Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (2) : 23502    https://doi.org/10.1007/s11467-023-1347-6
TOPICAL REVIEW
Quasi-two dimensional Ruddlesden−Popper halide perovskites for laser applications
Kun Chen1,2, Qianpeng Zhang1,2, Yin Liang2, Jiepeng Song2, Chun Li2, Shi Chen3, Fang Li1(), Qing Zhang2()
1. School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
2. School of Materials Science and Engineering, Peking University, Beijing 100871, China
3. Institute of Applied Physics and Materials Engineering, Macau University, Macao 999078, China
 Download: PDF(6672 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Quasi-two-dimensional (2D) Ruddlesden‒Popper (RP) halide perovskites, as a kind of emerged two-dimensional layered materials, have recently achieved great attentions in lasing materials field owing to their large exciton binding energy, high emission yield, large optical gain, and wide-range tuning of optical bandgap. This review will introduce research progresses of RP halide perovskites for lasing applications in aspects of materials, photophysics, and devices with emphasis on emission and lasing properties tailored by the molecular composition and interface. The materials, structures and fabrications are introduced in the first part. Next, the optical transitions and amplified spontaneous emission properties are discussed from the aspects of electronic structure, exciton, gain dynamics, and interface tailoring. Then, the research progresses on lasing devices are summarized and several types of lasers including VCSEL, DFB lasers, microlasers, random lasers, plasmonic lasers, and polariton lasers are discussed. At last, the challenges and perspectives would be provided.

Keywords two-dimensional materials      metal halide perovskite      Ruddlesden−Popper halide perovskites      lasing      emission     
Corresponding Author(s): Fang Li,Qing Zhang   
About author: Peng Lei and Charity Ngina Mwangi contributed equally to this work.
Issue Date: 10 November 2023
 Cite this article:   
Kun Chen,Qianpeng Zhang,Yin Liang, et al. Quasi-two dimensional Ruddlesden−Popper halide perovskites for laser applications[J]. Front. Phys. , 2024, 19(2): 23502.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1347-6
https://academic.hep.com.cn/fop/EN/Y2024/V19/I2/23502
Fig.1  Materials and fabrications of RP perovskite. (a) Drop casting preparation method. (b) Spin coating and Blade coating preparation method. (c) Slow cooling preparation method. (d) (PEA)2PbI4 crystals taken at 60 ℃. (e) Superlattice nanocrystals. (a) Reproduced from Ref. [20]. (b) Reproduced from Refs. [21, 22]. (c) Reproduced from Ref. [25]. (d) Reproduced from Ref. [26]. (e) Reproduced from Ref. [31].
Fig.2  Emission property regulation of RP perovskite. (a) Schematic diagram of the effect of doping Rb+ on PbI6 octahedra. (b) The left figure shows the SEM image of undoped and Mn-2% doped sample and the right figure shows the PL and UV-vis absorption diagram of the sample doped with different concentrations of Mn. (c) The left image shows schematic diagrams of the layered structures of PEA, NMA and mixed PEA, NMA perovskites, while the right image displays a colored plot of the TA spectra of perovskite films with varying ratios of PEA and NMA cations. (d) The left figure shows the schematic diagram of crown ether and MPEG-MAA changing the crystal structure and passivating defects, the middle figure shows the PL quantum yield of different perovskite films, and the right figure shows the confocal PL intensity diagram of perovskite films with MPEG-MAA. (a) Reproduced from Ref. [50]. (b) Reproduced from Ref. [52]. (c) Reproduced from Ref. [53]. (d) Reproduced from Ref. [5].
YearMaterialsStructurePumpTemperatureWavelengthThresholdRef.
2018NMA2(FA)Pb2BryI7?y (y = 7, 4, 3, 2, 1 and 0)thin filmpulsedRT530?810 nm8.0 μJ·cm?2[71]
2021Cs0.87(FAMA)0.13PbBr3/NMA2PbBr4thin filmpulsedRT530 nm1.44 μJ·cm?2[74]
2021Cs0.87(FAMA)0.13PbBr3/(NMA)2PbBr4thin filmpulsedRT535 nm3.8 μJ·cm?2[84]
2022CsPbCl1.5Br1.5/(DPEA)2PbBr4thin filmpulsedRT468 nm6.5 μJ·cm?2[7]
2022(ThMA)2Cs2Pb3Br10thin filmpulsedRT530 nm13.92 μJ·cm?2[75]
2022(PEA)2Csn?1PbnBr3n+1thin filmpulsedRT525 nm11.3 μJ·cm?2[80]
2022PEA2Cs4Pb5Br16thin filmpulsedRT535 nm11.7 μJ·cm?2[81]
2022(TEA)2(MA)n?1SnnI3n+1 (n = 1, 2)single crystalpulsed20 K674?754 nm29.1 μJ·cm?2[72]
2022(PEA)2(MA)n?1PbnI3n+1 (n = 1, 2, 3)single crystalpulsed20 K541?627 nm5.8 μJ·cm?2[85]
Tab.1  The ASE wavelengths and thresholds for RP perovskites.
Fig.3  Amplified spontaneous emission properties of RP perovskites are presented in this study. (a) Energy transfer cascades occur as small n-value wide-bandgap quantum wells transfer energy to large n-value narrow bandgap QW emitters. The 2D-RPP thin films (NMA)2(FA)Pb2BryI7?y (where y = 7, 4, 3, 2, 1, and 0) can emit ASE in a broad range of wavelengths by adjusting the precursor solutions. (b) A diagram displaying the electronic transitions in multiphase perovskite thin films is presented. (c) The impact of an anti-solvent on (ThMA)2Cs2Pb3Br10 films was studied. The PL peak shifts from 518 to 513 nm after CB treatment. (a) Reproduced from Ref. [71]. (b) Reproduced from Ref. [73]. (c) Reproduced from Ref. [75].
Fig.4  Ways to control the gain of RP perovskites. (a) The output intensity’s correlation with stripe length is demonstrated for both the untreated perovskite film and the PVP-modified perovskite film. (b) The film subjected to CB treatment exhibits a net gain coefficient of 622 cm?1. (c) The above is a mixed cation doping strategy, where the addition of long-chain NMA cations hinders the growth of perovskite grains by inhibiting their surface self-assembly. Meanwhile, the film morphology of CsFAMA and CsFAMA/NMA0.8 perovskites is shown, as well as their SEM images. In addition, the integrated 1PP-ASE intensity of the CsFAMA/NMA0.8 film is described. (a) Reproduced from Ref. [80]. (b) Reproduced from Ref. [81]. (c) Reproduced from Ref. [84].
Fig.5  RP perovskite laser. (a) A schematic diagram of a vertical-cavity surface-emitting laser is shown, with a corresponding PL spectrum. (b) This depicts the DFB resonator structure with an air-trench width of 120 nm, a grating period of 250 nm and a grating height of 60 nm. Additionally, a top-down SEM image and a graph showing the relationship between laser intensity and pump intensity are presented. (c) A PL image is presented to display the as-exfoliated n = 1 RP perovskite microflakes, followed by the biexciton Auger recombination process. The plot displays the variation of lasing thresholds for n = 3, 4, and 5 RP perovskites as a function of temperature, represented by data points. As the value of n decreases, the lasing threshold exhibits an upward trend. (d) A lasing image of the PEABr-FAPbBr3 perovskite film. (a) Reproduced from Ref. [7]. (b) Reproduced from Ref. [87]. (c) Reproduced from Ref. [90]. (d) Reproduced from Ref. [93].
Fig.6  (a) Schematic diagram of embedding RP perovskite single crystals in an optical cavity formed by two DBRs. (b) Angle-resolved reflectivity spectra (left panel) and angle-resolved PL (right panel) spectra of 2D perovskite microcavity. (c) Angle-resolved reflectivity spectra of a PEAI crystal slab. (d) Schematic diagram of 2D polycrystalline perovskite microcavity with liquid crystal and experimental Bz distribution of low energy modes as a function of voltage. (e) The relationship between the energy of non-polarized PL and the momentum in the ky plane in the B = 0 T magnetic field (left) and the B = 9 T external magnetic field (right) when T = 4 K; The red and blue lines represent the PL spectra measured at zero magnetic field and B = 9 T for kx = 0 μm?1, ky = 3.7 μm?1, respectively. (f) Experimental angle-resolved transmission of lattices with film thicknesses of 10 nm and 20 nm under s-polarized light. (g) Experimental results of the angle-resolved reflectivity spectra (left panels) and the angle-resolved PL response (right panels). (h) Degree of circular polarization of triangular patterns in the Fourier plane. (a, c) Reproduced from Ref. [96]. (b) Reproduced from Ref. [97]. (d) Reproduced from Ref. [100]. (e) Reproduced from Ref. [99]. (f) Reproduced from Ref. [101]. (g) Reproduced from Ref. [102]. (h) Reproduced from Ref. [103].
Fig.7  (a, b) Energy and momentum emission intensity diagrams of perovskite single crystals excited by two different incident pump fluxes. At 120 μJ/cm2, that is, between two thresholds, exhibits bi-exciton laser emission. At 1200 μJ/cm2, that is, above the second threshold, the emission collapses to the bottom of polariton dispersion and the bi-exciton emission stops, forming a polariton condensate. (c) The integral intensity of emission varies with the incident pump flux. Inset: enlarged view of weak excitation region.The black dashed line represents the first threshold, and the green dashed line represents the second threshold. (d) Real spatial emission map for two different incident pump fluxes. At 5 μJ/cm2, i.e., below the first threshold, there are no interference fringes present. At 600 μJ/cm2, i.e., above the second threshold, a macroscopic coherent state with interference fringes above 50 μm × 50 μm appears. (a?d) Reproduced from Ref. [105].
1 Zhang L. , Sun C. , He T. , Jiang Y. , Wei J. , Huang Y. , Yuan M. . High-performance quasi-2D perovskite light-emitting diodes: From materials to devices. Light Sci. Appl., 2021, 10(1): 61
https://doi.org/10.1038/s41377-021-00501-0
2 Wang Z. , Wang F. , Sun W. , Ni R. , Hu S. , Liu J. , Zhang B. , Alsaed A. , Hayat T. , Tan Z. . Manipulating the trade-off between quantum yield and electrical conductivity for high-brightness quasi-2D perovskite light-emitting diodes. Adv. Funct. Mater., 2018, 28(47): 1804187
https://doi.org/10.1002/adfm.201804187
3 Sun Q. , Fang Z. , Zheng Y. , Yang Z. , Hu F. , Yang Y. , Yang W. , Hou X. , H. Shang M. . Regulating the phase stability and bandgap of quasi-2D Dion–Jacobson CsSnI3 perovskite via intercalating organic cations. J. Mater. Chem. A, 2022, 10(8): 3996
https://doi.org/10.1039/D1TA10246J
4 Jana A. , Ba Q. , S. Kim K. . Compositional and dimensional control of 2D and quasi‐2D lead halide perovskites in water. Adv. Funct. Mater., 2019, 29(28): 1900966
https://doi.org/10.1002/adfm.201900966
5 Liu Z. , Qiu W. , Peng X. , Sun G. , Liu X. , Liu D. , Li Z. , He F. , Shen C. , Gu Q. , Ma F. , L. Yip H. , Hou L. , Qi Z. , J. Su S. . Perovskite light‐emitting diodes with EQE exceeding 28% through a synergetic dual‐additive strategy for defect passivation and nanostructure regulation. Adv. Mater., 2021, 33(43): 2103268
https://doi.org/10.1002/adma.202103268
6 Ji Y. , She M. , Bai X. , Liu E. , Xue W. , Zhang Z. , Wan K. , Liu P. , Zhang S. , Li J. . In‐depth understanding of the effect of halogen‐induced stable 2D bismuth‐based perovskites for photocatalytic hydrogen evolution activity. Adv. Funct. Mater., 2022, 32(31): 2201721
https://doi.org/10.1002/adfm.202201721
7 Wang C. , Dai G. , Wang J. , Cui M. , Yang Y. , Yang S. , Qin C. , Chang S. , Wu K. , Liu Y. , Zhong H. . Low-threshold blue quasi-2D perovskite laser through domain distribution control. Nano Lett., 2022, 22(3): 1338
https://doi.org/10.1021/acs.nanolett.1c04666
8 Li Z.Hong E.Zhang X.Deng M.Fang X., Perovskite-type 2D materials for high-performance photodetectors, J. Phys. Chem. Lett. 13(5), 1215 (2022)
9 C. Hu J.L. Wen X.H. Li D., Optical properties of two-dimensional perovskites, Front. Phys. 18(3), 33602 (2023)
10 Lai H. , Lu D. , Xu Z. , Zheng N. , Xie Z. , Liu Y. . Organic‐salt‐assisted crystal growth and orientation of quasi‐2D Ruddlesden–Popper perovskites for solar cells with efficiency over 19%. Adv. Mater., 2020, 32(33): 2001470
https://doi.org/10.1002/adma.202001470
11 Ramesh S. , Giovanni D. , Righetto M. , Ye S. , Fresch E. , Wang Y. , Collini E. , Mathews N. , C. Sum T. . Tailoring the energy manifold of quasi‐two‐dimensional perovskites for efficient carrier extraction. Adv. Energy Mater., 2022, 12(10): 2103556
https://doi.org/10.1002/aenm.202103556
12 Zheng H. , Liu G. , Zhu L. , Ye J. , Zhang X. , Alsaedi A. , Hayat T. , Pan X. , Dai S. . The effect of hydrophobicity of ammonium salts on stability of quasi-2D perovskite materials in moist condition. Adv. Energy Mater., 2018, 8(21): 1800051
https://doi.org/10.1002/aenm.201800051
13 Wang K. , Wu C. , Yang D. , Jiang Y. , Priya S. . Quasi-two-dimensional halide perovskite single crystal photodetector. ACS Nano, 2018, 12(5): 4919
https://doi.org/10.1021/acsnano.8b01999
14 Chen Z. , Guo Y. , Wertz E. , Shi J. . Merits and challenges of Ruddlesden–Popper soft halide perovskites in electro‐optics and optoelectronics. Adv. Mater., 2019, 31(1): 1803514
https://doi.org/10.1002/adma.201803514
15 Bi W. , Cui Q. , Jia P. , Huang X. , Zhong Y. , Wu D. , Tang Y. , Shen S. , Hu Y. , Lou Z. , Teng F. , Liu X. , Hou Y. . Efficient quasi-two-dimensional perovskite light-emitting diodes with improved multiple quantum well structure. ACS Appl. Mater. Interfaces, 2020, 12(1): 1721
https://doi.org/10.1021/acsami.9b10186
16 Sheng X.Li Y.Xia M.Shi E., Quasi-2D halide perovskite crystals and their optoelectronic applications, J. Mater. Chem. A 10(37), 19169 (2022)
17 Q. Luo S.F. Wang J.Yang B.B. Yuan Y., Recent advances in controlling the crystallization of two-dimensional perovskites for optoelectronic device, Front. Phys. 14(5), 53401 (2019)
18 Lian X. , Wu H. , Zuo L. , Zhou G. , Wen X. , Zhang Y. , Wu G. , Xie Z. , Zhu H. , Chen H. . Stable quasi‐2D perovskite solar cells with efficiency over 18% enabled by heat–light co‐treatment. Adv. Funct. Mater., 2020, 30(48): 2004188
https://doi.org/10.1002/adfm.202004188
19 Zuo C. , D. Scully A. , Vak D. , Tan W. , Jiao X. , R. McNeill C. , Angmo D. , Ding L. , Gao M. . Self-assembled 2D perovskite layers for efficient printable solar cells. Adv. Energy Mater., 2019, 9(4): 1803258
https://doi.org/10.1002/aenm.201803258
20 Zuo C. , D. Scully A. , Gao M. . Drop-casting method to screen Ruddlesden–Popper perovskite formulations for use in solar cells. ACS Appl. Mater. Interfaces, 2021, 13(47): 56217
https://doi.org/10.1021/acsami.1c17475
21 S. C. Schulze P. , Wienands K. , J. Bett A. , Rafizadeh S. , E. Mundt L. , Cojocaru L. , Hermle M. , W. Glunz S. , Hillebrecht H. , C. Goldschmidt J. . Perovskite hybrid evaporation / spin coating method: from band gap tuning to thin film deposition on textures. Thin Solid Films, 2020, 704: 137970
https://doi.org/10.1016/j.tsf.2020.137970
22 X. Zhong J. , Q. Wu W. , Ding L. , B. Kuang D. . Blade‐coating perovskite films with diverse compositions for efficient photovoltaics. Energy Environ. Mater., 2021, 4(3): 277
https://doi.org/10.1002/eem2.12118
23 Turedi B. , Yeddu V. , Zheng X. , Y. Kim D. , M. Bakr O. , I. Saidaminov M. . Perovskite single-crystal solar cells: going forward. ACS Energy Lett., 2021, 6(2): 631
https://doi.org/10.1021/acsenergylett.0c02573
24 Li M. , Bhaumik S. , W. Goh T. , S. Kumar M. , Yantara N. , Grätzel M. , Mhaisalkar S. , Mathews N. , C. Sum T. . Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals. Nat. Commun., 2017, 8(1): 14350
https://doi.org/10.1038/ncomms14350
25 Wang K. , Y. Park J. , Dou Akriti . Two‐dimensional halide perovskite quantum‐well emitters: A critical review. EcoMat, 2021, 3(3): e12104
https://doi.org/10.1002/eom2.12104
26 Liu Y. , Ye H. , Zhang Y. , Zhao K. , Yang Z. , Yuan Y. , Wu H. , Zhao G. , Yang Z. , Tang J. , Xu Z. , Liu S. . Surface-tension-controlled crystallization for high-quality 2D perovskite single crystals for ultrahigh photodetection. Matter, 2019, 1(2): 465
https://doi.org/10.1016/j.matt.2019.04.002
27 Naresh V. , Lee N. . Zn(II)-doped cesium lead halide perovskite nanocrystals with high quantum yield and wide color tunability for color-conversion light-emitting displays. ACS Appl. Nano Mater., 2020, 3(8): 7621
https://doi.org/10.1021/acsanm.0c01254
28 Park B. , M. Kang S. , W. Lee G. , H. Kwak C. , Rethinasabapathy M. , S. Huh Y. . Fabrication of CsPbBr3 perovskite quantum dots/cellulose-based colorimetric sensor: Dual-responsive on-site detection of chloride and iodide ions. Ind. Eng. Chem. Res., 2020, 59(2): 793
https://doi.org/10.1021/acs.iecr.9b05946
29 Cao X.Zhi L.Jia Y.Li Y.Zhao K.Cui X.Ci L.Zhuang D.Wei J., A review of the role of solvents in formation of high-quality solution-processed perovskite films, ACS Appl. Mater. Interfaces 11(8), 7639 (2019)
30 R. Kagan C. , C. Bassett L. , B. Murray C. , M. Thompson S. . Colloidal quantum dots as platforms for quantum information science. Chem. Rev., 2021, 121(5): 3186
https://doi.org/10.1021/acs.chemrev.0c00831
31 Liu Y. , Siron M. , Lu D. , Yang J. , dos Reis R. , Cui F. , Gao M. , Lai M. , Lin J. , Kong Q. , Lei T. , Kang J. , Jin J. , Ciston J. , Yang P. . Self-assembly of two-dimensional perovskite nanosheet building blocks into ordered Ruddlesden–Popper perovskite phase. J. Am. Chem. Soc., 2019, 141(33): 13028
https://doi.org/10.1021/jacs.9b06889
32 Zhao L. , Tang P. , Luo D. , I. Dar M. , T. Eickemeyer F. , Arora N. , Hu Q. , Luo J. , Liu Y. , M. Zakeeruddin S. , Hagfeldt A. , Arbiol J. , Huang W. , Gong Q. , P. Russell T. , H. Friend R. , Grätzel M. , Zhu R. . Enabling full-scale grain boundary mitigation in polycrystalline perovskite solids. Sci. Adv., 2022, 8(35): eabo3733
https://doi.org/10.1126/sciadv.abo3733
33 Wang J. , Li J. , Tan Q. , Li L. , Zhang J. , Zang J. , Tan P. , Zhang J. , Li D. . Controllable synthesis of two-dimensional Ruddlesden–Popper-type perovskite heterostructures. J. Phys. Chem. Lett., 2017, 8(24): 6211
https://doi.org/10.1021/acs.jpclett.7b02843
34 Dey A. , F. Richter A. , Debnath T. , Huang H. , Polavarapu L. , Feldmann J. . Transfer of direct to indirect bound excitons by electron intervalley scattering in Cs2AgBiBr6 double perovskite nanocrystals. ACS Nano, 2020, 14(5): 5855
https://doi.org/10.1021/acsnano.0c00997
35 K. Rajendran S. , Wei M. , Ohadi H. , Ruseckas A. , A. Turnbull G. , D. W. Samuel I. . Low threshold polariton lasing from a solution‐processed organic semiconductor in a planar microcavity. Adv. Opt. Mater., 2019, 7(12): 1801791
https://doi.org/10.1002/adom.201801791
36 Guo S. , Li Y. , Mao Y. , Tao W. , Bu K. , Fu T. , Zhao C. , Luo H. , Hu Q. , Zhu H. , Shi E. , Yang W. , Dou L. , Lü X. . Reconfiguring band-edge states and charge distribution of organic semiconductor-incorporated 2D perovskites via pressure gating. Sci. Adv., 2022, 8(44): eadd1984
https://doi.org/10.1126/sciadv.add1984
37 Zhou N. , Zhou H. . Spacer organic cation engineering for quasi‐2D metal halide perovskites and the optoelectronic application. Small Struct., 2022, 3(7): 2100232
https://doi.org/10.1002/sstr.202100232
38 Wang Z. , Wei Q. , Liu X. , Liu L. , Tang X. , Guo J. , Ren S. , Xing G. , Zhao D. , Zheng Y. . Spacer cation tuning enables vertically oriented and graded quasi‐2D perovskites for efficient solar cells. Adv. Funct. Mater., 2021, 31(5): 2008404
https://doi.org/10.1002/adfm.202008404
39 Jiang Y. , Cui M. , Li S. , Sun C. , Huang Y. , Wei J. , Zhang L. , Lv M. , Qin C. , Liu Y. , Yuan M. . Reducing the impact of Auger recombination in quasi-2D perovskite light-emitting diodes. Nat. Commun., 2021, 12(1): 336
https://doi.org/10.1038/s41467-020-20555-9
40 Wang R. , Dong X. , Ling Q. , Fu Q. , Hu Z. , Xu Z. , Zhang H. , Li Q. , Liu Y. . Spacer engineering for 2D Ruddlesden–Popper perovskites with an ultralong carrier lifetime of over 18 μs enable efficient solar cells. ACS Energy Lett., 2022, 7(10): 3656
https://doi.org/10.1021/acsenergylett.2c01800
41 Umebayashi T. , Asai K. , Kondo T. , Nakao A. . Electronic structures of lead iodide based low-dimensional crystals. Phys. Rev. B, 2003, 67(15): 155405
https://doi.org/10.1103/PhysRevB.67.155405
42 Fu Y. , Zhu H. , Chen J. , P. Hautzinger M. , Y. Zhu X. , Jin S. . Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater., 2019, 4(3): 169
https://doi.org/10.1038/s41578-019-0080-9
43 Li J. , Ma J. , Cheng X. , Liu Z. , Chen Y. , Li D. . Anisotropy of excitons in two-dimensional perovskite crystals. ACS Nano, 2020, 14(2): 2156
https://doi.org/10.1021/acsnano.9b08975
44 Zhang Y. , Sun M. , Zhou N. , Huang B. , Zhou H. . Electronic tunability and mobility anisotropy of quasi-2D perovskite single crystals with varied spacer cations. J. Phys. Chem. Lett., 2020, 11(18): 7610
https://doi.org/10.1021/acs.jpclett.0c02274
45 Wang M. , Zou H. , Zhang J. , Wu T. , Xu H. , Haacke S. , Hu B. . Extremely long spin lifetime of light-emitting states in quasi-2D perovskites through orbit–orbit interaction. J. Phys. Chem. Lett., 2020, 11(9): 3647
https://doi.org/10.1021/acs.jpclett.0c00842
46 Li H. , Zhang X. , Wang H. , Yu J. , Li K. , Wei Z. , Li D. , Chen R. . Optical characteristics of self-trapped excitons in 2D (iso-BA)2PbI4 perovskite crystals. Photon. Res., 2022, 10(2): 594
https://doi.org/10.1364/PRJ.444457
47 Li J. , Wang H. , Li D. . Self-trapped excitons in two-dimensional perovskites. Front. Optoelectron., 2020, 13(3): 225
https://doi.org/10.1007/s12200-020-1051-x
48 C. Blancon J. , Tsai H. , Nie W. , C. Stoumpos C. , Pedesseau L. , Katan C. , Kepenekian M. , M. M. Soe C. , Appavoo K. , Y. Sfeir M. , Tretiak S. , M. Ajayan P. , G. Kanatzidis M. , Even J. , J. Crochet J. , D. Mohite A. . Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science, 2017, 355(6331): 1288
https://doi.org/10.1126/science.aal4211
49 Liu Z. , Hu M. , Du J. , Shi T. , Wang Z. , Zhang Z. , Hu Z. , Zhan Z. , Chen K. , Liu W. , Tang J. , Zhang H. , Leng Y. , Li R. . Subwavelength-polarized quasi-two-dimensional perovskite single-mode nanolaser. ACS Nano, 2021, 15(4): 6900
https://doi.org/10.1021/acsnano.0c10647
50 Ye D. , Li Z. , Chen W. , O. Ighodalo K. , Xiao P. , Chen T. , Xiao Z. . Stable yellow light-emitting diodes based on quasi-two-dimensional perovskites. ACS Appl. Mater. Interfaces, 2022, 14(30): 34918
https://doi.org/10.1021/acsami.2c07314
51 Yang Y. , Xu S. , Ni Z. , H. Van Brackle C. , Zhao L. , Xiao X. , Dai X. , Huang J. . Highly efficient pure‐blue light‐emitting diodes based on rubidium and chlorine alloyed metal halide perovskite. Adv. Mater., 2021, 33(33): 2100783
https://doi.org/10.1002/adma.202100783
52 H. A. Li C. , Geng P. , B. Shivarudraiah S. , Ng M. , F. Zhang X. , Xu B. , Guo L. , E. Halpert J. . The multiple roles of metal ion dopants in spectrally stable, efficient quasi‐2D perovskite sky‐blue light‐emitting devices. Adv. Opt. Mater., 2021, 9(21): 2100860
https://doi.org/10.1002/adom.202100860
53 Yang L. , Zhang Y. , Ma J. , Chen P. , Yu Y. , Shao M. . Pure red light-emitting diodes based on quantum confined quasi-two-dimensional perovskites with cospacer cations. ACS Energy Lett., 2021, 6(7): 2386
https://doi.org/10.1021/acsenergylett.1c00752
54 Liu P. , Cai W. , Zhao C. , Zhang S. , Nie P. , Xu W. , Meng H. , Fu H. , Wei G. . Quasi‐2D CsPbBrxI3−x composite thin films for efficient and stable red perovskite light‐emitting diodes. Adv. Opt. Mater., 2021, 9(24): 2101419
https://doi.org/10.1002/adom.202101419
55 Worku M. , Ben‐Akacha A. , Sridhar S. , R. Frick J. , Yin S. , He Q. , J. Robb A. , Chaaban M. , Liu H. , S. R. V. Winfred J. , Hanson K. , So F. , Dougherty D. , Ma B. . Band edge control of quasi‐2D metal halide perovskites for blue light‐emitting diodes with enhanced performance. Adv. Funct. Mater., 2021, 31(45): 2103299
https://doi.org/10.1002/adfm.202103299
56 Liu S. , Guo Z. , Wu X. , Liu X. , Huang Z. , Li L. , Zhang J. , Zhou H. , D. Sun L. , H. Yan C. . Zwitterions narrow distribution of perovskite quantum wells for blue light‐emitting diodes with efficiency exceeding 15%. Adv. Mater., 2023, 35(3): 2208078
https://doi.org/10.1002/adma.202208078
57 Zhang X. , Wang X. , Liu H. , Chen R. . Defect engineering of metal halide perovskite optoelectronic devices. Prog. Quantum Electron., 2022, 86: 100438
https://doi.org/10.1016/j.pquantelec.2022.100438
58 Li R. , Li B. , Fang X. , Wang D. , Shi Y. , Liu X. , Chen R. , Wei Z. . Self-structural healing of encapsulated perovskite microcrystals for improved optical and thermal stability. Adv. Mater., 2021, 33(21): 2100466
https://doi.org/10.1002/adma.202100466
59 Ren Z. , Li L. , Yu J. , Ma R. , Xiao X. , Chen R. , Wang K. , W. Sun X. , J. Yin W. , C. H. Choy W. . Simultaneous low-order phase suppression and defect passivation for efficient and stable blue light-emitting diodes. ACS Energy Lett., 2020, 5(8): 2569
https://doi.org/10.1021/acsenergylett.0c01015
60 Cheng T. , Qin C. , Watanabe S. , Matsushima T. , Adachi C. . Stoichiometry control for the tuning of grain passivation and domain distribution in green quasi‐2D metal halide perovskite films and light‐emitting diodes. Adv. Funct. Mater., 2020, 30(24): 2001816
https://doi.org/10.1002/adfm.202001816
61 Gao Y. , Liu Y. , Zhang F. , Bao X. , Xu Z. , Bai X. , Lu M. , Wu Y. , Wu Z. , Zhang Y. , Wang Q. , Gao X. , Wang Y. , Shi Z. , Hu J. , W. Yu W. , Zhang Y. . High‐performance perovskite light‐emitting diodes enabled by passivating defect and constructing dual energy‐transfer pathway through functional perovskite nanocrystals. Adv. Mater., 2022, 34(43): 2207445
https://doi.org/10.1002/adma.202207445
62 Zhang D. , Fu Y. , Zhan H. , Zhao C. , Gao X. , Qin C. , Wang L. . Suppressing thermal quenching via defect passivation for efficient quasi-2D perovskite light-emitting diodes. Light Sci. Appl., 2022, 11(1): 69
https://doi.org/10.1038/s41377-022-00761-4
63 Zhang D. , Fu Y. , Wu W. , Li B. , Zhu H. , Zhan H. , Cheng Y. , Qin C. , Wang L. . Comprehensive passivation for high‐performance quasi‐2D perovskite LEDs. Small, 2023, 19(11): 2206927
https://doi.org/10.1002/smll.202206927
64 Bao X. , Gao Y. , Liu Y. , Xu Z. , Zhang F. , Lu M. , Wu Z. , Wu Y. , Wang Q. , Zhang Y. , Wang Y. , Shi Z. , Hu J. , Bai X. . Molecular bridging strategy enables high performance and stable quasi-2D perovskite light-emitting devices. ACS Energy Lett., 2023, 8(2): 1018
https://doi.org/10.1021/acsenergylett.2c02877
65 Liu T. , Zhang Z. , Wei Q. , Wang B. , Wang K. , Guo J. , Liang C. , Zhao D. , Chen S. , Tang Y. , Zhou Y. , Xing G. . Tailoring quasi-2D perovskite thin films via nanocrystals mediation for enhanced electroluminescence. Chem. Eng. J., 2021, 411: 128511
https://doi.org/10.1016/j.cej.2021.128511
66 Cinquino M. , Fieramosca A. , Mastria R. , Polimeno L. , Moliterni A. , Olieric V. , Matsugaki N. , Panico R. , De Giorgi M. , Gigli G. , Giannini C. , Rizzo A. , Sanvitto D. , De Marco L. . Managing growth and dimensionality of quasi 2D perovskite single‐crystalline flakes for tunable excitons orientation. Adv. Mater., 2021, 33(48): 2102326
https://doi.org/10.1002/adma.202102326
67 Lin C. , Niu K. , Qi Y. , Liu Y. , Zhu X. , He S. , Zhou Z. , Jin Y. , He H. , Ye Z. . Dimension tailoring via antisolvent enables efficient perovskite light-emitting diodes. Mater. Today Nano, 2022, 17: 100170
https://doi.org/10.1016/j.mtnano.2021.100170
68 Nah Y. , Solanki D. , Dong Y. , A. Röhr J. , D. Taylor A. , Hu S. , H. Sargent E. , H. Kim D. . Narrowing the phase distribution of quasi‐2D perovskites for stable deep‐blue electroluminescence. Adv. Sci. (Weinh.), 2022, 9(24): 2201807
69 Zhang J. , Zhu X. , Wang M. , Hu B. . Establishing charge-transfer excitons in 2D perovskite heterostructures. Nat. Commun., 2020, 11(1): 2618
https://doi.org/10.1038/s41467-020-16415-1
70 Shi E. , Yuan B. , B. Shiring S. , Gao Y. , Akriti Y. , Guo Y. , Su C. , Lai M. , Yang P. , Kong J. , M. Savoie B. , Yu Y. , Dou L. . Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature, 2020, 580(7805): 614
https://doi.org/10.1038/s41586-020-2219-7
71 Li M. , Gao Q. , Liu P. , Liao Q. , Zhang H. , Yao J. , Hu W. , Wu Y. , Fu H. . Amplified spontaneous emission based on 2D Ruddlesden−Popper perovskites. Adv. Funct. Mater., 2018, 28(17): 1707006
https://doi.org/10.1002/adfm.201707006
72 Ding G. , He X. , Zhang H. , Fu H. . Ethanol-assisted synthesis of two-dimensional TiN(ii) halide perovskite single crystals for amplified spontaneous emission. J. Mater. Chem. C, 2022, 10(30): 10902
https://doi.org/10.1039/D2TC01873J
73 Shang Q. , Wang Y. , Zhong Y. , Mi Y. , Qin L. , Zhao Y. , Qiu X. , Liu X. , Zhang Q. . Unveiling structurally engineered carrier dynamics in hybrid quasi-two-dimensional perovskite thin films toward controllable emission. J. Phys. Chem. Lett., 2017, 8(18): 4431
https://doi.org/10.1021/acs.jpclett.7b01857
74 Liang Y. , Shang Q. , Li M. , Zhang S. , Liu X. , Zhang Q. . Solvent recrystallization‐enabled green amplified spontaneous emissions with an ultra‐low threshold from pinhole‐free perovskite films. Adv. Funct. Mater., 2021, 31(48): 2106108
https://doi.org/10.1002/adfm.202106108
75 Qin C. , Zhang S. , Zhou Z. , Han T. , Song J. , Ma S. , Jia G. , Jiao Z. , Zhu Z. , Chen X. , Jiang Y. . Low amplified spontaneous emission threshold from 2-thiophenemethylammonium quasi-2D perovskites via phase engineering. Opt. Express, 2022, 30(20): 36541
https://doi.org/10.1364/OE.471849
76 Shi Y. , Li R. , Yin G. , Zhang X. , Yu X. , Meng B. , Wei Z. , Chen R. . Laser-induced secondary crystallization of CsPbBr3 perovskite film for robust and low threshold amplified spontaneous emission. Adv. Funct. Mater., 2022, 32(49): 2207206
https://doi.org/10.1002/adfm.202207206
77 Li G. , Lin K. , Zhao K. , Huang Y. , Ji T. , Shi L. , Hao Y. , Xiong Q. , Zheng K. , Pullerits T. , Cui Y. . Localized bound multiexcitons in engineered quasi-2D perovskites grains at room temperature for efficient lasers. Adv. Mater., 2023, 35(20): 2211591
https://doi.org/10.1002/adma.202211591
78 Yang Y. , Peng X. , Qin C. , Lian Y. , Gao J. , Yang X. . Accelerating energy funnel and charge transport of quasi-2D perovskites for efficient sky blue and white-light-emitting devices. ACS Photonics, 2022, 9(1): 163
https://doi.org/10.1021/acsphotonics.1c01322
79 Allegro I. , Li Y. , S. Richards B. , W. Paetzold U. , Lemmer U. , A. Howard I. . Bimolecular and Auger recombination in phase-stable perovskite thin films from cryogenic to room temperature and their effect on the amplified spontaneous emission threshold. J. Phys. Chem. Lett., 2021, 12(9): 2293
https://doi.org/10.1021/acs.jpclett.1c00099
80 Huang S. , Liu N. , Liu Z. , Zhan Z. , Hu Z. , Du Z. , Zhang Z. , Luo J. , Du J. , Tang J. , Leng Y. . Enhanced amplified spontaneous emission in quasi-2D perovskite by facilitating energy transfer. ACS Appl. Mater. Interfaces, 2022, 14(29): 33842
https://doi.org/10.1021/acsami.2c07633
81 Li J. , Zhang L. , Chu Z. , Dong C. , Jiang J. , Yin Z. , You J. , Wu J. , Lan W. , Zhang X. . Amplified spontaneous emission with a low threshold from quasi‐2D perovskite films via phase engineering and surface passivation. Adv. Opt. Mater., 2022, 10(6): 2102563
https://doi.org/10.1002/adom.202102563
82 Cui M. , Qin C. , Jiang Y. , Yuan M. , Xu L. , Song D. , Jiang Y. , Liu Y. . Direct observation of competition between amplified spontaneous emission and Auger recombination in quasi-two-dimensional perovskites. J. Phys. Chem. Lett., 2020, 11(14): 5734
https://doi.org/10.1021/acs.jpclett.0c01852
83 Li Y. , Allegro I. , Kaiser M. , J. Malla A. , S. Richards B. , Lemmer U. , W. Paetzold U. , A. Howard I. . Exciton versus free carrier emission: implications for photoluminescence efficiency and amplified spontaneous emission thresholds in quasi-2D and 3D perovskites. Mater. Today, 2021, 49: 35
https://doi.org/10.1016/j.mattod.2021.05.002
84 Li M. , Shang Q. , Li C. , Li S. , Liang Y. , Yu W. , Wu C. , Zhao L. , Zhong Y. , Du W. , Wu X. , Jia Z. , Gao Y. , Chen H. , Liu X. , Guo S. , Liao Q. , Xing G. , Xiao L. , Zhang Q. . High optical gain of solution‐processed mixed‐cation CsPbBr3 thin films towards enhanced amplified spontaneous emission. Adv. Funct. Mater., 2021, 31(25): 2102210
https://doi.org/10.1002/adfm.202102210
85 He X. , Gong H. , Huang H. , Li Y. , Ren J. , Li Y. , Liao Q. , Gao T. , Fu H. . Multicolor biexciton lasers based on 2D perovskite single crystalline flakes. Adv. Opt. Mater., 2022, 10(15): 2200238
https://doi.org/10.1002/adom.202200238
86 Chu Z. , Guo T. , Zhao S. , Chen H. , Li Y. , Xu W. , Ran G. . Quasi 2D perovskite single-mode vertical-cavity lasers through large-area film transfer. Appl. Phys. Lett., 2022, 120(12): 121104
https://doi.org/10.1063/5.0085882
87 Qin C. , S. D. Sandanayaka A. , Zhao C. , Matsushima T. , Zhang D. , Fujihara T. , Adachi C. . Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature, 2020, 585(7823): 53
https://doi.org/10.1038/s41586-020-2621-1
88 Lei L. , Seyitliyev D. , Stuard S. , Mendes J. , Dong Q. , Fu X. , A. Chen Y. , He S. , Yi X. , Zhu L. , H. Chang C. , Ade H. , Gundogdu K. , So F. . Efficient energy funneling in quasi‐2D perovskites: From light emission to lasing. Adv. Mater., 2020, 32(16): 1906571
https://doi.org/10.1002/adma.201906571
89 Liu G. , Jia S. , Wang J. , Li Y. , Yang H. , Wang S. , Gong Q. . Toward microlasers with artificial structure based on single-crystal ultrathin perovskite films. Nano Lett., 2021, 21(20): 8650
https://doi.org/10.1021/acs.nanolett.1c02618
90 Liang Y. , Shang Q. , Wei Q. , Zhao L. , Liu Z. , Shi J. , Zhong Y. , Chen J. , Gao Y. , Li M. , Liu X. , Xing G. , Zhang Q. . Lasing from mechanically exfoliated 2D homologous Ruddlesden–Popper perovskite engineered by inorganic layer thickness. Adv. Mater., 2019, 31(39): 1903030
https://doi.org/10.1002/adma.201903030
91 Gao W. , Wei Q. , Wang T. , Xu J. , Zhuang L. , Li M. , Yao K. , F. Yu S. . Two-photon lasing from two-dimensional homologous Ruddlesden–Popper perovskite with giant nonlinear absorption and natural microcavities. ACS Nano, 2022, 16(8): 13082
https://doi.org/10.1021/acsnano.2c05726
92 Dong H. , Zhang C. , Liu X. , Yao J. , S. Zhao Y. . Materials chemistry and engineering in metal halide perovskite lasers. Chem. Soc. Rev., 2020, 49(3): 951
https://doi.org/10.1039/C9CS00598F
93 Fruhling C. , Wang K. , Chowdhury S. , Xu X. , Simon J. , Kildishev A. , Dou L. , Meng X. , Boltasseva A. , M. Shalaev V. . Coherent random lasing in subwavelength quasi‐2D perovskites. Laser Photonics Rev., 2023, 17(4): 2200314
https://doi.org/10.1002/lpor.202200314
94 K. Roy P. , K. Ulaganathan R. , M. Raghavan C. , M. Mhatre S. , I. Lin H. , L. Chen W. , M. Chang Y. , Rozhin A. , T. Hsu Y. , F. Chen Y. , Sankar R. , C. Chou F. , T. Liang C. . Unprecedented random lasing in 2D organolead halide single-crystalline perovskite microrods. Nanoscale, 2020, 12(35): 18269
https://doi.org/10.1039/D0NR01171A
95 Y. Liu T. , Wang H. , S. Song M. , Y. Zhao L. , F. Hu Z. , Y. Wang H. . Dynamics of spin‐dependent polariton–polariton interactions in two‐dimensional layered halide organic perovskite microcavities. Laser Photonics Rev., 2022, 16(10): 2200176
https://doi.org/10.1002/lpor.202200176
96 Fieramosca A. , Polimeno L. , Ardizzone V. , De Marco L. , Pugliese M. , Maiorano V. , De Giorgi M. , Dominici L. , Gigli G. , Gerace D. , Ballarini D. , Sanvitto D. . Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature. Sci. Adv., 2019, 5(5): eaav9967
https://doi.org/10.1126/sciadv.aav9967
97 Wang J. , Su R. , Xing J. , Bao D. , Diederichs C. , Liu S. , C. H. Liew T. , Chen Z. , Xiong Q. . Room temperature coherently coupled exciton–polaritons in two-dimensional organic–inorganic perovskite. ACS Nano, 2018, 12(8): 8382
https://doi.org/10.1021/acsnano.8b03737
98 B. Anantharaman S. , E. Stevens C. , Lynch J. , Song B. , Hou J. , Zhang H. , Jo K. , Kumar P. , C. Blancon J. , D. Mohite A. , R. Hendrickson J. , Jariwala D. . Self-hybridized polaritonic emission from layered perovskites. Nano Lett., 2021, 21(14): 6245
https://doi.org/10.1021/acs.nanolett.1c02058
99 Polimeno L. , Lerario G. , De Giorgi M. , De Marco L. , Dominici L. , Todisco F. , Coriolano A. , Ardizzone V. , Pugliese M. , T. Prontera C. , Maiorano V. , Moliterni A. , Giannini C. , Olieric V. , Gigli G. , Ballarini D. , Xiong Q. , Fieramosca A. , D. Solnyshkov D. , Malpuech G. , Sanvitto D. . Tuning of the Berry curvature in 2D perovskite polaritons. Nat. Nanotechnol., 2021, 16(12): 1349
https://doi.org/10.1038/s41565-021-00977-2
100 Łempicka-Mirek K. , Król M. , Sigurdsson H. , Wincukiewicz A. , Morawiak P. , Mazur R. , Muszyński M. , Piecek W. , Kula P. , Stefaniuk T. , Kamińska M. , De Marco L. , G. Lagoudakis P. , Ballarini D. , Sanvitto D. , Szczytko J. , Piętka B. . Electrically tunable Berry curvature and strong light−matter coupling in liquid crystal microcavities with 2D perovskite. Sci. Adv., 2022, 8(40): eabq7533
https://doi.org/10.1126/sciadv.abq7533
101 E. Park J. , López-Arteaga R. , D. Sample A. , R. Cherqui C. , Spanopoulos I. , Guan J. , G. Kanatzidis M. , C. Schatz G. , A. Weiss E. , W. Odom T. . Polariton dynamics in two-dimensional Ruddlesden–Popper perovskites strongly coupled with plasmonic lattices. ACS Nano, 2022, 16(3): 3917
https://doi.org/10.1021/acsnano.1c09296
102 H. M. Dang N. , Gerace D. , Drouard E. , Trippé-Allard G. , Lédée F. , Mazurczyk R. , Deleporte E. , Seassal C. , S. Nguyen H. . Tailoring dispersion of room-temperature exciton−polaritons with perovskite-based subwavelength metasurfaces. Nano Lett., 2020, 20(3): 2113
https://doi.org/10.1021/acs.nanolett.0c00125
103 Kim S. , H. Woo B. , C. An S. , Lim Y. , C. Seo I. , S. Kim D. , Yoo S. , H. Park Q. , C. Jun Y. . Topological control of 2D perovskite emission in the strong coupling regime. Nano Lett., 2021, 21(23): 10076
https://doi.org/10.1021/acs.nanolett.1c03853
104 Su R. , Diederichs C. , Wang J. , C. H. Liew T. , Zhao J. , Liu S. , Xu W. , Chen Z. , Xiong Q. . Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett., 2017, 17(6): 3982
https://doi.org/10.1021/acs.nanolett.7b01956
105 Polimeno L. , Fieramosca A. , Lerario G. , Cinquino M. , De Giorgi M. , Ballarini D. , Todisco F. , Dominici L. , Ardizzone V. , Pugliese M. , T. Prontera C. , Maiorano V. , Gigli G. , De Marco L. , Sanvitto D. . Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites. Adv. Opt. Mater., 2020, 8(16): 2000176
https://doi.org/10.1002/adom.202000176
106 Yang X. , Zhang X. , Deng J. , Chu Z. , Jiang Q. , Meng J. , Wang P. , Zhang L. , Yin Z. , You J. . Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun., 2018, 9(1): 570
https://doi.org/10.1038/s41467-018-02978-7
107 Zhou N. , Shen Y. , Li L. , Tan S. , Liu N. , Zheng G. , Chen Q. , Zhou H. . The exploration of crystallization kinetics in quasi two-dimensional perovskite and high performance solar cells. J. Am. Chem. Soc., 2018, 140(1): 459
https://doi.org/10.1021/jacs.7b11157
108 L. Leung T. , Ahmad I. , A. Syed A. , M. C. Ng A. , Popović J. , B. Djurišić A. . Stability of 2D and quasi-2D perovskite materials and devices. Commun. Mater., 2022, 3(1): 63
https://doi.org/10.1038/s43246-022-00285-9
109 Wang C. , Dai G. , Wang J. , Cui M. , Yang Y. , Yang S. , Qin C. , Chang S. , Wu K. , Liu Y. , Zhong H. . Low-threshold blue quasi-2D perovskite laser through domain distribution control. Nano Lett., 2022, 22(3): 1338
https://doi.org/10.1021/acs.nanolett.1c04666
110 Yang Y. , Gao F. , Gao S. , H. Wei S. . Origin of the stability of two-dimensional perovskites: A first-principles study. J. Mater. Chem. A, 2018, 6(30): 14949
https://doi.org/10.1039/C8TA01496E
111 Wang J. , Li D. , Mu L. , Li M. , Luo Y. , Zhang B. , Mai C. , Guo B. , Lan L. , Wang J. , L. Yip H. , Peng J. . Inkjet-printed full-color matrix quasi-two-dimensional perovskite light-emitting diodes. ACS Appl. Mater. Interfaces, 2021, 13(35): 41773
https://doi.org/10.1021/acsami.1c07526
112 Chen F. , Li H. , Zhou H. , Luo S. , Sun Z. , Ye Z. , Sun F. , Wang J. , Zheng Y. , Chen X. , Xu H. , Xu H. , Byrnes T. , Chen Z. , Wu J. . Optically controlled femtosecond polariton switch at room temperature. Phys. Rev. Lett., 2022, 129(5): 057402
https://doi.org/10.1103/PhysRevLett.129.057402
113 G. Berloff N. , Silva M. , Kalinin K. , Askitopoulos A. , D. Töpfer J. , Cilibrizzi P. , Langbein W. , G. Lagoudakis P. . Realizing the classical XY Hamiltonian in polariton simulators. Nat. Mater., 2017, 16(11): 1120
https://doi.org/10.1038/nmat4971
114 Wang Y. , Zhi M. , Q. Chang Y. , P. Zhang J. , Chan Y. . Stable, ultralow threshold amplified spontaneous emission from CsPbBr3 nanoparticles exhibiting trion gain. Nano Lett., 2018, 18(8): 4976
https://doi.org/10.1021/acs.nanolett.8b01817
115 Shang Q. , Li M. , Zhao L. , Chen D. , Zhang S. , Chen S. , Gao P. , Shen C. , Xing J. , Xing G. , Shen B. , Liu X. , Zhang Q. . Role of the exciton–polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser. Nano Lett., 2020, 20(9): 6636
https://doi.org/10.1021/acs.nanolett.0c02462
116 Song J. , Shang Q. , Deng X. , Liang Y. , Li C. , Liu X. , Xiong Q. , Zhang Q. . Continuous-wave pumped perovskite lasers with device area below 1 μm2. Adv. Mater., 2023, 35(30): 2302170
https://doi.org/10.1002/adma.202302170
117 Ren Z. , Yu J. , Qin Z. , Wang J. , Sun J. , C. S. Chan C. , Ding S. , Wang K. , Chen R. , S. Wong K. , Lu X. , J. Yin W. , C. H. Choy W. . High‐performance blue perovskite light‐emitting diodes enabled by efficient energy transfer between coupled quasi‐2D perovskite layers. Adv. Mater., 2021, 33(1): 2005570
https://doi.org/10.1002/adma.202005570
118 Ren Z. , Sun J. , Yu J. , Xiao X. , Wang Z. , Zhang R. , Wang K. , Chen R. , Chen Y. , C. H. Choy W. . High-performance blue quasi-2D perovskite light-emitting diodes via balanced carrier confinement and transfer. Nano-Micro Lett., 2022, 14(1): 66
https://doi.org/10.1007/s40820-022-00807-7
[1] Xinqin Meng, Chengbing Qin, Xilong Liang, Guofeng Zhang, Ruiyun Chen, Jianyong Hu, Zhichun Yang, Jianzhong Huo, Liantuan Xiao, Suotang Jia. Deep learning in two-dimensional materials: Characterization, prediction, and design[J]. Front. Phys. , 2024, 19(5): 53601-.
[2] Chengxiang Jiao, Kai Huang, Hongli Guo, Xingxia Cui, Qing Yuan, Cancan Lou, Guangqiang Mei, Chunlong Wu, Nan Xu, Limin Cao, Min Feng. Resonant four-photon photoemission from SnSe2(001)[J]. Front. Phys. , 2024, 19(3): 33207-.
[3] Ye-Jun Xu, Hong Xie. Phonon-blockade-based multiple-photon bundle emission in a quadratically coupled optomechanical system[J]. Front. Phys. , 2024, 19(3): 32202-.
[4] Xiulian Fan, Ruifeng Xin, Li Li, Bo Zhang, Cheng Li, Xilong Zhou, Huanzhi Chen, Hongyan Zhang, Fangping OuYang, Yu Zhou. Progress in the preparation and physical properties of two-dimensional Cr-based chalcogenide materials and heterojunctions[J]. Front. Phys. , 2024, 19(2): 23401-.
[5] Na Sa, Meng Wu, Hui-Qiong Wang. Review of the role of ionic liquids in two-dimensional materials[J]. Front. Phys. , 2023, 18(4): 43601-.
[6] Rong Guo, Yilv Guo, Yehui Zhang, Xiaoshu Gong, Tingbo Zhang, Xing Yu, Shijun Yuan, Jinlan Wang. Electron doping induced stable ferromagnetism in two-dimensional GdI3 monolayer[J]. Front. Phys. , 2023, 18(4): 43304-.
[7] Tao Zhu, Yao Zhang, Xin Wei, Man Jiang, Hua Xu. The rise of two-dimensional tellurium for next-generation electronics and optoelectronics[J]. Front. Phys. , 2023, 18(3): 33601-.
[8] Nikita M. Kondratiev, Valery E. Lobanov, Artem E. Shitikov, Ramzil R. Galiev, Dmitry A. Chermoshentsev, Nikita Yu. Dmitriev, Andrey N. Danilin, Evgeny A. Lonshakov, Kirill N. Min’kov, Daria M. Sokol, Steevy J. Cordette, Yi-Han Luo, Wei Liang, Junqiu Liu, Igor A. Bilenko. Recent advances in laser self-injection locking to high-Q microresonators[J]. Front. Phys. , 2023, 18(2): 21305-.
[9] Lei Du, Yan Zhang, Yong Li. A giant atom with modulated transition frequency[J]. Front. Phys. , 2023, 18(1): 12301-.
[10] Xun-Wei Xu, Hai-Quan Shi, Ai-Xi Chen. Nonreciprocal transition between two indirectly coupled energy levels[J]. Front. Phys. , 2022, 17(4): 42505-.
[11] Haoyu Dong, Le Lei, Shuya Xing, Jianfeng Guo, Feiyue Cao, Shangzhi Gu, Yanyan Geng, Shuo Mi, Hanxiang Wu, Yan Jun Li, Yasuhiro Sugawara, Fei Pang, Wei Ji, Rui Xu, Zhihai Cheng. Epitaxial fabrication of AgTe monolayer on Ag(111) and the sequential growth of Te film[J]. Front. Phys. , 2021, 16(6): 63502-.
[12] Yuan Gan, Jiyuan Liang, Chang-woo Cho, Si Li, Yanping Guo, Xiaoming Ma, Xuefeng Wu, Jinsheng Wen, Xu Du, Mingquan He, Chang Liu, Shengyuan A. Yang, Kedong Wang, Liyuan Zhang. Bandgap opening in MoTe2 thin flakes induced by surface oxidation[J]. Front. Phys. , 2020, 15(3): 33602-.
[13] T. Latychevskaia, C. R. Woods, Yi Bo Wang, M. Holwill, E. Prestat, S. J. Haigh, K. S. Novoselov. Convergent and divergent beam electron holography and reconstruction of adsorbates on free-standing two-dimensional crystals[J]. Front. Phys. , 2019, 14(1): 13606-.
[14] Yue Liu (刘月), Yu Zhou (周煜), Hao Zhang (张昊), Feirong Ran (冉飞荣), Weihao Zhao (赵炜昊), Lin Wang (王琳), Chengjie Pei (裴成杰), Jindong Zhang (张锦东), Xiao Huang (黄晓), Hai Li (李海). Probing interlayer interactions in WSe2-graphene heterostructures by ultralow-frequency Raman spectroscopy[J]. Front. Phys. , 2019, 14(1): 13607-.
[15] Fei Song, Jin-Yu Chen, Zhi-Ping Wang, Ben-Li Yu. Three-dimensional atom localization via spontaneous emission in a four-level atom[J]. Front. Phys. , 2018, 13(5): 134208-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed