|
|
Quasi-two dimensional Ruddlesden−Popper halide perovskites for laser applications |
Kun Chen1,2, Qianpeng Zhang1,2, Yin Liang2, Jiepeng Song2, Chun Li2, Shi Chen3, Fang Li1( ), Qing Zhang2( ) |
1. School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China 2. School of Materials Science and Engineering, Peking University, Beijing 100871, China 3. Institute of Applied Physics and Materials Engineering, Macau University, Macao 999078, China |
|
|
Abstract Quasi-two-dimensional (2D) Ruddlesden‒Popper (RP) halide perovskites, as a kind of emerged two-dimensional layered materials, have recently achieved great attentions in lasing materials field owing to their large exciton binding energy, high emission yield, large optical gain, and wide-range tuning of optical bandgap. This review will introduce research progresses of RP halide perovskites for lasing applications in aspects of materials, photophysics, and devices with emphasis on emission and lasing properties tailored by the molecular composition and interface. The materials, structures and fabrications are introduced in the first part. Next, the optical transitions and amplified spontaneous emission properties are discussed from the aspects of electronic structure, exciton, gain dynamics, and interface tailoring. Then, the research progresses on lasing devices are summarized and several types of lasers including VCSEL, DFB lasers, microlasers, random lasers, plasmonic lasers, and polariton lasers are discussed. At last, the challenges and perspectives would be provided.
|
Keywords
two-dimensional materials
metal halide perovskite
Ruddlesden−Popper halide perovskites
lasing
emission
|
Corresponding Author(s):
Fang Li,Qing Zhang
|
About author: Peng Lei and Charity Ngina Mwangi contributed equally to this work. |
Issue Date: 10 November 2023
|
|
1 |
Zhang L. , Sun C. , He T. , Jiang Y. , Wei J. , Huang Y. , Yuan M. . High-performance quasi-2D perovskite light-emitting diodes: From materials to devices. Light Sci. Appl., 2021, 10(1): 61
https://doi.org/10.1038/s41377-021-00501-0
|
2 |
Wang Z. , Wang F. , Sun W. , Ni R. , Hu S. , Liu J. , Zhang B. , Alsaed A. , Hayat T. , Tan Z. . Manipulating the trade-off between quantum yield and electrical conductivity for high-brightness quasi-2D perovskite light-emitting diodes. Adv. Funct. Mater., 2018, 28(47): 1804187
https://doi.org/10.1002/adfm.201804187
|
3 |
Sun Q. , Fang Z. , Zheng Y. , Yang Z. , Hu F. , Yang Y. , Yang W. , Hou X. , H. Shang M. . Regulating the phase stability and bandgap of quasi-2D Dion–Jacobson CsSnI3 perovskite via intercalating organic cations. J. Mater. Chem. A, 2022, 10(8): 3996
https://doi.org/10.1039/D1TA10246J
|
4 |
Jana A. , Ba Q. , S. Kim K. . Compositional and dimensional control of 2D and quasi‐2D lead halide perovskites in water. Adv. Funct. Mater., 2019, 29(28): 1900966
https://doi.org/10.1002/adfm.201900966
|
5 |
Liu Z. , Qiu W. , Peng X. , Sun G. , Liu X. , Liu D. , Li Z. , He F. , Shen C. , Gu Q. , Ma F. , L. Yip H. , Hou L. , Qi Z. , J. Su S. . Perovskite light‐emitting diodes with EQE exceeding 28% through a synergetic dual‐additive strategy for defect passivation and nanostructure regulation. Adv. Mater., 2021, 33(43): 2103268
https://doi.org/10.1002/adma.202103268
|
6 |
Ji Y. , She M. , Bai X. , Liu E. , Xue W. , Zhang Z. , Wan K. , Liu P. , Zhang S. , Li J. . In‐depth understanding of the effect of halogen‐induced stable 2D bismuth‐based perovskites for photocatalytic hydrogen evolution activity. Adv. Funct. Mater., 2022, 32(31): 2201721
https://doi.org/10.1002/adfm.202201721
|
7 |
Wang C. , Dai G. , Wang J. , Cui M. , Yang Y. , Yang S. , Qin C. , Chang S. , Wu K. , Liu Y. , Zhong H. . Low-threshold blue quasi-2D perovskite laser through domain distribution control. Nano Lett., 2022, 22(3): 1338
https://doi.org/10.1021/acs.nanolett.1c04666
|
8 |
Li Z.Hong E.Zhang X.Deng M.Fang X., Perovskite-type 2D materials for high-performance photodetectors, J. Phys. Chem. Lett. 13(5), 1215 (2022)
|
9 |
C. Hu J.L. Wen X.H. Li D., Optical properties of two-dimensional perovskites, Front. Phys. 18(3), 33602 (2023)
|
10 |
Lai H. , Lu D. , Xu Z. , Zheng N. , Xie Z. , Liu Y. . Organic‐salt‐assisted crystal growth and orientation of quasi‐2D Ruddlesden–Popper perovskites for solar cells with efficiency over 19%. Adv. Mater., 2020, 32(33): 2001470
https://doi.org/10.1002/adma.202001470
|
11 |
Ramesh S. , Giovanni D. , Righetto M. , Ye S. , Fresch E. , Wang Y. , Collini E. , Mathews N. , C. Sum T. . Tailoring the energy manifold of quasi‐two‐dimensional perovskites for efficient carrier extraction. Adv. Energy Mater., 2022, 12(10): 2103556
https://doi.org/10.1002/aenm.202103556
|
12 |
Zheng H. , Liu G. , Zhu L. , Ye J. , Zhang X. , Alsaedi A. , Hayat T. , Pan X. , Dai S. . The effect of hydrophobicity of ammonium salts on stability of quasi-2D perovskite materials in moist condition. Adv. Energy Mater., 2018, 8(21): 1800051
https://doi.org/10.1002/aenm.201800051
|
13 |
Wang K. , Wu C. , Yang D. , Jiang Y. , Priya S. . Quasi-two-dimensional halide perovskite single crystal photodetector. ACS Nano, 2018, 12(5): 4919
https://doi.org/10.1021/acsnano.8b01999
|
14 |
Chen Z. , Guo Y. , Wertz E. , Shi J. . Merits and challenges of Ruddlesden–Popper soft halide perovskites in electro‐optics and optoelectronics. Adv. Mater., 2019, 31(1): 1803514
https://doi.org/10.1002/adma.201803514
|
15 |
Bi W. , Cui Q. , Jia P. , Huang X. , Zhong Y. , Wu D. , Tang Y. , Shen S. , Hu Y. , Lou Z. , Teng F. , Liu X. , Hou Y. . Efficient quasi-two-dimensional perovskite light-emitting diodes with improved multiple quantum well structure. ACS Appl. Mater. Interfaces, 2020, 12(1): 1721
https://doi.org/10.1021/acsami.9b10186
|
16 |
Sheng X.Li Y.Xia M.Shi E., Quasi-2D halide perovskite crystals and their optoelectronic applications, J. Mater. Chem. A 10(37), 19169 (2022)
|
17 |
Q. Luo S.F. Wang J.Yang B.B. Yuan Y., Recent advances in controlling the crystallization of two-dimensional perovskites for optoelectronic device, Front. Phys. 14(5), 53401 (2019)
|
18 |
Lian X. , Wu H. , Zuo L. , Zhou G. , Wen X. , Zhang Y. , Wu G. , Xie Z. , Zhu H. , Chen H. . Stable quasi‐2D perovskite solar cells with efficiency over 18% enabled by heat–light co‐treatment. Adv. Funct. Mater., 2020, 30(48): 2004188
https://doi.org/10.1002/adfm.202004188
|
19 |
Zuo C. , D. Scully A. , Vak D. , Tan W. , Jiao X. , R. McNeill C. , Angmo D. , Ding L. , Gao M. . Self-assembled 2D perovskite layers for efficient printable solar cells. Adv. Energy Mater., 2019, 9(4): 1803258
https://doi.org/10.1002/aenm.201803258
|
20 |
Zuo C. , D. Scully A. , Gao M. . Drop-casting method to screen Ruddlesden–Popper perovskite formulations for use in solar cells. ACS Appl. Mater. Interfaces, 2021, 13(47): 56217
https://doi.org/10.1021/acsami.1c17475
|
21 |
S. C. Schulze P. , Wienands K. , J. Bett A. , Rafizadeh S. , E. Mundt L. , Cojocaru L. , Hermle M. , W. Glunz S. , Hillebrecht H. , C. Goldschmidt J. . Perovskite hybrid evaporation / spin coating method: from band gap tuning to thin film deposition on textures. Thin Solid Films, 2020, 704: 137970
https://doi.org/10.1016/j.tsf.2020.137970
|
22 |
X. Zhong J. , Q. Wu W. , Ding L. , B. Kuang D. . Blade‐coating perovskite films with diverse compositions for efficient photovoltaics. Energy Environ. Mater., 2021, 4(3): 277
https://doi.org/10.1002/eem2.12118
|
23 |
Turedi B. , Yeddu V. , Zheng X. , Y. Kim D. , M. Bakr O. , I. Saidaminov M. . Perovskite single-crystal solar cells: going forward. ACS Energy Lett., 2021, 6(2): 631
https://doi.org/10.1021/acsenergylett.0c02573
|
24 |
Li M. , Bhaumik S. , W. Goh T. , S. Kumar M. , Yantara N. , Grätzel M. , Mhaisalkar S. , Mathews N. , C. Sum T. . Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals. Nat. Commun., 2017, 8(1): 14350
https://doi.org/10.1038/ncomms14350
|
25 |
Wang K. , Y. Park J. , Dou Akriti . Two‐dimensional halide perovskite quantum‐well emitters: A critical review. EcoMat, 2021, 3(3): e12104
https://doi.org/10.1002/eom2.12104
|
26 |
Liu Y. , Ye H. , Zhang Y. , Zhao K. , Yang Z. , Yuan Y. , Wu H. , Zhao G. , Yang Z. , Tang J. , Xu Z. , Liu S. . Surface-tension-controlled crystallization for high-quality 2D perovskite single crystals for ultrahigh photodetection. Matter, 2019, 1(2): 465
https://doi.org/10.1016/j.matt.2019.04.002
|
27 |
Naresh V. , Lee N. . Zn(II)-doped cesium lead halide perovskite nanocrystals with high quantum yield and wide color tunability for color-conversion light-emitting displays. ACS Appl. Nano Mater., 2020, 3(8): 7621
https://doi.org/10.1021/acsanm.0c01254
|
28 |
Park B. , M. Kang S. , W. Lee G. , H. Kwak C. , Rethinasabapathy M. , S. Huh Y. . Fabrication of CsPbBr3 perovskite quantum dots/cellulose-based colorimetric sensor: Dual-responsive on-site detection of chloride and iodide ions. Ind. Eng. Chem. Res., 2020, 59(2): 793
https://doi.org/10.1021/acs.iecr.9b05946
|
29 |
Cao X.Zhi L.Jia Y.Li Y.Zhao K.Cui X.Ci L.Zhuang D.Wei J., A review of the role of solvents in formation of high-quality solution-processed perovskite films, ACS Appl. Mater. Interfaces 11(8), 7639 (2019)
|
30 |
R. Kagan C. , C. Bassett L. , B. Murray C. , M. Thompson S. . Colloidal quantum dots as platforms for quantum information science. Chem. Rev., 2021, 121(5): 3186
https://doi.org/10.1021/acs.chemrev.0c00831
|
31 |
Liu Y. , Siron M. , Lu D. , Yang J. , dos Reis R. , Cui F. , Gao M. , Lai M. , Lin J. , Kong Q. , Lei T. , Kang J. , Jin J. , Ciston J. , Yang P. . Self-assembly of two-dimensional perovskite nanosheet building blocks into ordered Ruddlesden–Popper perovskite phase. J. Am. Chem. Soc., 2019, 141(33): 13028
https://doi.org/10.1021/jacs.9b06889
|
32 |
Zhao L. , Tang P. , Luo D. , I. Dar M. , T. Eickemeyer F. , Arora N. , Hu Q. , Luo J. , Liu Y. , M. Zakeeruddin S. , Hagfeldt A. , Arbiol J. , Huang W. , Gong Q. , P. Russell T. , H. Friend R. , Grätzel M. , Zhu R. . Enabling full-scale grain boundary mitigation in polycrystalline perovskite solids. Sci. Adv., 2022, 8(35): eabo3733
https://doi.org/10.1126/sciadv.abo3733
|
33 |
Wang J. , Li J. , Tan Q. , Li L. , Zhang J. , Zang J. , Tan P. , Zhang J. , Li D. . Controllable synthesis of two-dimensional Ruddlesden–Popper-type perovskite heterostructures. J. Phys. Chem. Lett., 2017, 8(24): 6211
https://doi.org/10.1021/acs.jpclett.7b02843
|
34 |
Dey A. , F. Richter A. , Debnath T. , Huang H. , Polavarapu L. , Feldmann J. . Transfer of direct to indirect bound excitons by electron intervalley scattering in Cs2AgBiBr6 double perovskite nanocrystals. ACS Nano, 2020, 14(5): 5855
https://doi.org/10.1021/acsnano.0c00997
|
35 |
K. Rajendran S. , Wei M. , Ohadi H. , Ruseckas A. , A. Turnbull G. , D. W. Samuel I. . Low threshold polariton lasing from a solution‐processed organic semiconductor in a planar microcavity. Adv. Opt. Mater., 2019, 7(12): 1801791
https://doi.org/10.1002/adom.201801791
|
36 |
Guo S. , Li Y. , Mao Y. , Tao W. , Bu K. , Fu T. , Zhao C. , Luo H. , Hu Q. , Zhu H. , Shi E. , Yang W. , Dou L. , Lü X. . Reconfiguring band-edge states and charge distribution of organic semiconductor-incorporated 2D perovskites via pressure gating. Sci. Adv., 2022, 8(44): eadd1984
https://doi.org/10.1126/sciadv.add1984
|
37 |
Zhou N. , Zhou H. . Spacer organic cation engineering for quasi‐2D metal halide perovskites and the optoelectronic application. Small Struct., 2022, 3(7): 2100232
https://doi.org/10.1002/sstr.202100232
|
38 |
Wang Z. , Wei Q. , Liu X. , Liu L. , Tang X. , Guo J. , Ren S. , Xing G. , Zhao D. , Zheng Y. . Spacer cation tuning enables vertically oriented and graded quasi‐2D perovskites for efficient solar cells. Adv. Funct. Mater., 2021, 31(5): 2008404
https://doi.org/10.1002/adfm.202008404
|
39 |
Jiang Y. , Cui M. , Li S. , Sun C. , Huang Y. , Wei J. , Zhang L. , Lv M. , Qin C. , Liu Y. , Yuan M. . Reducing the impact of Auger recombination in quasi-2D perovskite light-emitting diodes. Nat. Commun., 2021, 12(1): 336
https://doi.org/10.1038/s41467-020-20555-9
|
40 |
Wang R. , Dong X. , Ling Q. , Fu Q. , Hu Z. , Xu Z. , Zhang H. , Li Q. , Liu Y. . Spacer engineering for 2D Ruddlesden–Popper perovskites with an ultralong carrier lifetime of over 18 μs enable efficient solar cells. ACS Energy Lett., 2022, 7(10): 3656
https://doi.org/10.1021/acsenergylett.2c01800
|
41 |
Umebayashi T. , Asai K. , Kondo T. , Nakao A. . Electronic structures of lead iodide based low-dimensional crystals. Phys. Rev. B, 2003, 67(15): 155405
https://doi.org/10.1103/PhysRevB.67.155405
|
42 |
Fu Y. , Zhu H. , Chen J. , P. Hautzinger M. , Y. Zhu X. , Jin S. . Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater., 2019, 4(3): 169
https://doi.org/10.1038/s41578-019-0080-9
|
43 |
Li J. , Ma J. , Cheng X. , Liu Z. , Chen Y. , Li D. . Anisotropy of excitons in two-dimensional perovskite crystals. ACS Nano, 2020, 14(2): 2156
https://doi.org/10.1021/acsnano.9b08975
|
44 |
Zhang Y. , Sun M. , Zhou N. , Huang B. , Zhou H. . Electronic tunability and mobility anisotropy of quasi-2D perovskite single crystals with varied spacer cations. J. Phys. Chem. Lett., 2020, 11(18): 7610
https://doi.org/10.1021/acs.jpclett.0c02274
|
45 |
Wang M. , Zou H. , Zhang J. , Wu T. , Xu H. , Haacke S. , Hu B. . Extremely long spin lifetime of light-emitting states in quasi-2D perovskites through orbit–orbit interaction. J. Phys. Chem. Lett., 2020, 11(9): 3647
https://doi.org/10.1021/acs.jpclett.0c00842
|
46 |
Li H. , Zhang X. , Wang H. , Yu J. , Li K. , Wei Z. , Li D. , Chen R. . Optical characteristics of self-trapped excitons in 2D (iso-BA)2PbI4 perovskite crystals. Photon. Res., 2022, 10(2): 594
https://doi.org/10.1364/PRJ.444457
|
47 |
Li J. , Wang H. , Li D. . Self-trapped excitons in two-dimensional perovskites. Front. Optoelectron., 2020, 13(3): 225
https://doi.org/10.1007/s12200-020-1051-x
|
48 |
C. Blancon J. , Tsai H. , Nie W. , C. Stoumpos C. , Pedesseau L. , Katan C. , Kepenekian M. , M. M. Soe C. , Appavoo K. , Y. Sfeir M. , Tretiak S. , M. Ajayan P. , G. Kanatzidis M. , Even J. , J. Crochet J. , D. Mohite A. . Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science, 2017, 355(6331): 1288
https://doi.org/10.1126/science.aal4211
|
49 |
Liu Z. , Hu M. , Du J. , Shi T. , Wang Z. , Zhang Z. , Hu Z. , Zhan Z. , Chen K. , Liu W. , Tang J. , Zhang H. , Leng Y. , Li R. . Subwavelength-polarized quasi-two-dimensional perovskite single-mode nanolaser. ACS Nano, 2021, 15(4): 6900
https://doi.org/10.1021/acsnano.0c10647
|
50 |
Ye D. , Li Z. , Chen W. , O. Ighodalo K. , Xiao P. , Chen T. , Xiao Z. . Stable yellow light-emitting diodes based on quasi-two-dimensional perovskites. ACS Appl. Mater. Interfaces, 2022, 14(30): 34918
https://doi.org/10.1021/acsami.2c07314
|
51 |
Yang Y. , Xu S. , Ni Z. , H. Van Brackle C. , Zhao L. , Xiao X. , Dai X. , Huang J. . Highly efficient pure‐blue light‐emitting diodes based on rubidium and chlorine alloyed metal halide perovskite. Adv. Mater., 2021, 33(33): 2100783
https://doi.org/10.1002/adma.202100783
|
52 |
H. A. Li C. , Geng P. , B. Shivarudraiah S. , Ng M. , F. Zhang X. , Xu B. , Guo L. , E. Halpert J. . The multiple roles of metal ion dopants in spectrally stable, efficient quasi‐2D perovskite sky‐blue light‐emitting devices. Adv. Opt. Mater., 2021, 9(21): 2100860
https://doi.org/10.1002/adom.202100860
|
53 |
Yang L. , Zhang Y. , Ma J. , Chen P. , Yu Y. , Shao M. . Pure red light-emitting diodes based on quantum confined quasi-two-dimensional perovskites with cospacer cations. ACS Energy Lett., 2021, 6(7): 2386
https://doi.org/10.1021/acsenergylett.1c00752
|
54 |
Liu P. , Cai W. , Zhao C. , Zhang S. , Nie P. , Xu W. , Meng H. , Fu H. , Wei G. . Quasi‐2D CsPbBrxI3−x composite thin films for efficient and stable red perovskite light‐emitting diodes. Adv. Opt. Mater., 2021, 9(24): 2101419
https://doi.org/10.1002/adom.202101419
|
55 |
Worku M. , Ben‐Akacha A. , Sridhar S. , R. Frick J. , Yin S. , He Q. , J. Robb A. , Chaaban M. , Liu H. , S. R. V. Winfred J. , Hanson K. , So F. , Dougherty D. , Ma B. . Band edge control of quasi‐2D metal halide perovskites for blue light‐emitting diodes with enhanced performance. Adv. Funct. Mater., 2021, 31(45): 2103299
https://doi.org/10.1002/adfm.202103299
|
56 |
Liu S. , Guo Z. , Wu X. , Liu X. , Huang Z. , Li L. , Zhang J. , Zhou H. , D. Sun L. , H. Yan C. . Zwitterions narrow distribution of perovskite quantum wells for blue light‐emitting diodes with efficiency exceeding 15%. Adv. Mater., 2023, 35(3): 2208078
https://doi.org/10.1002/adma.202208078
|
57 |
Zhang X. , Wang X. , Liu H. , Chen R. . Defect engineering of metal halide perovskite optoelectronic devices. Prog. Quantum Electron., 2022, 86: 100438
https://doi.org/10.1016/j.pquantelec.2022.100438
|
58 |
Li R. , Li B. , Fang X. , Wang D. , Shi Y. , Liu X. , Chen R. , Wei Z. . Self-structural healing of encapsulated perovskite microcrystals for improved optical and thermal stability. Adv. Mater., 2021, 33(21): 2100466
https://doi.org/10.1002/adma.202100466
|
59 |
Ren Z. , Li L. , Yu J. , Ma R. , Xiao X. , Chen R. , Wang K. , W. Sun X. , J. Yin W. , C. H. Choy W. . Simultaneous low-order phase suppression and defect passivation for efficient and stable blue light-emitting diodes. ACS Energy Lett., 2020, 5(8): 2569
https://doi.org/10.1021/acsenergylett.0c01015
|
60 |
Cheng T. , Qin C. , Watanabe S. , Matsushima T. , Adachi C. . Stoichiometry control for the tuning of grain passivation and domain distribution in green quasi‐2D metal halide perovskite films and light‐emitting diodes. Adv. Funct. Mater., 2020, 30(24): 2001816
https://doi.org/10.1002/adfm.202001816
|
61 |
Gao Y. , Liu Y. , Zhang F. , Bao X. , Xu Z. , Bai X. , Lu M. , Wu Y. , Wu Z. , Zhang Y. , Wang Q. , Gao X. , Wang Y. , Shi Z. , Hu J. , W. Yu W. , Zhang Y. . High‐performance perovskite light‐emitting diodes enabled by passivating defect and constructing dual energy‐transfer pathway through functional perovskite nanocrystals. Adv. Mater., 2022, 34(43): 2207445
https://doi.org/10.1002/adma.202207445
|
62 |
Zhang D. , Fu Y. , Zhan H. , Zhao C. , Gao X. , Qin C. , Wang L. . Suppressing thermal quenching via defect passivation for efficient quasi-2D perovskite light-emitting diodes. Light Sci. Appl., 2022, 11(1): 69
https://doi.org/10.1038/s41377-022-00761-4
|
63 |
Zhang D. , Fu Y. , Wu W. , Li B. , Zhu H. , Zhan H. , Cheng Y. , Qin C. , Wang L. . Comprehensive passivation for high‐performance quasi‐2D perovskite LEDs. Small, 2023, 19(11): 2206927
https://doi.org/10.1002/smll.202206927
|
64 |
Bao X. , Gao Y. , Liu Y. , Xu Z. , Zhang F. , Lu M. , Wu Z. , Wu Y. , Wang Q. , Zhang Y. , Wang Y. , Shi Z. , Hu J. , Bai X. . Molecular bridging strategy enables high performance and stable quasi-2D perovskite light-emitting devices. ACS Energy Lett., 2023, 8(2): 1018
https://doi.org/10.1021/acsenergylett.2c02877
|
65 |
Liu T. , Zhang Z. , Wei Q. , Wang B. , Wang K. , Guo J. , Liang C. , Zhao D. , Chen S. , Tang Y. , Zhou Y. , Xing G. . Tailoring quasi-2D perovskite thin films via nanocrystals mediation for enhanced electroluminescence. Chem. Eng. J., 2021, 411: 128511
https://doi.org/10.1016/j.cej.2021.128511
|
66 |
Cinquino M. , Fieramosca A. , Mastria R. , Polimeno L. , Moliterni A. , Olieric V. , Matsugaki N. , Panico R. , De Giorgi M. , Gigli G. , Giannini C. , Rizzo A. , Sanvitto D. , De Marco L. . Managing growth and dimensionality of quasi 2D perovskite single‐crystalline flakes for tunable excitons orientation. Adv. Mater., 2021, 33(48): 2102326
https://doi.org/10.1002/adma.202102326
|
67 |
Lin C. , Niu K. , Qi Y. , Liu Y. , Zhu X. , He S. , Zhou Z. , Jin Y. , He H. , Ye Z. . Dimension tailoring via antisolvent enables efficient perovskite light-emitting diodes. Mater. Today Nano, 2022, 17: 100170
https://doi.org/10.1016/j.mtnano.2021.100170
|
68 |
Nah Y. , Solanki D. , Dong Y. , A. Röhr J. , D. Taylor A. , Hu S. , H. Sargent E. , H. Kim D. . Narrowing the phase distribution of quasi‐2D perovskites for stable deep‐blue electroluminescence. Adv. Sci. (Weinh.), 2022, 9(24): 2201807
|
69 |
Zhang J. , Zhu X. , Wang M. , Hu B. . Establishing charge-transfer excitons in 2D perovskite heterostructures. Nat. Commun., 2020, 11(1): 2618
https://doi.org/10.1038/s41467-020-16415-1
|
70 |
Shi E. , Yuan B. , B. Shiring S. , Gao Y. , Akriti Y. , Guo Y. , Su C. , Lai M. , Yang P. , Kong J. , M. Savoie B. , Yu Y. , Dou L. . Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature, 2020, 580(7805): 614
https://doi.org/10.1038/s41586-020-2219-7
|
71 |
Li M. , Gao Q. , Liu P. , Liao Q. , Zhang H. , Yao J. , Hu W. , Wu Y. , Fu H. . Amplified spontaneous emission based on 2D Ruddlesden−Popper perovskites. Adv. Funct. Mater., 2018, 28(17): 1707006
https://doi.org/10.1002/adfm.201707006
|
72 |
Ding G. , He X. , Zhang H. , Fu H. . Ethanol-assisted synthesis of two-dimensional TiN(ii) halide perovskite single crystals for amplified spontaneous emission. J. Mater. Chem. C, 2022, 10(30): 10902
https://doi.org/10.1039/D2TC01873J
|
73 |
Shang Q. , Wang Y. , Zhong Y. , Mi Y. , Qin L. , Zhao Y. , Qiu X. , Liu X. , Zhang Q. . Unveiling structurally engineered carrier dynamics in hybrid quasi-two-dimensional perovskite thin films toward controllable emission. J. Phys. Chem. Lett., 2017, 8(18): 4431
https://doi.org/10.1021/acs.jpclett.7b01857
|
74 |
Liang Y. , Shang Q. , Li M. , Zhang S. , Liu X. , Zhang Q. . Solvent recrystallization‐enabled green amplified spontaneous emissions with an ultra‐low threshold from pinhole‐free perovskite films. Adv. Funct. Mater., 2021, 31(48): 2106108
https://doi.org/10.1002/adfm.202106108
|
75 |
Qin C. , Zhang S. , Zhou Z. , Han T. , Song J. , Ma S. , Jia G. , Jiao Z. , Zhu Z. , Chen X. , Jiang Y. . Low amplified spontaneous emission threshold from 2-thiophenemethylammonium quasi-2D perovskites via phase engineering. Opt. Express, 2022, 30(20): 36541
https://doi.org/10.1364/OE.471849
|
76 |
Shi Y. , Li R. , Yin G. , Zhang X. , Yu X. , Meng B. , Wei Z. , Chen R. . Laser-induced secondary crystallization of CsPbBr3 perovskite film for robust and low threshold amplified spontaneous emission. Adv. Funct. Mater., 2022, 32(49): 2207206
https://doi.org/10.1002/adfm.202207206
|
77 |
Li G. , Lin K. , Zhao K. , Huang Y. , Ji T. , Shi L. , Hao Y. , Xiong Q. , Zheng K. , Pullerits T. , Cui Y. . Localized bound multiexcitons in engineered quasi-2D perovskites grains at room temperature for efficient lasers. Adv. Mater., 2023, 35(20): 2211591
https://doi.org/10.1002/adma.202211591
|
78 |
Yang Y. , Peng X. , Qin C. , Lian Y. , Gao J. , Yang X. . Accelerating energy funnel and charge transport of quasi-2D perovskites for efficient sky blue and white-light-emitting devices. ACS Photonics, 2022, 9(1): 163
https://doi.org/10.1021/acsphotonics.1c01322
|
79 |
Allegro I. , Li Y. , S. Richards B. , W. Paetzold U. , Lemmer U. , A. Howard I. . Bimolecular and Auger recombination in phase-stable perovskite thin films from cryogenic to room temperature and their effect on the amplified spontaneous emission threshold. J. Phys. Chem. Lett., 2021, 12(9): 2293
https://doi.org/10.1021/acs.jpclett.1c00099
|
80 |
Huang S. , Liu N. , Liu Z. , Zhan Z. , Hu Z. , Du Z. , Zhang Z. , Luo J. , Du J. , Tang J. , Leng Y. . Enhanced amplified spontaneous emission in quasi-2D perovskite by facilitating energy transfer. ACS Appl. Mater. Interfaces, 2022, 14(29): 33842
https://doi.org/10.1021/acsami.2c07633
|
81 |
Li J. , Zhang L. , Chu Z. , Dong C. , Jiang J. , Yin Z. , You J. , Wu J. , Lan W. , Zhang X. . Amplified spontaneous emission with a low threshold from quasi‐2D perovskite films via phase engineering and surface passivation. Adv. Opt. Mater., 2022, 10(6): 2102563
https://doi.org/10.1002/adom.202102563
|
82 |
Cui M. , Qin C. , Jiang Y. , Yuan M. , Xu L. , Song D. , Jiang Y. , Liu Y. . Direct observation of competition between amplified spontaneous emission and Auger recombination in quasi-two-dimensional perovskites. J. Phys. Chem. Lett., 2020, 11(14): 5734
https://doi.org/10.1021/acs.jpclett.0c01852
|
83 |
Li Y. , Allegro I. , Kaiser M. , J. Malla A. , S. Richards B. , Lemmer U. , W. Paetzold U. , A. Howard I. . Exciton versus free carrier emission: implications for photoluminescence efficiency and amplified spontaneous emission thresholds in quasi-2D and 3D perovskites. Mater. Today, 2021, 49: 35
https://doi.org/10.1016/j.mattod.2021.05.002
|
84 |
Li M. , Shang Q. , Li C. , Li S. , Liang Y. , Yu W. , Wu C. , Zhao L. , Zhong Y. , Du W. , Wu X. , Jia Z. , Gao Y. , Chen H. , Liu X. , Guo S. , Liao Q. , Xing G. , Xiao L. , Zhang Q. . High optical gain of solution‐processed mixed‐cation CsPbBr3 thin films towards enhanced amplified spontaneous emission. Adv. Funct. Mater., 2021, 31(25): 2102210
https://doi.org/10.1002/adfm.202102210
|
85 |
He X. , Gong H. , Huang H. , Li Y. , Ren J. , Li Y. , Liao Q. , Gao T. , Fu H. . Multicolor biexciton lasers based on 2D perovskite single crystalline flakes. Adv. Opt. Mater., 2022, 10(15): 2200238
https://doi.org/10.1002/adom.202200238
|
86 |
Chu Z. , Guo T. , Zhao S. , Chen H. , Li Y. , Xu W. , Ran G. . Quasi 2D perovskite single-mode vertical-cavity lasers through large-area film transfer. Appl. Phys. Lett., 2022, 120(12): 121104
https://doi.org/10.1063/5.0085882
|
87 |
Qin C. , S. D. Sandanayaka A. , Zhao C. , Matsushima T. , Zhang D. , Fujihara T. , Adachi C. . Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature, 2020, 585(7823): 53
https://doi.org/10.1038/s41586-020-2621-1
|
88 |
Lei L. , Seyitliyev D. , Stuard S. , Mendes J. , Dong Q. , Fu X. , A. Chen Y. , He S. , Yi X. , Zhu L. , H. Chang C. , Ade H. , Gundogdu K. , So F. . Efficient energy funneling in quasi‐2D perovskites: From light emission to lasing. Adv. Mater., 2020, 32(16): 1906571
https://doi.org/10.1002/adma.201906571
|
89 |
Liu G. , Jia S. , Wang J. , Li Y. , Yang H. , Wang S. , Gong Q. . Toward microlasers with artificial structure based on single-crystal ultrathin perovskite films. Nano Lett., 2021, 21(20): 8650
https://doi.org/10.1021/acs.nanolett.1c02618
|
90 |
Liang Y. , Shang Q. , Wei Q. , Zhao L. , Liu Z. , Shi J. , Zhong Y. , Chen J. , Gao Y. , Li M. , Liu X. , Xing G. , Zhang Q. . Lasing from mechanically exfoliated 2D homologous Ruddlesden–Popper perovskite engineered by inorganic layer thickness. Adv. Mater., 2019, 31(39): 1903030
https://doi.org/10.1002/adma.201903030
|
91 |
Gao W. , Wei Q. , Wang T. , Xu J. , Zhuang L. , Li M. , Yao K. , F. Yu S. . Two-photon lasing from two-dimensional homologous Ruddlesden–Popper perovskite with giant nonlinear absorption and natural microcavities. ACS Nano, 2022, 16(8): 13082
https://doi.org/10.1021/acsnano.2c05726
|
92 |
Dong H. , Zhang C. , Liu X. , Yao J. , S. Zhao Y. . Materials chemistry and engineering in metal halide perovskite lasers. Chem. Soc. Rev., 2020, 49(3): 951
https://doi.org/10.1039/C9CS00598F
|
93 |
Fruhling C. , Wang K. , Chowdhury S. , Xu X. , Simon J. , Kildishev A. , Dou L. , Meng X. , Boltasseva A. , M. Shalaev V. . Coherent random lasing in subwavelength quasi‐2D perovskites. Laser Photonics Rev., 2023, 17(4): 2200314
https://doi.org/10.1002/lpor.202200314
|
94 |
K. Roy P. , K. Ulaganathan R. , M. Raghavan C. , M. Mhatre S. , I. Lin H. , L. Chen W. , M. Chang Y. , Rozhin A. , T. Hsu Y. , F. Chen Y. , Sankar R. , C. Chou F. , T. Liang C. . Unprecedented random lasing in 2D organolead halide single-crystalline perovskite microrods. Nanoscale, 2020, 12(35): 18269
https://doi.org/10.1039/D0NR01171A
|
95 |
Y. Liu T. , Wang H. , S. Song M. , Y. Zhao L. , F. Hu Z. , Y. Wang H. . Dynamics of spin‐dependent polariton–polariton interactions in two‐dimensional layered halide organic perovskite microcavities. Laser Photonics Rev., 2022, 16(10): 2200176
https://doi.org/10.1002/lpor.202200176
|
96 |
Fieramosca A. , Polimeno L. , Ardizzone V. , De Marco L. , Pugliese M. , Maiorano V. , De Giorgi M. , Dominici L. , Gigli G. , Gerace D. , Ballarini D. , Sanvitto D. . Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature. Sci. Adv., 2019, 5(5): eaav9967
https://doi.org/10.1126/sciadv.aav9967
|
97 |
Wang J. , Su R. , Xing J. , Bao D. , Diederichs C. , Liu S. , C. H. Liew T. , Chen Z. , Xiong Q. . Room temperature coherently coupled exciton–polaritons in two-dimensional organic–inorganic perovskite. ACS Nano, 2018, 12(8): 8382
https://doi.org/10.1021/acsnano.8b03737
|
98 |
B. Anantharaman S. , E. Stevens C. , Lynch J. , Song B. , Hou J. , Zhang H. , Jo K. , Kumar P. , C. Blancon J. , D. Mohite A. , R. Hendrickson J. , Jariwala D. . Self-hybridized polaritonic emission from layered perovskites. Nano Lett., 2021, 21(14): 6245
https://doi.org/10.1021/acs.nanolett.1c02058
|
99 |
Polimeno L. , Lerario G. , De Giorgi M. , De Marco L. , Dominici L. , Todisco F. , Coriolano A. , Ardizzone V. , Pugliese M. , T. Prontera C. , Maiorano V. , Moliterni A. , Giannini C. , Olieric V. , Gigli G. , Ballarini D. , Xiong Q. , Fieramosca A. , D. Solnyshkov D. , Malpuech G. , Sanvitto D. . Tuning of the Berry curvature in 2D perovskite polaritons. Nat. Nanotechnol., 2021, 16(12): 1349
https://doi.org/10.1038/s41565-021-00977-2
|
100 |
Łempicka-Mirek K. , Król M. , Sigurdsson H. , Wincukiewicz A. , Morawiak P. , Mazur R. , Muszyński M. , Piecek W. , Kula P. , Stefaniuk T. , Kamińska M. , De Marco L. , G. Lagoudakis P. , Ballarini D. , Sanvitto D. , Szczytko J. , Piętka B. . Electrically tunable Berry curvature and strong light−matter coupling in liquid crystal microcavities with 2D perovskite. Sci. Adv., 2022, 8(40): eabq7533
https://doi.org/10.1126/sciadv.abq7533
|
101 |
E. Park J. , López-Arteaga R. , D. Sample A. , R. Cherqui C. , Spanopoulos I. , Guan J. , G. Kanatzidis M. , C. Schatz G. , A. Weiss E. , W. Odom T. . Polariton dynamics in two-dimensional Ruddlesden–Popper perovskites strongly coupled with plasmonic lattices. ACS Nano, 2022, 16(3): 3917
https://doi.org/10.1021/acsnano.1c09296
|
102 |
H. M. Dang N. , Gerace D. , Drouard E. , Trippé-Allard G. , Lédée F. , Mazurczyk R. , Deleporte E. , Seassal C. , S. Nguyen H. . Tailoring dispersion of room-temperature exciton−polaritons with perovskite-based subwavelength metasurfaces. Nano Lett., 2020, 20(3): 2113
https://doi.org/10.1021/acs.nanolett.0c00125
|
103 |
Kim S. , H. Woo B. , C. An S. , Lim Y. , C. Seo I. , S. Kim D. , Yoo S. , H. Park Q. , C. Jun Y. . Topological control of 2D perovskite emission in the strong coupling regime. Nano Lett., 2021, 21(23): 10076
https://doi.org/10.1021/acs.nanolett.1c03853
|
104 |
Su R. , Diederichs C. , Wang J. , C. H. Liew T. , Zhao J. , Liu S. , Xu W. , Chen Z. , Xiong Q. . Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett., 2017, 17(6): 3982
https://doi.org/10.1021/acs.nanolett.7b01956
|
105 |
Polimeno L. , Fieramosca A. , Lerario G. , Cinquino M. , De Giorgi M. , Ballarini D. , Todisco F. , Dominici L. , Ardizzone V. , Pugliese M. , T. Prontera C. , Maiorano V. , Gigli G. , De Marco L. , Sanvitto D. . Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites. Adv. Opt. Mater., 2020, 8(16): 2000176
https://doi.org/10.1002/adom.202000176
|
106 |
Yang X. , Zhang X. , Deng J. , Chu Z. , Jiang Q. , Meng J. , Wang P. , Zhang L. , Yin Z. , You J. . Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun., 2018, 9(1): 570
https://doi.org/10.1038/s41467-018-02978-7
|
107 |
Zhou N. , Shen Y. , Li L. , Tan S. , Liu N. , Zheng G. , Chen Q. , Zhou H. . The exploration of crystallization kinetics in quasi two-dimensional perovskite and high performance solar cells. J. Am. Chem. Soc., 2018, 140(1): 459
https://doi.org/10.1021/jacs.7b11157
|
108 |
L. Leung T. , Ahmad I. , A. Syed A. , M. C. Ng A. , Popović J. , B. Djurišić A. . Stability of 2D and quasi-2D perovskite materials and devices. Commun. Mater., 2022, 3(1): 63
https://doi.org/10.1038/s43246-022-00285-9
|
109 |
Wang C. , Dai G. , Wang J. , Cui M. , Yang Y. , Yang S. , Qin C. , Chang S. , Wu K. , Liu Y. , Zhong H. . Low-threshold blue quasi-2D perovskite laser through domain distribution control. Nano Lett., 2022, 22(3): 1338
https://doi.org/10.1021/acs.nanolett.1c04666
|
110 |
Yang Y. , Gao F. , Gao S. , H. Wei S. . Origin of the stability of two-dimensional perovskites: A first-principles study. J. Mater. Chem. A, 2018, 6(30): 14949
https://doi.org/10.1039/C8TA01496E
|
111 |
Wang J. , Li D. , Mu L. , Li M. , Luo Y. , Zhang B. , Mai C. , Guo B. , Lan L. , Wang J. , L. Yip H. , Peng J. . Inkjet-printed full-color matrix quasi-two-dimensional perovskite light-emitting diodes. ACS Appl. Mater. Interfaces, 2021, 13(35): 41773
https://doi.org/10.1021/acsami.1c07526
|
112 |
Chen F. , Li H. , Zhou H. , Luo S. , Sun Z. , Ye Z. , Sun F. , Wang J. , Zheng Y. , Chen X. , Xu H. , Xu H. , Byrnes T. , Chen Z. , Wu J. . Optically controlled femtosecond polariton switch at room temperature. Phys. Rev. Lett., 2022, 129(5): 057402
https://doi.org/10.1103/PhysRevLett.129.057402
|
113 |
G. Berloff N. , Silva M. , Kalinin K. , Askitopoulos A. , D. Töpfer J. , Cilibrizzi P. , Langbein W. , G. Lagoudakis P. . Realizing the classical XY Hamiltonian in polariton simulators. Nat. Mater., 2017, 16(11): 1120
https://doi.org/10.1038/nmat4971
|
114 |
Wang Y. , Zhi M. , Q. Chang Y. , P. Zhang J. , Chan Y. . Stable, ultralow threshold amplified spontaneous emission from CsPbBr3 nanoparticles exhibiting trion gain. Nano Lett., 2018, 18(8): 4976
https://doi.org/10.1021/acs.nanolett.8b01817
|
115 |
Shang Q. , Li M. , Zhao L. , Chen D. , Zhang S. , Chen S. , Gao P. , Shen C. , Xing J. , Xing G. , Shen B. , Liu X. , Zhang Q. . Role of the exciton–polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser. Nano Lett., 2020, 20(9): 6636
https://doi.org/10.1021/acs.nanolett.0c02462
|
116 |
Song J. , Shang Q. , Deng X. , Liang Y. , Li C. , Liu X. , Xiong Q. , Zhang Q. . Continuous-wave pumped perovskite lasers with device area below 1 μm2. Adv. Mater., 2023, 35(30): 2302170
https://doi.org/10.1002/adma.202302170
|
117 |
Ren Z. , Yu J. , Qin Z. , Wang J. , Sun J. , C. S. Chan C. , Ding S. , Wang K. , Chen R. , S. Wong K. , Lu X. , J. Yin W. , C. H. Choy W. . High‐performance blue perovskite light‐emitting diodes enabled by efficient energy transfer between coupled quasi‐2D perovskite layers. Adv. Mater., 2021, 33(1): 2005570
https://doi.org/10.1002/adma.202005570
|
118 |
Ren Z. , Sun J. , Yu J. , Xiao X. , Wang Z. , Zhang R. , Wang K. , Chen R. , Chen Y. , C. H. Choy W. . High-performance blue quasi-2D perovskite light-emitting diodes via balanced carrier confinement and transfer. Nano-Micro Lett., 2022, 14(1): 66
https://doi.org/10.1007/s40820-022-00807-7
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|