Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (6) : 63509    https://doi.org/10.1007/s11467-022-1199-5
RESEARCH ARTICLE
Computational exploration and screening of novel Janus MA2Z4 (M = Sc−Zn, Y−Ag, Hf−Au; A=Si, Ge; Z=N, P) monolayers and potential application as a photocatalyst
Weibin Zhang1(), Woochul Yang3, Yingkai Liu1, Zhiyong Liu1, Fuchun Zhang2()
1. College of Physics and Electronics Information, Yunnan Key Laboratory of Opto-Electronic Information Technology, Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials-Ministry of Education, Yunnan Normal University, Kunming 650500, China
2. College of Physics and Electronic Information, Yan’an University, Yan’an 716000, China
3. Department of Physics, Dongguk University, Seoul 04620, Republic of Korea
 Download: PDF(13559 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

By high-throughput calculations, 13 thermally and environmentally stable Janus MA2Z4 monolayers were screened from 104 types of candidates. The 13 stable monolayers have very high charge carrier concentrations (×1015 cm−2), which are better than those of the well-known graphene and TaS2. Because of their excellent conductivity, the 6 monolayers with band gaps less than 0.5 eV are identified as potential electrode materials for hydrogen evolution reaction applications. For potential applications as photoelectric or photocatalytic materials, bandgaps (Eg-HSE) higher than 0.5 eV remained, which resulted in 7 potential candidates. Based on optical absorption analysis in the visible-light range, H-HfSiGeP4 and H-MoSiGeP4 have higher absorption ability and optical conductivity, which is quite impressive for optoelectronic, solar cell device, and photocatalysis applications. Additionally, the transmittance coefficient of Janus MA2Z4 monolayers is approximately 70%−80% in the visible-light range, which implies that these monolayers show good light transmittance. For potential applications as photocatalysts, the redox potential and charge effective mass analysis indicate that H-HfSiGeP4, H-MoSiGeP4, T-ScSiGeN4, and T-ZrSiGeN4 are suitable photocatalysts for CO2 reduction reactions. Using high-throughput identification, 13 types of new and stable Janus MA2Z4 monolayers were explored, and the basic properties and potential applications were investigated, which can reduce the time for experiments and provide basic data for the material genome initiative.

Keywords Janus MA2Z4      high-throughput identification      charge carrier concentration      electronic structure      optical properties     
Corresponding Author(s): Weibin Zhang,Fuchun Zhang   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Issue Date: 28 September 2022
 Cite this article:   
Weibin Zhang,Woochul Yang,Yingkai Liu, et al. Computational exploration and screening of novel Janus MA2Z4 (M = Sc−Zn, Y−Ag, Hf−Au; A=Si, Ge; Z=N, P) monolayers and potential application as a photocatalyst[J]. Front. Phys. , 2022, 17(6): 63509.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1199-5
https://academic.hep.com.cn/fop/EN/Y2022/V17/I6/63509
Fig.1  Top and side views of the (a) H- and (b) T-phase structures of the Janus MA2Z4 monolayer. (c) Periodic table of the 3d, 4d and 5d transition metals (TM) in the work.
Fig.2  (a) Phonon band dispersion, (b) total energy and variation in temperature of H-MoSiGeN4; (c) phonon band dispersion, (d) total energy and variation in temperature of T-ScSiGeN4.
Eg-PBE Eg-HSE Ф VBM CBM me? mh? D ε1(0) n (1015cm?2)
H-ZnSiGeN4 2.1 2.53 6.35 2.76 0.23 0.11 1.55 14.73 4.79 1.11
H-MoSiGeN4 1.27 4.54 5.58 4.86 0.32 0.19 4.83 26.06 2.98 0.21
H-MoSiGeP4 0.28 0.92 5.26 1.02 0.10 0.15 1.26 8.54 4.90 0.63
H-HfSiGeP4 0.62 1.26 6.07 1.17 ?0.09 0.19 0.73 3.87 4.38 1.81
H-WSiGeN4 1.27 5.02 5.23 5.46 0.44 0.13 1.80 14.41 2.89 0.31
T-ScSiGeN4 2.1 2.81 6.89 2.66 ?0.15 0.12 0.39 3.23 3.35 0.33
T-ZrSiGeN4 1.41 2.66 6.23 2.65 ?0.01 0.26 0.55 2.12 2.53 2.33
Tab.1  Band gap (eV), work function (Ф, eV), valence band maximum (VBM), conduction band edge (CBM), electron/hole effective mass ( me?/ mh?), static dielectric constant εr(0), and carrier concentration (n) of the 7 selected Janus MA2Z4 monolayers.
Fig.3  Band structures of (a) H-ZnSiGeN4, (b) H-MoSiGeN4, (c) H-MoSiGeP4, (d) H-HfSiGeP4, (e) H-WSiGeN4, (f) T-ScSiGeN4, and (g) T-ZrSiGeN4. The Fermi level was set to 0.
Fig.4  Density of state of (a) H-MoSiGeN4 and (b) T-ScSiGeN4. The Fermi level was set to 0.
Eg-PBE Eg-HSE Ф n (1015cm?2)
H-CrSiGeP4 0 0 4.268 1.09
H-ZnSiGeP4 0 0.1 5.195 1.06
T-ScSiGeP4 0 0.17 5.387 0.38
T-ZnSiGeP4 0 0.43 4.941 0.38
T-YSiGeP4 0 0 5.292 0.81
T-PdSiGeP4 0 0.36 4.792 0.20
Tab.2  Band gap (eV), work function (Ф, eV), and carrier concentration (n) of the 6 Janus MA2Z4 monolayers with band gap values below 0.5 eV.
Fig.5  (a, b) are imaginary part of the dielectric functions of the Janus MA2Z4 monolayers (Eg-HSE higher than 0.5 eV); (c, d) are imaginary part of the dielectric functions of the Janus MA2Z4 monolayers (Eg-HSE lower than 0.5 eV).
Fig.6  (a, b) are optical absorption of the Janus MA2Z4 monolayers (Eg-HSE higher than 0.5 eV); (c, d) are optical absorption for the Janus MA2Z4 monolayers (Eg-HSE lower than 0.5 eV).
Fig.7  (a) Reflectivity [R(ω)], (b) refractivity index [n(ω)], and (c) energy loss [L(ω)] spectrum of the seven Janus MA2Z4 monolayers.
Fig.8  (a, b) are optical conductivity for the Janus MA2Z4 monolayers (Eg-HSE higher than 0.5 eV); (c, d) are optical conductivity for the Janus MA2Z4 monolayers (Eg-HSE lower than 0.5 eV).
Fig.9  (a, b) Transmittance spectra of Janus MA2Z4 monolayers.
Fig.10  Band alignments of the selected Janus MA2Z4 monolayers for the photocatalytic reduction of CO2. The band edges are given with respect to the normal hydrogen electrode (NHE) potential (in volts).
Fig.11  Global reaction profiles for the CO2RR on (a) H-HfSiGeP4 and (b) T-ScSiGeN4 (energy in eV).
1 Bafekry A. , Faraji M. , M. Hoat D. , Shahrokhi M. , M. Fadlallah M. , Shojaei F. , A. H. Feghhi S. , Ghergherehchi M. , Gogova D. . MoSi2N4 single-layer: A novel two-dimensional material with outstanding mechanical, thermal, electronic and optical properties. J. Phys. D, 2021, 54( 15): 155303
https://doi.org/10.1088/1361-6463/abdb6b
2 Xiao Y. , Shen C. , B. Zhang W. . Screening and prediction of metal-doped α-borophene monolayer for nitric oxide elimination. Mater. Today Chem., 2022, 25 : 100958
https://doi.org/10.1016/j.mtchem.2022.100958
3 Li Y. , Xia Z. , Yang Q. , Wang L. , Xing Y. . Review on g-C3N4-based S-scheme heterojunction photocatalysts. J. Mater. Sci. Technol., 2022, 125 : 128
https://doi.org/10.1016/j.jmst.2022.02.035
4 Li H. , Li H. , Wu Z. , Zhu L. , Li C. , Lin S. , Zhu X. , Sun Y. . Realization of high-purity 1T-MoS2 by hydrothermal synthesis through synergistic effect of nitric acid and ethanol for supercapacitors. J. Mater. Sci. Technol., 2022, 123 : 34
https://doi.org/10.1016/j.jmst.2022.01.018
5 L. Hong Y. , B. Liu Z. , Wang L. , Y. Zhou T. , Ma W. , Xu C. , Feng S. , Chen L. , L. Chen M. , M. Sun D. , Q. Chen X. , M. Cheng H. , C. Ren W. . Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science, 2020, 369( 6504): 670
https://doi.org/10.1126/science.abb7023
6 M. Li X. , Z. Lin Z. , R. Cheng L. , Chen X. . Layered MoSi2N4 as electrode material of Zn-air battery. Phys. Status Solidi Rapid Res. Lett., 2022, 16( 5): 2200007
https://doi.org/10.1002/pssr.202200007
7 Xiao C. , Ma Z. , Sa R. , Cui Z. , Gao S. , Du W. , Sun X. , Li Q. . Adsorption behavior of environmental gas molecules on pristine and defective MoSi2N4: Possible application as highly sensitive and reusable gas sensors. ACS Omega, 2022, 7( 10): 8706
https://doi.org/10.1021/acsomega.1c06860
8 Ye B. , Jiang X. , Gu Y. , Yang G. , Liu Y. , Zhao H. , Yang X. , Wei C. , Zhang X. , Lu N. . Quantum transport of short-gate MOSFETs based on monolayer MoSi2N4. Phys. Chem. Chem. Phys., 2022, 24( 11): 6616
https://doi.org/10.1039/D2CP00086E
9 Xiao C. , Sa R. , Cui Z. , Gao S. , Du W. , Sun X. , Zhang X. , Li Q. , Ma Z. . Enhancing the hydrogen evolution reaction by non-precious transition metal (Non-metal) atom doping in defective MoSi2N4 monolayer. Appl. Surf. Sci., 2021, 563 : 150388
https://doi.org/10.1016/j.apsusc.2021.150388
10 Bafekry A. , Faraji M. , M. Hoat D. , Shahrokhi M. , M. Fadlallah M. , Shojaei F. , A. H. Feghhi S. , Ghergherehchi M. , Gogova D. . MoSi2N4 single-layer: A novel two-dimensional material with outstanding mechanical, thermal, electronic and optical properties. J. Phys. D, 2021, 54( 15): 155303
https://doi.org/10.1088/1361-6463/abdb6b
11 Mwankemwa N. , E. Wang H. , Zhu T. , Fan Q. , Zhang F. , Zhang W. . First principles calculations investigation of optoelectronic properties and photocatalytic CO2 reduction of (MoSi2N4)5−n/(MoSiGeN4)n in-plane heterostructures. Results Phys., 2022, 37 : 105549
https://doi.org/10.1016/j.rinp.2022.105549
12 Yang T. , Zhou J. , T. Song T. , Shen L. , P. Feng Y. , Yang M. . High-throughput identification of exfoliable two-dimensional materials with active basal planes for hydrogen evolution. ACS Energy Lett., 2020, 5( 7): 2313
https://doi.org/10.1021/acsenergylett.0c00957
13 Singh R. , Bester G. . Hydrofluorinated graphene: Two-dimensional analog of polyvinylidene fluoride. Phys. Rev. B, 2011, 84( 15): 155427
https://doi.org/10.1103/PhysRevB.84.155427
14 L. Sun M. , Q. Ren Q. , K. Wang S. , Yu J. , C. Tang W. . Electronic properties of Janus silicene: New direct band gap semiconductors. J. Phys. D, 2016, 49( 44): 445305
https://doi.org/10.1088/0022-3727/49/44/445305
15 Peng R. , Ma Y. , Huang B. , Dai Y. . Two-dimensional Janus PtSSe for photocatalytic water splitting under the visible or infrared light. J. Mater. Chem. A, 2019, 7( 2): 603
https://doi.org/10.1039/C8TA09177C
16 Mogulkoc A. , Mogulkoc Y. , Jahangirov S. , Durgun E. , of Janus TiXY (X/Y = S Characterization . Se, and Te) Monolayers. J. Phys. Chem. C, 2019, 123( 49): 29922
https://doi.org/10.1021/acs.jpcc.9b06925
17 X. Wang L. , Lin Z. , K. An Y. . Tunable valley polarization, magnetic anisotropy and dipole moment for layered Janus 2H-VSSe with intrinsic room temperature ferromagnetism. J. Alloys Compd., 2021, 854 : 157141
https://doi.org/10.1016/j.jallcom.2020.157141
18 M. Zhang C. , H. Nie Y. , Sanvito S. , J. Du A. . First-principles prediction of a room-temperature ferromagnetic Janus VSSe monolayer with piezoelectricity, ferroelasticity, and large valley polarization. Nano Lett., 2019, 19( 2): 1366
https://doi.org/10.1021/acs.nanolett.8b05050
19 D. Guo S. , S. Guo X. , Y. Han R. , Deng Y. . Predicted Janus SnSSe monolayer: A comprehensive first-principles study. Phys. Chem. Chem. Phys., 2019, 21( 44): 24620
https://doi.org/10.1039/C9CP04590B
20 C. Cheng Y. , Y. Zhu Z. , Tahir M. , Schwingenschlogl U. . Spin−orbit-induced spin splittings in polar transition metal dichalcogenide monolayers. Europhys. Lett., 2013, 102( 5): 57001
https://doi.org/10.1209/0295-5075/102/57001
21 Y. Lu A. , Y. Zhu H. , Xiao J. , P. Chuu C. , M. Han Y. , H. Chiu M. , C. Cheng C. , W. Yang C. , H. Wei K. , M. Yang Y. , Wang Y. , Sokaras D. , Nordlund D. , D. Yang P. , A. Muller D. , Y. Chou M. , Zhang X. , J. Li L. . Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol., 2017, 12( 8): 744
https://doi.org/10.1038/nnano.2017.100
22 Guo Y. , Zhou S. , Z. Bai Y. , J. Zhao J. . Enhanced piezoelectric effect in Janus group-III chalcogenide monolayers. Appl. Phys. Lett., 2017, 110( 16): 163102
https://doi.org/10.1063/1.4981877
23 D. Guo S. , Q. Mu W. , T. Zhu Y. , Y. Han R. , C. Ren W. . Predicted septuple-atomic-layer Janus MSiGeN4 (M = Mo and W) monolayers with Rashba spin splitting and high electron carrier mobilities. J. Mater. Chem. C, 2021, 9( 7): 2464
https://doi.org/10.1039/D0TC05649A
24 D. Yu Y. , Zhou J. , L. Guo Z. , M. Sun Z. . Novel two-dimensional Janus MoSiGeN4 and WSiGeN4 as highly efficient photocatalysts for spontaneous overall water splitting. ACS Appl. Mater. Interfaces, 2021, 13( 24): 28090
https://doi.org/10.1021/acsami.1c04138
25 T. T. Binh N. , Q. Nguyen C. , V. Vu T. , V. Nguyen C. . Interfacial electronic properties and tunable contact types in graphene/Janus MoGeSiN4 heterostructures. J. Phys. Chem. Lett., 2021, 12( 16): 3934
https://doi.org/10.1021/acs.jpclett.1c00682
26 Kresse G. , Furthmüller J. . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54( 16): 11169
https://doi.org/10.1103/PhysRevB.54.11169
27 Hammer B. , B. Hansen L. , K. Nørskov J. . Improved adsorption energetics within density-functional theory using revised Perdew−Burke−Ernzerhof functionals. Phys. Rev. B, 1999, 59( 11): 7413
https://doi.org/10.1103/PhysRevB.59.7413
28 P. Perdew J. , Burke K. , Ernzerhof M. . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77( 18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
29 Zhang W. , Chen S. , He M. , Zhu G. , Yang W. , Tian Y. , Zhang Z. , Zhang S. , Zhang F. , Wu Q. . Enhanced photocatalytic properties of Bi4O5Br2 by Mn doping: A first principles study. Mater. Res. Express, 2018, 5( 7): 075512
https://doi.org/10.1088/2053-1591/aad158
30 Li L. , Wang W. , Liu H. , Liu X. , Song Q. , Ren S. . First principles calculations of electronic band structure and optical properties of Cr-doped ZnO. J. Phys. Chem. C, 2009, 113( 19): 8460
https://doi.org/10.1021/jp811507r
31 Ghosh D. , Periyasamy G. , K. Pati S. . Transition metal embedded two-dimensional C3N4–graphene nanocomposite: A multifunctional material. J. Phys. Chem. C, 2014, 118( 28): 15487
https://doi.org/10.1021/jp503367v
32 J. Samuels A. , D. Carey J. . Molecular doping and band-gap opening of bilayer graphene. ACS Nano, 2013, 7( 3): 2790
https://doi.org/10.1021/nn400340q
33 Bekaert J. , Khestanova E. , G. Hopkinson D. , Birkbeck J. , Clark N. , Zhu M. , A. Bandurin D. , Gorbachev R. , Fairclough S. , Zou Y. , Hamer M. , J. Terry D. , J. P. Peters J. , M. Sanchez A. , Partoens B. , J. Haigh S. , V. Milošević M. , V. Grigorieva I. . Enhanced superconductivity in few-layer TaS2 due to healing by oxygenation. Nano Lett., 2020, 20( 5): 3808
https://doi.org/10.1021/acs.nanolett.0c00871
34 Sun Z. , Xu J. , Mwankemwa N. , Yang W. , Wu X. , Yi Z. , Chen S. , Zhang W. . Na, and K)-adsorbed MoSi2N4 monolayer: an investigation of its outstanding electronic, optical, and photocatalytic properties. Commum. Theor. Phys., 2022, 74( 1): 015503
https://doi.org/10.1088/1572-9494/ac3ada
35 Robertson J. . High dielectric constant oxides. Eur. Phys. J. Appl. Phys., 2004, 28( 3): 265
https://doi.org/10.1051/epjap:2004206
36 Wang J. , Zhang W. , Wu Q. , Gao S. , Jin Y. , Xiao Y. , Chen Y. . The electronic and optical properties of Au decorated( 101¯4) dolomite surface: A first principles calculations. Results Phys., 2021, 21 : 103827
https://doi.org/10.1016/j.rinp.2021.103827
37 Zhao Z. , Li Z. , Zou Z. . Electronic structure and optical properties of monoclinic clinobisvanite BiVO4. Phys. Chem. Chem. Phys., 2011, 13( 10): 4746
https://doi.org/10.1039/c0cp01871f
38 Yu W. , Xu D. , Peng T. . Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: A direct Z-scheme mechanism. J. Mater. Chem. A, 2015, 3( 39): 19936
https://doi.org/10.1039/C5TA05503B
39 Thulin L. , Guerra J. . Calculations of strain-modified anatase TiO2 band structures. Phys. Rev. B, 2008, 77( 19): 195112
https://doi.org/10.1103/PhysRevB.77.195112
40 Kudo A. , Miseki Y. . Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev., 2009, 38( 1): 253
https://doi.org/10.1039/B800489G
41 Li X. , Wang P. , Wu Y. , Liu Z. , Zhang Q. , Zhang T. , Wang Z. , Liu Y. , Zheng Z. , Huang B. . ZnGeP2: A near-infrared-activated photocatalyst for hydrogen production. Front. Phys., 2020, 15( 2): 23604
https://doi.org/10.1007/s11467-020-0958-4
42 Zhang W. , Zhang Z. , Kwon S. , Zhang F. , Stephen B. , K. Kim K. , Jung R. , Kwon S. , B. Chung K. , Yang W. . Photocatalytic improvement of Mn-adsorbed g-C3N4. Appl. Catal. B, 2017, 206 : 271
https://doi.org/10.1016/j.apcatb.2017.01.034
43 Liu J. . Origin of high photocatalytic efficiency in monolayer g-C3N4/CdS heterostructure: A hybrid DFT study. J. Phys. Chem. C, 2015, 119( 51): 28417
https://doi.org/10.1021/acs.jpcc.5b09092
44 Chen S. , Hu Y. , Meng S. , Fu X. . Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3. Appl. Catal. B, 2014, 150– 151, 564
https://doi.org/10.1016/j.apcatb.2013.12.053
45 Zhou Z. , Yuan S. , Wang J. . Theoretical progress on direct Z-scheme photocatalysis of two-dimensional heterostructures. Front. Phys., 2021, 16( 4): 43203
https://doi.org/10.1007/s11467-021-1054-0
[1] fop-21199-OF-zhangweibin_suppl_1 Download
[1] Zhiqiang Yang, Yichuan Chen, Jing Li, Chen Lu, Junfang Zhao, Mengtao Sun. Theoretical investigation on optical properties of Möbius carbon nanobelts in one- and two-photon absorption[J]. Front. Phys. , 2023, 18(3): 33303-.
[2] Mingyun Huang, Xingxing Jiang, Yueshao Zheng, Zhengwei Xu, Xiong-Xiong Xue, Keqiu Chen, Yexin Feng. Novel two-dimensional PdSe phase: A puckered material with excellent electronic and optical properties[J]. Front. Phys. , 2022, 17(5): 53504-.
[3] Xiao-Dong Zhang, Kang Liu, Jun-Wei Fu, Hong-Mei Li, Hao Pan, Jun-Hua Hu, Min Liu. Pseudo-copper Ni–Zn alloy catalysts for carbon dioxide reduction to C2 products[J]. Front. Phys. , 2021, 16(6): 63500-.
[4] Lianzhen Cao, Xia Liu, Yingde Li, Xiusheng Li, Lena Du, Shengyao Chen, Shenlong Zhao, Cong Wang. Recent progress in all-inorganic metal halide nanostructured perovskites: Materials design, optical properties, and application[J]. Front. Phys. , 2021, 16(3): 33201-.
[5] Xin-Long Dong, Kun-Hua Zhang, Ming-Xiang Xu. First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni)[J]. Front. Phys. , 2018, 13(5): 137106-.
[6] Qi Pei, Xiao-Cha Wang, Ji-Jun Zou, Wen-Bo Mi. Tunable electronic structure and magnetic coupling in strained two-dimensional semiconductor MnPSe3[J]. Front. Phys. , 2018, 13(4): 137105-.
[7] Hai-Ming Dong, San-Dong Guo, Yi-Feng Duan, Fei Huang, Wen Xu, Jin Zhang. Electronic and optical properties of single-layer MoS2[J]. Front. Phys. , 2018, 13(4): 137307-.
[8] Sajid-ur- Rehman, Faheem K. Butt, Chuanbo Li, Bakhtiar Ul Haq, Zeeshan Tariq, F. Aleem. First-principles calculations of nitrogen-doped antimony triselenide: A prospective material for solar cells and infrared optoelectronic devices[J]. Front. Phys. , 2018, 13(3): 137805-.
[9] Yan Wang (王研), Chun-Mei Hao (郝春梅), Hong-Mei Huang (黄红梅), Yan-Ling Li (李延龄). Elastic, dynamical, and electronic properties of LiHg and Li3Hg: First-principles study[J]. Front. Phys. , 2018, 13(2): 137102-.
[10] Xiao-Hong Li, Hong-Ling Cui, Rui-Zhou Zhang. Structural, optical, and thermal properties of MAX-phase Cr2AlB2[J]. Front. Phys. , 2018, 13(2): 136501-.
[11] Ze-Lian Wang,Wen-Hui Xie,Yong-Hong Zhao. Tunable band structure and effective mass of disordered chalcopyrite[J]. Front. Phys. , 2017, 12(1): 127103-.
[12] Feng-Bin Liu (刘峰斌), Jing-Lin Li (李景林), Wen-Bin Chen (陈文彬), Yan Cui (崔岩), Zhi-Wei Jiao (焦志伟), Hong-Juan Yan (阎红娟), Min Qu (屈敏), Jie-Jian Di (狄杰建). Geometries and electronic structures of the hydrogenated diamond (100) surface upon exposure to active ions: A first principles study[J]. Front. Phys. , 2016, 11(1): 116804-.
[13] Bakhtiar Ul Haq, Rashid Ahmed, Galila Abdellatif, Amiruddin Shaari, Faheem K. Butt, Mohammed Benali Kanoun, Souraya Goumri-Said. Dominant ferromagnetic coupling over antiferromagnetic in Ni doped ZnO: First-principles calculations[J]. Front. Phys. , 2016, 11(1): 117101-.
[14] Qing-Xiao Zhou, Chao-Yang Wang, Zhi-Bing Fu, Yong-Jian Tang, Hong Zhang. Effects of various defects on the electronic properties of single-walled carbon nanotubes: A first principle study[J]. Front. Phys. , 2014, 9(2): 200-209.
[15] Zhen Chen, Rui-Juan Xiao, Chao Ma, Yuan-Bin Qin, Hong-Long Shi, Zhi-Wei Wang, Yuan-Jun Song, Zhen Wang, Huan-Fang Tian, Huai-Xin Yang, Jian-Qi Li. Electronic structure of YMn2O5 studied by EELS and first-principles calculations[J]. Front. Phys. , 2012, 7(4): 429-434.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed