Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (4) : 43304    https://doi.org/10.1007/s11467-023-1297-z
RESEARCH ARTICLE
Electron doping induced stable ferromagnetism in two-dimensional GdI3 monolayer
Rong Guo, Yilv Guo, Yehui Zhang, Xiaoshu Gong, Tingbo Zhang, Xing Yu, Shijun Yuan(), Jinlan Wang()
Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
 Download: PDF(6096 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

As a two-dimensional material with a hollow hexatomic ring structure, Néel-type anti-ferromagnetic (AFM) GdI3 can be used as a theoretical model to study the effect of electron doping. Based on first-principles calculations, we find that the Fermi surface nesting occurs when more than 1/3 electron per Gd is doped, resulting in the failure to obtain a stable ferromagnetic (FM) state. More interestingly, GdI3 with appropriate Mg/Ca doping (1/6 Mg/Ca per Gd) turns to be half-metallic FM state. This AFM−FM transition results from the transfer of doped electrons to the spatially expanded Gd-5d orbital, which leads to the FM coupling of local half-full Gd-4f electrons through 5d−4f hybridization. Moreover, the shortened Gd−Gd length is the key to the formation of the stable ferromagnetic coupling. Our method provides new insights into obtaining stable FM materials from AFM materials.

Keywords two-dimensional materials      electronic structure      magnetism     
Corresponding Author(s): Shijun Yuan,Jinlan Wang   
Issue Date: 26 May 2023
 Cite this article:   
Rong Guo,Yilv Guo,Yehui Zhang, et al. Electron doping induced stable ferromagnetism in two-dimensional GdI3 monolayer[J]. Front. Phys. , 2023, 18(4): 43304.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1297-z
https://academic.hep.com.cn/fop/EN/Y2023/V18/I4/43304
Fig.1  (a) Top and side view, (b) density of states (DOS) and (c) band structure of monolayer (GdI3)2Li in FM P3ˉ1m state. The black arrow indicates the hot spot of Fermi surface nesting. (d) t2g and eg d orbitals splitting in Gd-I6 octahedron structure. (e?g) The 2D Fermi surfaces at the energy of EF, EF?0.11eV and EF?0.22eV, correspond to the number of doped electrons (Ne) of 0.50, 0.33 and 0.25 per Gd atom, respectively.
Orderabd1d2d3Energy
FM13.07926.3693.8244.0644.5270.0
Néel13.26926.5724.1744.5494.560345.8
Zigzag13.35026.2463.8174.4004.62911.3
Stripy113.08026.5823.7734.2584.594143.1
Stripy213.08426.3983.8414.1044.59730.5
GdI37.7857.7854.494???
(GdI3)2Mg7.78712.4163.4074.832??
Tab.1  Optimized structures of (GdI3)6Mg with different magnetic orders. Lattice constants (a and b) and three sorts of nearest-neighbor Gd?Gd distances (d1<d2<d3) are in units of ?. The configuration of 3×23 supercells can be found in Fig.3(a)?(e). The energies are in units of meV/f.u., and the FM state is taken as the reference. The lattice parameters of Néel-AFM GdI3 and stripy-type AFM (GdI3)2Mg are also listed for comparison.
Fig.2  (a) Top view and side view of (GdI3)6Mg monolayer. The primitive cell and 3×3 supercell of GdI3 are indicated by the dashed and solid lines, respectively. (b) Evolution of total energy at 400 K and snapshots of a (GdI3)6Mg monolayer after a 16 ps AIMD simulations.
Fig.3  (a?d) Magnetic configurations of Néel-type AFM, zigzag-type AFM, stripy1-type AFM, and stripy2-type AFM (GdI3)6Mg monolayer. Red/blue atoms represent Gd atoms with spin-up/down electron configurations, respectively. (e) Magnetic configuration of FM. The bidirectional arrows correspond to three sorts of Gd?Gd nearest neighbor exchange parameters: J1, J2, and J3. (f) Exchange parameters with different Gd?Gd distances. (g) Angular dependence of the magnetic anisotropy energy (MAE) of the (GdI3)6Mg. (h) Average magnetic moment per Gd atom (blue) and magnetic susceptibility (red) concerning temperature for (GdI3)6Mg monolayer.
Fig.4  (a) Electronic band structures of (GdI3)6Mg monolayer. The insert shows the energy difference between the valence band Ev and the Fermi level in the 2D Brillouin zone. (b) DOS for the spin majority (↑) and spin minority (↓). The Fermi level is set as zero. (c) Spin-resolved projected DOS around the Fermi level.
Fig.5  (a) Three orbital-resolved projected bands with SOC effect near the Fermi level. The inset presents the schematic representation of the distance of Gd?Gd and the angle of Gd?I?Gd. (b, c) The electrons density from ?0.05 eV to 0.00 eV (from ?0.35 eV to ?0.10 eV) of (GdI3)6Mg monolayer. The value of the isosurface is 0.0004 e/?3.
Fig.6  (a) Doping Mg atoms with a homogeneous configuration and (b) inhomogeneous configuration in 3 × 3 × 1 supercell (GdI3)6Mg monolayer. (c) Total energy as a function of biaxial strain for FM and AFM-zigzag (GdI3)6Mg. (d) Band structure and DOS of (GdI3)6Ca monolayer. The inset presents the crystal structure. The Fermi level is set as zero.
1 Gong C. , Li L. , L. Li Z. , W. Ji H. , Stern A. , Xia Y. , Cao T. , Bao W. , Z. Wang C. , A. Wang Y. , Q. Qiu Z. , J. Cava R. , G. Louie S. , Xia J. , Zhang X. . Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546(7657): 265
https://doi.org/10.1038/nature22060
2 Huang B. , Clark G. , Navarro-Moratalla E. , R. Klein D. , Cheng R. , L. Seyler K. , Zhong D. , Schmidgall E. , A. McGuire M. , H. Cobden D. , Yao W. , Xiao D. , Jarillo-Herrero P. , D. Xu X. . Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546(7657): 270
https://doi.org/10.1038/nature22391
3 An M. , Dong S. . Ferroic orders in two-dimensional transition/rare-earth metal halides. APL Mater., 2020, 8(11): 110704
https://doi.org/10.1063/5.0031870
4 Cheng X. , X. Cheng Z. , Wang C. , L. Li M. , F. Gu P. , Q. Yang S. , P. Li Y. , Watanabe K. , Taniguchi T. , Ji W. , Dai L. . Light helicity detector based on 2D magnetic semiconductor CrI3. Nat. Commun., 2021, 12(1): 6874
https://doi.org/10.1038/s41467-021-27218-3
5 Ding N. , Chen J. , Dong S. , Stroppa A. . Ferroelectricity and ferromagnetism in a VOI2 monolayer: Role of the Dzyaloshinskii−Moriya interaction. Phys. Rev. B, 2020, 102(16): 165129
https://doi.org/10.1103/PhysRevB.102.165129
6 Gong C. , Zhang X. . Two-dimensional magnetic crystals and emergent heterostructure devices. Science, 2019, 363(6428): eaav4450
https://doi.org/10.1126/science.aav4450
7 Hidalgo-Sacoto R. , I. Gonzalez R. , E. Vogel E. , Allende S. , D. Mella J. , Cardenas C. , E. Troncoso R. , Munoz F. . Magnon valley Hall effect in CrI3-based van der Waals heterostructures. Phys. Rev. B, 2020, 101(20): 205425
https://doi.org/10.1103/PhysRevB.101.205425
8 X. Huang C. , P. Du Y. , P. Wu H. , J. Xiang H. , M. Deng K. , J. Kan E. . Prediction of intrinsic ferromagnetic ferroelectricity in a transition-metal halide monolayer. Phys. Rev. Lett., 2018, 120(14): 147601
https://doi.org/10.1103/PhysRevLett.120.147601
9 Y. Kim S. , Y. Kim T. , J. Sandilands L. , Sinn S. , C. Lee M. , Son J. , Lee S. , Y. Choi K. , Kim W. , G. Park B. , Jeon C. , D. Kim H. , H. Park C. , G. Park J. , J. Moon S. , W. Noh T. . Charge-spin correlation in van der Waals antiferromagnet NiPS3. Phys. Rev. Lett., 2018, 120(13): 136402
https://doi.org/10.1103/PhysRevLett.120.136402
10 A. McGuire M. , O. Garlea V. , Kc S. , R. Cooper V. , Yan J. , Cao H. , C. Sales B. . Antiferromagnetism in the van der Waals layered spin-lozenge semiconductor CrTe3. Phys. Rev. B, 2017, 95(14): 144421
https://doi.org/10.1103/PhysRevB.95.144421
11 L. Sun Q. , Kioussis N. . Prediction of manganese trihalides as two-dimensional Dirac half-metals. Phys. Rev. B, 2018, 97(9): 094408
https://doi.org/10.1103/PhysRevB.97.094408
12 Tang X. , Z. Kou L. . Two-dimensional ferroics and multiferroics: Platforms for new physics and applications. J. Phys. Chem. Lett., 2019, 10(21): 6634
https://doi.org/10.1021/acs.jpclett.9b01969
13 H. Wu M. , Jena P. . The rise of two-dimensional van der Waals ferroelectrics. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2018, 8(5): e1365
https://doi.org/10.1002/wcms.1365
14 Zhou S. , You L. , L. Zhou H. , Pu Y. , G. Gui Z. , L. Wang J. . Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications. Front. Phys., 2021, 16(1): 13301
https://doi.org/10.1007/s11467-020-0986-0
15 Y. He X.T. Lin F.Liu F.Shi W., 3D Dirac semimetals supported tunable terahertz BIC metamaterials, Nanophotonics 11(21), 4705 (2022)
16 Leng J. , Peng J. , Jin A. , Cao D. , J. Liu D. , Y. He X. , T. Lin F. , Liu F. . Investigation of terahertz high Q-factor of all-dielectric metamaterials. Opt. Laser Technol., 2022, 146: 107570
https://doi.org/10.1016/j.optlastec.2021.107570
17 Peng J. , Y. He X. , Y. Y. Shi C. , Leng J. , T. Lin F. , Liu F. , Zhang H. , Z. Shi W. . Investigation of graphene supported terahertz elliptical metamaterials. Physica E, 2020, 124: 114309
https://doi.org/10.1016/j.physe.2020.114309
18 Y. He X.Liu F.T. Lin F.Shi W., 3D Dirac semimetal supported tunable TE modes, Ann. Phys. 534(4), 2100355 (2022)
19 L. L. Zhuang H. , R. C. Kent P. , G. Hennig R. . Strong anisotropy and magnetostriction in the two-dimensional Stoner ferromagnet Fe3GeTe2. Phys. Rev. B, 2016, 93(13): 134407
https://doi.org/10.1103/PhysRevB.93.134407
20 Wang B. , H. Zhang Y. , Ma L. , S. Wu Q. , L. Guo Y. , W. Zhang X. , L. Wang J. , (X = P MnX . As) monolayers: A new type of two-dimensional intrinsic room temperature ferromagnetic half-metallic material with large magnetic anisotropy. Nanoscale, 2019, 11(10): 4204
https://doi.org/10.1039/C8NR09734H
21 Wang B. , W. Zhang X. , H. Zhang Y. , J. Yuan S. , Guo Y. , Dong S. , L. Wang J. . Prediction of a two-dimensional high-Tc f-electron ferromagnetic semiconductor. Mater. Horiz., 2020, 7(6): 1623
https://doi.org/10.1039/D0MH00183J
22 Guo Y. , H. Zhang Y. , H. Lu S. , W. Zhang X. , H. Zhou Q. , J. Yuan S. , L. Wang J. . Coexistence of semiconducting ferromagnetics and piezoelectrics down 2D limit from non van der Waals antiferromagnetic LiNbO3-type FeTiO3. J. Phys. Chem. Lett., 2022, 13(8): 1991
https://doi.org/10.1021/acs.jpclett.2c00091
23 A. Broadway D. , C. Scholten S. , Tan C. , Dontschuk N. , E. Lillie S. , C. Johnson B. , L. Zheng G. , H. Wang Z. , R. Oganov A. , J. Tian S. , H. Li C. , C. Lei H. , Wang L. , C. L. Hollenberg L. , P. Tetienne J. . Imaging domain reversal in an ultrathin van der Waals ferromagnet. Adv. Mater., 2020, 32(39): 2003314
https://doi.org/10.1002/adma.202003314
24 A. McGuire M. , Clark G. , Kc S. , M. Chance W. , E. Jellison G. , R. Cooper V. , Xu X. , C. Sales B. . Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl3 crystals. Phys. Rev. Mater., 2017, 1(1): 014001
https://doi.org/10.1103/PhysRevMaterials.1.014001
25 J. Tian S. , F. Zhang J. , H. Li C. , P. Ying T. , Y. Li S. , Zhang X. , Liu K. , C. Lei H. . Ferromagnetic van der Waals crystal VI3. J. Am. Chem. Soc., 2019, 141(13): 5326
https://doi.org/10.1021/jacs.8b13584
26 W. Zhang Z. , Z. Shang J. , Y. Jiang C. , Rasmita A. , B. Gao W. , Yu T. . Direct photoluminescence probing of ferromagnetism in monolayer two-dimensional CrBr3. Nano Lett., 2019, 19(5): 3138
https://doi.org/10.1021/acs.nanolett.9b00553
27 Dagotto E. . Complexity in strongly correlated electronic systems. Science, 2005, 309(5732): 257
https://doi.org/10.1126/science.1107559
28 B. Asprey L. , K. Keenan T. , H. Kruse F. . Preparation and crystal data for lanthanide and actinide triiodides. Inorg. Chem., 1964, 3(8): 1137
https://doi.org/10.1021/ic50018a015
29 P. You H. , Zhang Y. , Chen J. , Ding N. , An M. , Miao L. , Dong S. . Peierls transition driven ferroelasticity in the two-dimensional df hybrid magnets. Phys. Rev. B, 2021, 103(16): L161408
https://doi.org/10.1103/PhysRevB.103.L161408
30 P. You H. , Ding N. , Chen J. , Y. Yao X. , Dong S. . Gadolinium halide monolayers: A fertile family of two-dimensional 4f magnets. ACS Appl. Electron. Mater., 2022, 4(7): 3168
https://doi.org/10.1021/acsaelm.2c00384
31 Kresse G. , Furthmuller J. . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
https://doi.org/10.1103/PhysRevB.54.11169
32 P. Perdew J. , Burke K. , Ernzerhof M. . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
33 Larson P. , R. L. Lambrecht W. , Chantis A. , van Schilfgaarde M. . Electronic structure of rare-earth nitrides using the LSDA plus U approach: Importance of allowing 4f orbitals to break the cubic crystal symmetry. Phys. Rev. B, 2007, 75(4): 045114
https://doi.org/10.1103/PhysRevB.75.045114
34 H. Zhang Y.Wang B.Guo Y.Li Q.N. Wang J., A universal framework for metropolis Monte Carlo simulation of magnetic Curie temperature, Comput. Mater. Sci. 197, 110638 (2021)
[1] Xiulian Fan, Ruifeng Xin, Li Li, Bo Zhang, Cheng Li, Xilong Zhou, Huanzhi Chen, Hongyan Zhang, Fangping OuYang, Yu Zhou. Progress in the preparation and physical properties of two-dimensional Cr-based chalcogenide materials and heterojunctions[J]. Front. Phys. , 2024, 19(2): 23401-.
[2] Liang Liu, Xiaolin Li, Luping Du, Xi Zhang. Generation and modulation of multiple 2D bulk photovoltaic effects in space-time reversal asymmetric 2H-FeCl2[J]. Front. Phys. , 2023, 18(6): 62304-.
[3] Fan-Ying Wu, Qi-Yi Wu, Chen Zhang, Yang Luo, Xiangqi Liu, Yuan-Feng Xu, Dong-Hui Lu, Makoto Hashimoto, Hao Liu, Yin-Zou Zhao, Jiao-Jiao Song, Ya-Hua Yuan, Hai-Yun Liu, Jun He, Yu-Xia Duan, Yan-Feng Guo, Jian-Qiao Meng. Itinerant to relocalized transition of f electrons in the Kondo insulator CeRu4Sn6[J]. Front. Phys. , 2023, 18(5): 53304-.
[4] Xue-Jing Feng, Jin-Xin Li, Lu Qin, Ying-Ying Zhang, ShiQiang Xia, Lu Zhou, ChunJie Yang, ZunLue Zhu, Wu-Ming Liu, Xing-Dong Zhao. Itinerant ferromagnetism entrenched by the anisotropy of spin−orbit coupling in a dipolar Fermi gas[J]. Front. Phys. , 2023, 18(5): 52303-.
[5] Na Sa, Meng Wu, Hui-Qiong Wang. Review of the role of ionic liquids in two-dimensional materials[J]. Front. Phys. , 2023, 18(4): 43601-.
[6] Tao Zhu, Yao Zhang, Xin Wei, Man Jiang, Hua Xu. The rise of two-dimensional tellurium for next-generation electronics and optoelectronics[J]. Front. Phys. , 2023, 18(3): 33601-.
[7] Weibin Zhang, Woochul Yang, Yingkai Liu, Zhiyong Liu, Fuchun Zhang. Computational exploration and screening of novel Janus MA2Z4 (M = Sc−Zn, Y−Ag, Hf−Au; A=Si, Ge; Z=N, P) monolayers and potential application as a photocatalyst[J]. Front. Phys. , 2022, 17(6): 63509-.
[8] Mingyun Huang, Xingxing Jiang, Yueshao Zheng, Zhengwei Xu, Xiong-Xiong Xue, Keqiu Chen, Yexin Feng. Novel two-dimensional PdSe phase: A puckered material with excellent electronic and optical properties[J]. Front. Phys. , 2022, 17(5): 53504-.
[9] Xiao-Dong Zhang, Kang Liu, Jun-Wei Fu, Hong-Mei Li, Hao Pan, Jun-Hua Hu, Min Liu. Pseudo-copper Ni–Zn alloy catalysts for carbon dioxide reduction to C2 products[J]. Front. Phys. , 2021, 16(6): 63500-.
[10] Haoyu Dong, Le Lei, Shuya Xing, Jianfeng Guo, Feiyue Cao, Shangzhi Gu, Yanyan Geng, Shuo Mi, Hanxiang Wu, Yan Jun Li, Yasuhiro Sugawara, Fei Pang, Wei Ji, Rui Xu, Zhihai Cheng. Epitaxial fabrication of AgTe monolayer on Ag(111) and the sequential growth of Te film[J]. Front. Phys. , 2021, 16(6): 63502-.
[11] Tian-Zhong Yuan, Mu-Yuan Zou, Wen-Tao Jin, Xin-Yuan Wei, Xu-Guang Xu, Wei Li. Pairing symmetry in monolayer of orthorhombic CoSb[J]. Front. Phys. , 2021, 16(4): 43500-.
[12] Yuan Gan, Jiyuan Liang, Chang-woo Cho, Si Li, Yanping Guo, Xiaoming Ma, Xuefeng Wu, Jinsheng Wen, Xu Du, Mingquan He, Chang Liu, Shengyuan A. Yang, Kedong Wang, Liyuan Zhang. Bandgap opening in MoTe2 thin flakes induced by surface oxidation[J]. Front. Phys. , 2020, 15(3): 33602-.
[13] T. Latychevskaia, C. R. Woods, Yi Bo Wang, M. Holwill, E. Prestat, S. J. Haigh, K. S. Novoselov. Convergent and divergent beam electron holography and reconstruction of adsorbates on free-standing two-dimensional crystals[J]. Front. Phys. , 2019, 14(1): 13606-.
[14] Yue Liu (刘月), Yu Zhou (周煜), Hao Zhang (张昊), Feirong Ran (冉飞荣), Weihao Zhao (赵炜昊), Lin Wang (王琳), Chengjie Pei (裴成杰), Jindong Zhang (张锦东), Xiao Huang (黄晓), Hai Li (李海). Probing interlayer interactions in WSe2-graphene heterostructures by ultralow-frequency Raman spectroscopy[J]. Front. Phys. , 2019, 14(1): 13607-.
[15] Xin-Long Dong, Kun-Hua Zhang, Ming-Xiang Xu. First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni)[J]. Front. Phys. , 2018, 13(5): 137106-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed