Yan L. Sun C.Zhang X., A facile fabrication of lead-free Cs2NaBiI6 double perovskite films for memory device application, J. Alloys Compd. 909, 164613 (2022)
167 Zhang J.Han S.Ji C.Zhang W.Wang Y. Tao K.Sun Z.Luo J., [(CH3)3NH]3Bi2I9: A polar lead-free hybrid perovskite-like material as a potential semiconducting absorber, Chemistry 23(68), 17304 (2017)
168 Ni Z.Zhu Y. Ju S.Xu Z. Tian F.Hu H.Guo T.Li F., E-synapse based on lead-free organic halide perovskite (CH3NH3)3Sb2Cl9 for neuromorphic computing, IEEE Trans. Electron Dev. 68(9), 4425 (2021)
169 Krishnamoorthy T., Ding H., Yan C., L. Leong W., Baikie T., Zhang Z., Sherburne M., Li S., Asta M., Mathews N., G. Mhaisalkar S.. Lead-free germanium iodide perovskite materials for photovoltaic applications. J. Mater. Chem. A, 2015, 3(47): 23829
https://doi.org/10.1039/C5TA05741H
170 Shankar H., Jha A., Kar P.. Water-assisted synthesis of lead-free Cu based fluorescent halide perovskite nanostructures. Mater. Adv., 2022, 3(1): 658
https://doi.org/10.1039/D1MA00849H
171 C. Hebig J., Kühn I., Flohre J., Kirchartz T.. Optoelectronic properties of (CH3NH3)3Sb2I9 thin films for photovoltaic applications. ACS Energy Lett., 2016, 1(1): 309
https://doi.org/10.1021/acsenergylett.6b00170
172 K. Noel N., D. Stranks S., Abate A., Wehrenfennig C., Guarnera S., A. Haghighirad A., Sadhanala A., E. Eperon G., K. Pathak S., B. Johnston M., Petrozza A., M. Herz L., J. Snaith H.. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci., 2014, 7(9): 3061
https://doi.org/10.1039/C4EE01076K
173 Ge S., Wang Y., Xiang Z., Cui Y.. Reset voltage-dependent multilevel resistive switching behavior in CsPb1–xBixI3 perovskite-based memory device. ACS Appl. Mater. Interfaces, 2018, 10(29): 24620
https://doi.org/10.1021/acsami.8b07079
174 Ruan W., Hu Y., Xu F., Zhang S.. Resistive switching behavior of organic-metallic halide perovskites CH3NH3Pb1−xBixBr3. Org. Electron., 2019, 70: 252
https://doi.org/10.1016/j.orgel.2019.04.031
175 Lv F., Gao C., A. Zhou H., Zhang P., Mi K., Liu X.. Nonvolatile bipolar resistive switching behavior in the perovskite-like (CH3NH3)2FeCl4. ACS Appl. Mater. Interfaces, 2016, 8(29): 18985
https://doi.org/10.1021/acsami.6b04464
176 M. Yang J., S. Choi E., Y. Kim S., H. Kim J., H. Park J., G. Park N.. Perovskite-related (CH3NH3)3-Sb2Br9 for forming-free memristor and low-energy-consuming neuromorphic computing. Nanoscale, 2019, 11(13): 6453
https://doi.org/10.1039/C8NR09918A
177 Zeng F., Guo Y., Hu W., Tan Y., Zhang X., Feng J., Tang X.. Opportunity of the lead-free all-inorganic Cs3Cu2I5 perovskite film for memristor and neuromorphic computing applications. ACS Appl. Mater. Interfaces, 2020, 12(20): 23094
https://doi.org/10.1021/acsami.0c03106
178 Wang R., Chen P., Hao D., Zhang J., Shi Q., Liu D., Li L., Xiong L., Zhou J., Huang J.. Artificial synapses based on lead-free perovskite floating-gate organic field-effect transistors for supervised and unsupervised learning. ACS Appl. Mater. Interfaces, 2021, 13(36): 43144
https://doi.org/10.1021/acsami.1c08424
179 Lao J., Xu W., Jiang C., Zhong N., Tian B., Lin H., Luo C., Travas-Sejdic J., Peng H., G. Duan C.. An air-stable artificial synapse based on a lead-free double perovskite Cs2AgBiBr6 film for neuromorphic computing. J. Mater. Chem. C, 2021, 9(17): 5706
https://doi.org/10.1039/D1TC00655J
180 Wu C., Zhang Q., Liu Y., Luo W., Guo X., Huang Z., Ting H., Sun W., Zhong X., Wei S., Wang S., Chen Z., Xiao L.. The dawn of lead-free perovskite solar cell: Highly stable double perovskite Cs2AgBiBr6 film. Adv. Sci. (Weinh.), 2018, 5(3): 1700759
https://doi.org/10.1002/advs.201700759
181 F. Cheng X., H. Qian W., Wang J., Yu C., H. He J., Li H., F. Xu Q., Y. Chen D., J. Li N., M. Lu J.. Environmentally robust memristor enabled by lead-free double perovskite for high-performance information storage. Small, 2019, 15(49): 1905731
https://doi.org/10.1002/smll.201905731
182 Wang W., Zhou G.. Moisture influence in emerging neuromorphic device. Front. Phys., 2023, 18(5): 53601
https://doi.org/10.1007/s11467-023-1272-8
183 Guo Z., Xiong R., Zhu Y., Wang Z., Zhou J., Liu Y., Luo D., Wang Y., Wang H.. High-performance and humidity robust multilevel lead-free all-inorganic Cs3Cu2Br5 perovskite-based memristors. Appl. Phys. Lett., 2023, 122(5): 053502
https://doi.org/10.1063/5.0129311
184 H. Qian W., F. Cheng X., Zhou J., H. He J., Li H., F. Xu Q., J. Li N., Y. Chen D., G. Yao Z., M. Lu J.. Lead-free perovskite MASnBr3-based memristor for quaternary information storage. InfoMat, 2020, 2(4): 743
https://doi.org/10.1002/inf2.12066
185 Ren Y., Bu X., Wang M., Gong Y., Wang J., Yang Y., Li G., Zhang M., Zhou Y., T. Han S.. Synaptic plasticity in self-powered artificial striate cortex for binocular orientation selectivity. Nat. Commun., 2022, 13(1): 5585
https://doi.org/10.1038/s41467-022-33393-8
186 Guan X., Lei Z., Yu X., H. Lin C., K. Huang J., Y. Huang C., Hu L., Li F., Vinu A., Yi J., Wu T.. Low-dimensional metal-halide perovskites as high-performance materials for memory applications. Small, 2022, 18(38): 2203311
https://doi.org/10.1002/smll.202203311
187 Das U., K. Sarkar P., Das D., Paul B., Roy A.. Influence of nanoscale charge trapping layer on the memory and synaptic characteristics of a novel rubidium lead chloride quantum dot based memristor. Adv. Electron. Mater., 2022, 8(5): 2101015
https://doi.org/10.1002/aelm.202101015
188 Gonzales C., Guerrero A., Bisquert J.. Spectral properties of the dynamic state transition in metal halide perovskite-based memristor exhibiting negative capacitance. Appl. Phys. Lett., 2021, 118(7): 073501
https://doi.org/10.1063/5.0037916
189 Batool S., Idrees M., R. Zhang S., T. Han S., Zhou Y.. Novel charm of 2D materials engineering in memristor: When electronics encounter layered morphology. Nanoscale Horiz., 2022, 7(5): 480
https://doi.org/10.1039/D2NH00031H
190 Di J., Lin Z., Su J., Wang J., Zhang J., Liu S., Chang J., Hao Y.. Two-dimensional (C6H5C2H4NH3)2-PbI4 perovskite single crystal resistive switching memory devices. IEEE Electron Device Lett., 2021, 42(3): 327
https://doi.org/10.1109/LED.2021.3053009
191 Liu J., Chen K., A. Khan S., Shabbir B., Zhang Y., Khan Q., Bao Q.. Synthesis and optical applications of low dimensional metal-halide perovskites. Nanotechnology, 2020, 31(15): 152002
https://doi.org/10.1088/1361-6528/ab5a19
192 J. Kim S., H. Lee T., M. Yang J., W. Yang J., J. Lee Y., J. Choi M., A. Lee S., M. Suh J., J. Kwak K., H. Baek J., H. Im I., E. Lee D., Y. Kim J., Kim J., S. Han J., Y. Kim S., Lee D., G. Park N., W. Jang H.. Vertically aligned two-dimensional halide perovskites for reliably operable artificial synapses. Mater. Today, 2022, 52: 19
https://doi.org/10.1016/j.mattod.2021.10.035
193 Thrithamarassery Gangadharan D., Ma D.. Searching for stability at lower dimensions: Current trends and future prospects of layered perovskite solar cells. Energy Environ. Sci., 2019, 12(10): 2860
https://doi.org/10.1039/C9EE01591D
194 Tian H., Zhao L., Wang X., W. Yeh Y., Yao N., P. Rand B., L. Ren T.. Extremely low operating current resistive memory based on exfoliated 2D perovskite single crystals for neuromorphic computing. ACS Nano, 2017, 11(12): 12247
https://doi.org/10.1021/acsnano.7b05726
195 Kumar M., Patel M., Y. Park D., S. Kim H., S. Jeong M., Kim J.. Switchable two-terminal transparent optoelectronic devices based on 2D perovskite. Adv. Electron. Mater., 2019, 5(2): 1800662
https://doi.org/10.1002/aelm.201800662
196 M. Yang J.G. Kim S.Y. Seo J.Cuhadar C.Y. Son D. Lee D.G. Park N., 1D hexagonal HC(NH2)2-PbI3 for multilevel resistive switching nonvolatile memory, Adv. Electron. Mater. 4(9), 1800190 (2018)
197 Poddar S., Zhang Y., Gu L., Zhang D., Zhang Q., Yan S., Kam M., Zhang S., Song Z., Hu W., Liao L., Fan Z.. Down-scalable and ultra-fast memristors with ultra-high density three-dimensional arrays of perovskite quantum wires. Nano Lett., 2021, 21(12): 5036
https://doi.org/10.1021/acs.nanolett.1c00834
198 Zhou G., Kuang D., Wang G., He X., Xu C., Dong J., Dai Z., Xu G., Lu D., Guo P., Sun B., Song Q.. PbI3-ion abnormal migration in CH3NH3PbIxCl3−x ultralong single nanowire for resistive switching memories. Mater. Charact., 2023, 199: 112762
https://doi.org/10.1016/j.matchar.2023.112762
199 Chen Z., Yu Y., Jin L., Li Y., Li Q., Li T., Zhang Y., Dai H., Yao J.. Artificial synapses with photoelectric plasticity and memory behaviors based on charge trapping memristive system. Mater. Des., 2020, 188: 108415
https://doi.org/10.1016/j.matdes.2019.108415
200 Gong Y., Wang Y., Li R., Q. Yang J., Lv Z., Xing X., Liao Q., Wang J., Chen J., Zhou Y., T. Han S.. Tailoring synaptic plasticity in a perovskite QD-based asymmetric memristor. J. Mater. Chem. C, 2020, 8(9): 2985
https://doi.org/10.1039/C9TC06565B
201 V. Nenashev G.N. Aleshin A.P. Shcherbakov I.N. Petrov V., Effect of temperature variations on the behavior of a two-terminal organic−inorganic halide perovskite rewritable memristor for neuromorphic operations, Solid State Commun. 348−349, 114768 (2022)
202 K. Su T., K. Cheng W., Y. Chen C., C. Wang W., T. Chuang Y., H. Tan G., C. Lin H., H. Hou C., M. Liu C., C. Chang Y., J. Shyue J., C. Wu K., W. Lin H.. Room-temperature fabricated multilevel nonvolatile lead-free cesium halide memristors for reconfigurable in-memory computing. ACS Nano, 2022, 16(8): 12979
https://doi.org/10.1021/acsnano.2c05436
203 A. John R., Demirag Y., Shynkarenko Y., Berezovska Y., Ohannessian N., Payvand M., Zeng P., I. Bodnarchuk M., Krumeich F., Kara G., Shorubalko I., V. Nair M., A. Cooke G., Lippert T., Indiveri G., V. Kovalenko M.. Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing. Nat. Commun., 2022, 13(1): 2074
https://doi.org/10.1038/s41467-022-29727-1
204 Wang Y., Xu N., Yuan Y., Zhang W., Huang Q., Tang X., Qi F.. Achieving adjustable digital-to-analog conversion in memristors with embedded Cs2AgSbBr6 nanoparticles. Nanoscale, 2023, 15(16): 7344
https://doi.org/10.1039/D2NR06370K
205 Zhang Z.Yang D.Li H.Li C.Wang Z. Sun L.Yang H., 2d materials and van der waals heterojunctions for neuromorphic computing, Neuromorph. Comput. Eng. 2(3), 032004 (2022)
206 Zhou Z., Yang F., Wang S., Wang L., Wang X., Wang C., Xie Y., Liu Q.. Emerging of two-dimensional materials in novel memristor. Front. Phys., 2022, 17(2): 23204
https://doi.org/10.1007/s11467-021-1114-5
207 B. Zhu Q.Li B.D. Yang D.Liu C.Feng S. L. Chen M.Sun Y.N. Tian Y.Su X.M. Wang X. Qiu S.W. Li Q.M. Li X.B. Zeng H.M. Cheng H. M. Sun D., A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems, Nat. Commun. 12(1), 1798 (2021)
208 Yin L., Huang W., Xiao R., Peng W., Zhu Y., Zhang Y., Pi X., Yang D.. Optically stimulated synaptic devices based on the hybrid structure of silicon nanomembrane and perovskite. Nano Lett., 2020, 20(5): 3378
https://doi.org/10.1021/acs.nanolett.0c00298
209 Wu Y., Wei Y., Huang Y., Cao F., Yu D., Li X., Zeng H.. Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors. Nano Res., 2017, 10(5): 1584
https://doi.org/10.1007/s12274-016-1288-2
210 Wang Y., Lv Z., Liao Q., Shan H., Chen J., Zhou Y., Zhou L., Chen X., L. Roy V., Wang Z., Xu Z., J. Zeng Y., T. Han S.. Synergies of electrochemical metallization and valance change in all-inorganic perovskite quantum dots for resistive switching. Adv. Mater., 2018, 30(28): 1800327
https://doi.org/10.1002/adma.201800327
211 Pradhan B., Das S., Li J., Chowdhury F., Cherusseri J., Pandey D., Dev D., Krishnaprasad A., Barrios E., Towers A., Gesquiere A., Tetard L., Roy T., Thomas J.. Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice. Sci. Adv., 2020, 6(7): eaay5225
https://doi.org/10.1126/sciadv.aay5225
212 Cheng X., Han Y., B. Cui B.. Fabrication strategies and optoelectronic applications of perovskite heterostructures. Adv. Opt. Mater., 2022, 10(5): 2102224
https://doi.org/10.1002/adom.202102224
213 Liu D., Yu H., Chai Y.. Low-power computing with neuromorphic engineering. Adv. Intell. Syst., 2021, 3(2): 2000150
https://doi.org/10.1002/aisy.202000150
214 J. Kim S., Kim S., W. Jang H.. Competing memristors for brain-inspired computing. iScience, 2021, 24(1): 101889
https://doi.org/10.1016/j.isci.2020.101889
215 Zhu X., D. Lu W.. Optogenetics-inspired tunable synaptic functions in memristors. ACS Nano, 2018, 12(2): 1242
https://doi.org/10.1021/acsnano.7b07317
216 Zhao X., Wang Z., Li W., Sun S., Xu H., Zhou P., Xu J., Lin Y., Liu Y.. Photoassisted electroforming method for reliable low-power organic−inorganic perovskite memristors. Adv. Funct. Mater., 2020, 30(17): 1910151
https://doi.org/10.1002/adfm.201910151
217 Lin G., Lin Y., Cui R., Huang H., Guo X., Li C., Dong J., Guo X., Sun B.. An organic−inorganic hybrid perovskite logic gate for better computing. J. Mater. Chem. C, 2015, 3(41): 10793
https://doi.org/10.1039/C5TC02270C
218 Xing J., Zhao C., Zou Y., Kong W., Yu Z., Shan Y., Dong Q., Zhou D., Yu W., Guo C.. Modulating the optical and electrical properties of MAPbBr3 single crystals via voltage regulation engineering and application in memristors. Light Sci. Appl., 2020, 9(1): 111
https://doi.org/10.1038/s41377-020-00349-w
219 Ke S., Jiang L., Zhao Y., Xiao Y., Jiang B., Cheng G., Wu F., Cao G., Peng Z., Zhu M., Ye C.. Brain-like synaptic memristor based on lithium-doped silicate for neuromorphic computing. Front. Phys., 2022, 17(5): 53508
https://doi.org/10.1007/s11467-022-1173-2
220 S. Sokolov A., Abbas H., Abbas Y., Choi C.. Towards engineering in memristors for emerging memory and neuromorphic computing: A review. J. Semicond., 2021, 42(1): 013101
https://doi.org/10.1088/1674-4926/42/1/013101
221 J. Huang T.. Imitating the brain with neurocomputer a new way towards artificial general intelligence. Inter. J. Autom. Comput., 2017, 14(5): 520
https://doi.org/10.1007/s11633-017-1082-y
222 Zahoor F., Z. Azni Zulkifli T., A. Khanday F.. Resistive random access memory (RRAM): An overview of materials, switching mechanism, performance, multilevel cell (mlc) storage, modeling, and applications. Nanoscale Res. Lett., 2020, 15(1): 90
https://doi.org/10.1186/s11671-020-03299-9
223 Chen F., Zhou Y., Zhu Y., Zhu R., Guan P., Fan J., Zhou L., Valanoor N., Von Wegner F., Saribatir E., Birznieks I., Wan T., Chu D.. Recent progress in artificial synaptic devices: Materials, processing and applications. J. Mater. Chem. C, 2021, 9(27): 8372
https://doi.org/10.1039/D1TC01211H
224 J. Kwak K., H. Baek J., E. Lee D., H. Im I., Kim J., J. Kim S., J. Lee Y., Y. Kim J., W. Jang H.. Ambient stable all inorganic CsCu2I3 artificial synapses for neurocomputing. Nano Lett., 2022, 22(14): 6010
https://doi.org/10.1021/acs.nanolett.2c01272
225 Zhu X., Wang Q., D. Lu W.. Memristor networks for real-time neural activity analysis. Nat. Commun., 2020, 11(1): 2439
https://doi.org/10.1038/s41467-020-16261-1
226 Huang W., Hang P., Wang Y., Wang K., Han S., Chen Z., Peng W., Zhu Y., Xu M., Zhang Y., Fang Y., Yu X., Yang D., Pi X.. Zero-power optoelectronic synaptic devices. Nano Energy, 2020, 73: 104790
https://doi.org/10.1016/j.nanoen.2020.104790
227 A. John R., Milozzi A., Tsarev S., Brönnimann R., C. Boehme S., Wu E., Shorubalko I., V. Kovalenko M., Ielmini D.. Ionic-electronic halide perovskite memdiodes enabling neuromorphic computing with a second-order complexity. Sci. Adv., 2022, 8(51): eade0072
https://doi.org/10.1126/sciadv.ade0072
228 A. Bessonov A., N. Kirikova M., I. Petukhov D., Allen M., Ryhanen T., J. Bailey M.. Layered memristive and memcapacitive switches for printable electronics. Nat. Mater., 2015, 14(2): 199
https://doi.org/10.1038/nmat4135
229 Lee Y., W. Lee T.. Organic synapses for neuromorphic electronics: From brain-inspired computing to sensorimotor nervetronics. Acc. Chem. Res., 2019, 52(4): 964
https://doi.org/10.1021/acs.accounts.8b00553
230 Yan X., Han X., Fang Z., Zhao Z., Zhang Z., Sun J., Shao Y., Zhang Y., Wang L., Sun S., Guo Z., Jia X., Zhang Y., Guan Z., Shi T.. Reconfigurable memristor based on SrTiO3 thin-film for neuromorphic computing. Front. Phys., 2023, 18(6): 63301
https://doi.org/10.1007/s11467-023-1308-0
231 Chen Q., Zhang Y., Liu S., Han T., Chen X., Xu Y., Meng Z., Zhang G., Zheng X., Zhao J., Cao G., Liu G.. Switchable perovskite photovoltaic sensors for bioinspired adaptive machine vision. Adv. Intell. Syst., 2020, 2(9): 2070092
https://doi.org/10.1002/aisy.202070092
232 Yang X.Xiong Z.Chen Y.Ren Y.Zhou L. Li H.Zhou Y. Pan F.T. Han S., A self-powered artificial retina perception system for image preprocessing based on photovoltaic devices and memristive arrays, Nano Energy 78, 105246 (2020)
233 A. John R., Shah N., K. Vishwanath S., E. Ng S., Febriansyah B., Jagadeeswararao M., H. Chang C., Basu A., Mathews N.. Halide perovskite memristors as flexible and reconfigurable physical unclonable functions. Nat. Commun., 2021, 12(1): 3681
https://doi.org/10.1038/s41467-021-24057-0
234 J. Gogoi H., Bajpai K., T. Mallajosyula A., Solanki A.. Advances in flexible memristors with hybrid perovskites. J. Phys. Chem. Lett., 2021, 12(36): 8798
https://doi.org/10.1021/acs.jpclett.1c02105
235 A. Campbell K.. Self-directed channel memristor for high temperature operation. Microelectronics, 2017, 59: 10
https://doi.org/10.1016/j.mejo.2016.11.006
236 Song K., Chen B., Lin X., Yang H., Liu Y., Liu Y., Li H., Chen Z.. Thermal enhanced resistive switching performance of ⟨ 100⟩-oriented perovskite [(TZ-H)2(PbBr4)]n with high working temperature: A triazolium/(PbBr4)n2n− interfacial interaction insight. Adv. Electron. Mater., 2022, 8(11): 2200537
https://doi.org/10.1002/aelm.202200537
237 Soosaimanickam A.J. Rodríguez-Cantó P.P. Martínez-Pastor J.Abargues R., Nanostructured, functional, and flexible materials for energy conversion and storage systems, edited by A. Pandikumar and P. Rameshkumar, Elsevier, 2020, pp 157−228
238 Sun J., Li F., Yuan J., Ma W.. Advances in metal halide perovskite film preparation: The role of anti-solvent treatment. Small Methods, 2021, 5(5): 2100046
https://doi.org/10.1002/smtd.202100046
239 Roy P.Kumar Sinha N.Tiwari S.Khare A., A review on perovskite solar cells: Evolution of architecture, fabrication techniques, commercialization issues and status, Sol. Energy 198, 665 (2020)
240 Gil-Escrig L., Momblona C., G. La-Placa M., P. Boix P., Sessolo M., J. Bolink H.. Vacuum deposited triple-cation mixed-halide perovskite solar cells. Adv. Energy Mater., 2018, 8(14): 1703506
https://doi.org/10.1002/aenm.201703506
241 Xie S., Osherov A., Bulović V.. All-vacuum-deposited inorganic cesium lead halide perovskite light-emitting diodes. APL Mater., 2020, 8(5): 051113
https://doi.org/10.1063/1.5144103
242 Zhang N., Sun W., P. Rodrigues S., Wang K., Gu Z., Wang S., Cai W., Xiao S., Song Q.. Highly reproducible organometallic halide perovskite microdevices based on top-down lithography. Adv. Mater., 2017, 29(15): 1606205
https://doi.org/10.1002/adma.201606205
243 Parveen S., T. Manamel L., Mukherjee A., Sagar S., C. Das B.. Analog memristor of lead-free Cs4CuSb2Cl12 layered double perovskite nanocrystals as solid-state electronic synapse for neuromorphic computing. Adv. Mater. Interfaces, 2022, 9(30): 2200562
https://doi.org/10.1002/admi.202200562
[1] Kun Chen, Qianpeng Zhang, Yin Liang, Jiepeng Song, Chun Li, Shi Chen, Fang Li, Qing Zhang. Quasi-two dimensional Ruddlesden−Popper halide perovskites for laser applications[J]. Front. Phys. , 2024, 19(2): 23502-.
[2] Wenbiao Niu, Guanglong Ding, Ziqi Jia, Xin-Qi Ma, JiYu Zhao, Kui Zhou, Su-Ting Han, Chi-Ching Kuo, Ye Zhou. Recent advances in memristors based on two-dimensional ferroelectric materials[J]. Front. Phys. , 2024, 19(1): 13402-.
[3] Hao Chen, Xin-Gui Tang, Zhihao Shen, Wen-Tao Guo, Qi-Jun Sun, Zhenhua Tang, Yan-Ping Jiang. Emerging memristors and applications in reservoir computing[J]. Front. Phys. , 2024, 19(1): 13401-.
[4] Xiaobing Yan, Zixuan Zhang, Zhiyuan Guan, Ziliang Fang, Yinxing Zhang, Jianhui Zhao, Jiameng Sun, Xu Han, Jiangzhen Niu, Lulu Wang, Xiaotong Jia, Yiduo Shao, Zhen Zhao, Zhenqiang Guo, Bing Bai. A high-speed true random number generator based on Ag/SiNx/n-Si memristor[J]. Front. Phys. , 2024, 19(1): 13202-.
[5] Jie Yang, Zixuan Jian, Zhongrong Wang, Jianhui Zhao, Zhenyu Zhou, Yong Sun, Mengmeng Hao, Linxia Wang, Pan Liu, Jingjuan Wang, Yifei Pei, Zhen Zhao, Wei Wang, Xiaobing Yan. HfAlO-based ferroelectric memristors for artificial synaptic plasticity[J]. Front. Phys. , 2023, 18(6): 63603-.
[6] Huimin Mu, Kun Zhou, Fuyu Tian, Yansong Zhou, Guoqi Zhao, Yuhao Fu, Lijun Zhang. Alloy-induced reduction and anisotropy change of lattice thermal conductivity in Ruddlesden– Popper phase halide perovskites[J]. Front. Phys. , 2023, 18(6): 63304-.
[7] Xiaobing Yan, Xu Han, Ziliang Fang, Zhen Zhao, Zixuan Zhang, Jiameng Sun, Yiduo Shao, Yinxing Zhang, Lulu Wang, Shiqing Sun, Zhenqiang Guo, Xiaotong Jia, Yupeng Zhang, Zhiyuan Guan, Tuo Shi. Reconfigurable memristor based on SrTiO3 thin-film for neuromorphic computing[J]. Front. Phys. , 2023, 18(6): 63301-.
[8] Wenhua Wang, Guangdong Zhou. Moisture influence in emerging neuromorphic device[J]. Front. Phys. , 2023, 18(5): 53601-.
[9] Yongjie Wang, Qiang Yu, Jie Li, Junyong Wang, Kai Zhang. Insight into the growth mechanism of black phosphorus[J]. Front. Phys. , 2023, 18(4): 43603-.
[10] Yuchen Cai, Jia Yang, Feng Wang, Shuhui Li, Yanrong Wang, Xueying Zhan, Fengmei Wang, Ruiqing Cheng, Zhenxing Wang, Jun He. Ultrasensitive solar-blind ultraviolet detection and optoelectronic neuromorphic computing using α-In2Se3 phototransistors[J]. Front. Phys. , 2023, 18(3): 33308-.
[11] Shanwu Ke, Li Jiang, Yifan Zhao, Yongyue Xiao, Bei Jiang, Gong Cheng, Facai Wu, Guangsen Cao, Zehui Peng, Min Zhu, Cong Ye. Brain-like synaptic memristor based on lithium-doped silicate for neuromorphic computing[J]. Front. Phys. , 2022, 17(5): 53508-.
[12] Zhican Zhou, Fengyou Yang, Shu Wang, Lei Wang, Xiaofeng Wang, Cong Wang, Yong Xie, Qian Liu. Emerging of two-dimensional materials in novel memristor[J]. Front. Phys. , 2022, 17(2): 23204-.
[13] Erjun Liang, Qiang Sun, Huanli Yuan, Jiaqi Wang, Gaojie Zeng, Qilong Gao. Negative thermal expansion: Mechanisms and materials[J]. Front. Phys. , 2021, 16(5): 53302-.
[14] Leilei Lan, Yimeng Gao, Xingce Fan, Mingze Li, Qi Hao, Teng Qiu. The origin of ultrasensitive SERS sensing beyond plasmonics[J]. Front. Phys. , 2021, 16(4): 43300-.
[15] Ning Zhan-Yu(宁展宇), Qiao Jing-Si(乔婧思), Ji Wei(季威), Guo Hong(郭鸿). Correlation of interfacial bonding mechanism and equilibrium conductance of molecular junctions[J]. Front. Phys. , 2014, 9(6): 780-788.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed