|
|
Computational exploration and screening of novel Janus MA2Z4 (M = Sc−Zn, Y−Ag, Hf−Au; A=Si, Ge; Z=N, P) monolayers and potential application as a photocatalyst |
Weibin Zhang1( ), Woochul Yang3, Yingkai Liu1, Zhiyong Liu1, Fuchun Zhang2( ) |
1. College of Physics and Electronics Information, Yunnan Key Laboratory of Opto-Electronic Information Technology, Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials-Ministry of Education, Yunnan Normal University, Kunming 650500, China 2. College of Physics and Electronic Information, Yan’an University, Yan’an 716000, China 3. Department of Physics, Dongguk University, Seoul 04620, Republic of Korea |
|
|
Abstract By high-throughput calculations, 13 thermally and environmentally stable Janus MA2Z4 monolayers were screened from 104 types of candidates. The 13 stable monolayers have very high charge carrier concentrations (×1015 cm−2), which are better than those of the well-known graphene and TaS2. Because of their excellent conductivity, the 6 monolayers with band gaps less than 0.5 eV are identified as potential electrode materials for hydrogen evolution reaction applications. For potential applications as photoelectric or photocatalytic materials, bandgaps (Eg-HSE) higher than 0.5 eV remained, which resulted in 7 potential candidates. Based on optical absorption analysis in the visible-light range, H-HfSiGeP4 and H-MoSiGeP4 have higher absorption ability and optical conductivity, which is quite impressive for optoelectronic, solar cell device, and photocatalysis applications. Additionally, the transmittance coefficient of Janus MA2Z4 monolayers is approximately 70%−80% in the visible-light range, which implies that these monolayers show good light transmittance. For potential applications as photocatalysts, the redox potential and charge effective mass analysis indicate that H-HfSiGeP4, H-MoSiGeP4, T-ScSiGeN4, and T-ZrSiGeN4 are suitable photocatalysts for CO2 reduction reactions. Using high-throughput identification, 13 types of new and stable Janus MA2Z4 monolayers were explored, and the basic properties and potential applications were investigated, which can reduce the time for experiments and provide basic data for the material genome initiative.
|
Keywords
Janus MA2Z4
high-throughput identification
charge carrier concentration
electronic structure
optical properties
|
Corresponding Author(s):
Weibin Zhang,Fuchun Zhang
|
About author: Tongcan Cui and Yizhe Hou contributed equally to this work. |
Issue Date: 28 September 2022
|
|
1 |
Bafekry A. , Faraji M. , M. Hoat D. , Shahrokhi M. , M. Fadlallah M. , Shojaei F. , A. H. Feghhi S. , Ghergherehchi M. , Gogova D. . MoSi2N4 single-layer: A novel two-dimensional material with outstanding mechanical, thermal, electronic and optical properties. J. Phys. D, 2021, 54( 15): 155303
https://doi.org/10.1088/1361-6463/abdb6b
|
2 |
Xiao Y. , Shen C. , B. Zhang W. . Screening and prediction of metal-doped α-borophene monolayer for nitric oxide elimination. Mater. Today Chem., 2022, 25 : 100958
https://doi.org/10.1016/j.mtchem.2022.100958
|
3 |
Li Y. , Xia Z. , Yang Q. , Wang L. , Xing Y. . Review on g-C3N4-based S-scheme heterojunction photocatalysts. J. Mater. Sci. Technol., 2022, 125 : 128
https://doi.org/10.1016/j.jmst.2022.02.035
|
4 |
Li H. , Li H. , Wu Z. , Zhu L. , Li C. , Lin S. , Zhu X. , Sun Y. . Realization of high-purity 1T-MoS2 by hydrothermal synthesis through synergistic effect of nitric acid and ethanol for supercapacitors. J. Mater. Sci. Technol., 2022, 123 : 34
https://doi.org/10.1016/j.jmst.2022.01.018
|
5 |
L. Hong Y. , B. Liu Z. , Wang L. , Y. Zhou T. , Ma W. , Xu C. , Feng S. , Chen L. , L. Chen M. , M. Sun D. , Q. Chen X. , M. Cheng H. , C. Ren W. . Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science, 2020, 369( 6504): 670
https://doi.org/10.1126/science.abb7023
|
6 |
M. Li X. , Z. Lin Z. , R. Cheng L. , Chen X. . Layered MoSi2N4 as electrode material of Zn-air battery. Phys. Status Solidi Rapid Res. Lett., 2022, 16( 5): 2200007
https://doi.org/10.1002/pssr.202200007
|
7 |
Xiao C. , Ma Z. , Sa R. , Cui Z. , Gao S. , Du W. , Sun X. , Li Q. . Adsorption behavior of environmental gas molecules on pristine and defective MoSi2N4: Possible application as highly sensitive and reusable gas sensors. ACS Omega, 2022, 7( 10): 8706
https://doi.org/10.1021/acsomega.1c06860
|
8 |
Ye B. , Jiang X. , Gu Y. , Yang G. , Liu Y. , Zhao H. , Yang X. , Wei C. , Zhang X. , Lu N. . Quantum transport of short-gate MOSFETs based on monolayer MoSi2N4. Phys. Chem. Chem. Phys., 2022, 24( 11): 6616
https://doi.org/10.1039/D2CP00086E
|
9 |
Xiao C. , Sa R. , Cui Z. , Gao S. , Du W. , Sun X. , Zhang X. , Li Q. , Ma Z. . Enhancing the hydrogen evolution reaction by non-precious transition metal (Non-metal) atom doping in defective MoSi2N4 monolayer. Appl. Surf. Sci., 2021, 563 : 150388
https://doi.org/10.1016/j.apsusc.2021.150388
|
10 |
Bafekry A. , Faraji M. , M. Hoat D. , Shahrokhi M. , M. Fadlallah M. , Shojaei F. , A. H. Feghhi S. , Ghergherehchi M. , Gogova D. . MoSi2N4 single-layer: A novel two-dimensional material with outstanding mechanical, thermal, electronic and optical properties. J. Phys. D, 2021, 54( 15): 155303
https://doi.org/10.1088/1361-6463/abdb6b
|
11 |
Mwankemwa N. , E. Wang H. , Zhu T. , Fan Q. , Zhang F. , Zhang W. . First principles calculations investigation of optoelectronic properties and photocatalytic CO2 reduction of (MoSi2N4)5−n/(MoSiGeN4)n in-plane heterostructures. Results Phys., 2022, 37 : 105549
https://doi.org/10.1016/j.rinp.2022.105549
|
12 |
Yang T. , Zhou J. , T. Song T. , Shen L. , P. Feng Y. , Yang M. . High-throughput identification of exfoliable two-dimensional materials with active basal planes for hydrogen evolution. ACS Energy Lett., 2020, 5( 7): 2313
https://doi.org/10.1021/acsenergylett.0c00957
|
13 |
Singh R. , Bester G. . Hydrofluorinated graphene: Two-dimensional analog of polyvinylidene fluoride. Phys. Rev. B, 2011, 84( 15): 155427
https://doi.org/10.1103/PhysRevB.84.155427
|
14 |
L. Sun M. , Q. Ren Q. , K. Wang S. , Yu J. , C. Tang W. . Electronic properties of Janus silicene: New direct band gap semiconductors. J. Phys. D, 2016, 49( 44): 445305
https://doi.org/10.1088/0022-3727/49/44/445305
|
15 |
Peng R. , Ma Y. , Huang B. , Dai Y. . Two-dimensional Janus PtSSe for photocatalytic water splitting under the visible or infrared light. J. Mater. Chem. A, 2019, 7( 2): 603
https://doi.org/10.1039/C8TA09177C
|
16 |
Mogulkoc A. , Mogulkoc Y. , Jahangirov S. , Durgun E. , of Janus TiXY (X/Y = S Characterization . Se, and Te) Monolayers. J. Phys. Chem. C, 2019, 123( 49): 29922
https://doi.org/10.1021/acs.jpcc.9b06925
|
17 |
X. Wang L. , Lin Z. , K. An Y. . Tunable valley polarization, magnetic anisotropy and dipole moment for layered Janus 2H-VSSe with intrinsic room temperature ferromagnetism. J. Alloys Compd., 2021, 854 : 157141
https://doi.org/10.1016/j.jallcom.2020.157141
|
18 |
M. Zhang C. , H. Nie Y. , Sanvito S. , J. Du A. . First-principles prediction of a room-temperature ferromagnetic Janus VSSe monolayer with piezoelectricity, ferroelasticity, and large valley polarization. Nano Lett., 2019, 19( 2): 1366
https://doi.org/10.1021/acs.nanolett.8b05050
|
19 |
D. Guo S. , S. Guo X. , Y. Han R. , Deng Y. . Predicted Janus SnSSe monolayer: A comprehensive first-principles study. Phys. Chem. Chem. Phys., 2019, 21( 44): 24620
https://doi.org/10.1039/C9CP04590B
|
20 |
C. Cheng Y. , Y. Zhu Z. , Tahir M. , Schwingenschlogl U. . Spin−orbit-induced spin splittings in polar transition metal dichalcogenide monolayers. Europhys. Lett., 2013, 102( 5): 57001
https://doi.org/10.1209/0295-5075/102/57001
|
21 |
Y. Lu A. , Y. Zhu H. , Xiao J. , P. Chuu C. , M. Han Y. , H. Chiu M. , C. Cheng C. , W. Yang C. , H. Wei K. , M. Yang Y. , Wang Y. , Sokaras D. , Nordlund D. , D. Yang P. , A. Muller D. , Y. Chou M. , Zhang X. , J. Li L. . Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol., 2017, 12( 8): 744
https://doi.org/10.1038/nnano.2017.100
|
22 |
Guo Y. , Zhou S. , Z. Bai Y. , J. Zhao J. . Enhanced piezoelectric effect in Janus group-III chalcogenide monolayers. Appl. Phys. Lett., 2017, 110( 16): 163102
https://doi.org/10.1063/1.4981877
|
23 |
D. Guo S. , Q. Mu W. , T. Zhu Y. , Y. Han R. , C. Ren W. . Predicted septuple-atomic-layer Janus MSiGeN4 (M = Mo and W) monolayers with Rashba spin splitting and high electron carrier mobilities. J. Mater. Chem. C, 2021, 9( 7): 2464
https://doi.org/10.1039/D0TC05649A
|
24 |
D. Yu Y. , Zhou J. , L. Guo Z. , M. Sun Z. . Novel two-dimensional Janus MoSiGeN4 and WSiGeN4 as highly efficient photocatalysts for spontaneous overall water splitting. ACS Appl. Mater. Interfaces, 2021, 13( 24): 28090
https://doi.org/10.1021/acsami.1c04138
|
25 |
T. T. Binh N. , Q. Nguyen C. , V. Vu T. , V. Nguyen C. . Interfacial electronic properties and tunable contact types in graphene/Janus MoGeSiN4 heterostructures. J. Phys. Chem. Lett., 2021, 12( 16): 3934
https://doi.org/10.1021/acs.jpclett.1c00682
|
26 |
Kresse G. , Furthmüller J. . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54( 16): 11169
https://doi.org/10.1103/PhysRevB.54.11169
|
27 |
Hammer B. , B. Hansen L. , K. Nørskov J. . Improved adsorption energetics within density-functional theory using revised Perdew−Burke−Ernzerhof functionals. Phys. Rev. B, 1999, 59( 11): 7413
https://doi.org/10.1103/PhysRevB.59.7413
|
28 |
P. Perdew J. , Burke K. , Ernzerhof M. . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77( 18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
|
29 |
Zhang W. , Chen S. , He M. , Zhu G. , Yang W. , Tian Y. , Zhang Z. , Zhang S. , Zhang F. , Wu Q. . Enhanced photocatalytic properties of Bi4O5Br2 by Mn doping: A first principles study. Mater. Res. Express, 2018, 5( 7): 075512
https://doi.org/10.1088/2053-1591/aad158
|
30 |
Li L. , Wang W. , Liu H. , Liu X. , Song Q. , Ren S. . First principles calculations of electronic band structure and optical properties of Cr-doped ZnO. J. Phys. Chem. C, 2009, 113( 19): 8460
https://doi.org/10.1021/jp811507r
|
31 |
Ghosh D. , Periyasamy G. , K. Pati S. . Transition metal embedded two-dimensional C3N4–graphene nanocomposite: A multifunctional material. J. Phys. Chem. C, 2014, 118( 28): 15487
https://doi.org/10.1021/jp503367v
|
32 |
J. Samuels A. , D. Carey J. . Molecular doping and band-gap opening of bilayer graphene. ACS Nano, 2013, 7( 3): 2790
https://doi.org/10.1021/nn400340q
|
33 |
Bekaert J. , Khestanova E. , G. Hopkinson D. , Birkbeck J. , Clark N. , Zhu M. , A. Bandurin D. , Gorbachev R. , Fairclough S. , Zou Y. , Hamer M. , J. Terry D. , J. P. Peters J. , M. Sanchez A. , Partoens B. , J. Haigh S. , V. Milošević M. , V. Grigorieva I. . Enhanced superconductivity in few-layer TaS2 due to healing by oxygenation. Nano Lett., 2020, 20( 5): 3808
https://doi.org/10.1021/acs.nanolett.0c00871
|
34 |
Sun Z. , Xu J. , Mwankemwa N. , Yang W. , Wu X. , Yi Z. , Chen S. , Zhang W. . Na, and K)-adsorbed MoSi2N4 monolayer: an investigation of its outstanding electronic, optical, and photocatalytic properties. Commum. Theor. Phys., 2022, 74( 1): 015503
https://doi.org/10.1088/1572-9494/ac3ada
|
35 |
Robertson J. . High dielectric constant oxides. Eur. Phys. J. Appl. Phys., 2004, 28( 3): 265
https://doi.org/10.1051/epjap:2004206
|
36 |
Wang J. , Zhang W. , Wu Q. , Gao S. , Jin Y. , Xiao Y. , Chen Y. . The electronic and optical properties of Au decorated( 101¯4) dolomite surface: A first principles calculations. Results Phys., 2021, 21 : 103827
https://doi.org/10.1016/j.rinp.2021.103827
|
37 |
Zhao Z. , Li Z. , Zou Z. . Electronic structure and optical properties of monoclinic clinobisvanite BiVO4. Phys. Chem. Chem. Phys., 2011, 13( 10): 4746
https://doi.org/10.1039/c0cp01871f
|
38 |
Yu W. , Xu D. , Peng T. . Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: A direct Z-scheme mechanism. J. Mater. Chem. A, 2015, 3( 39): 19936
https://doi.org/10.1039/C5TA05503B
|
39 |
Thulin L. , Guerra J. . Calculations of strain-modified anatase TiO2 band structures. Phys. Rev. B, 2008, 77( 19): 195112
https://doi.org/10.1103/PhysRevB.77.195112
|
40 |
Kudo A. , Miseki Y. . Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev., 2009, 38( 1): 253
https://doi.org/10.1039/B800489G
|
41 |
Li X. , Wang P. , Wu Y. , Liu Z. , Zhang Q. , Zhang T. , Wang Z. , Liu Y. , Zheng Z. , Huang B. . ZnGeP2: A near-infrared-activated photocatalyst for hydrogen production. Front. Phys., 2020, 15( 2): 23604
https://doi.org/10.1007/s11467-020-0958-4
|
42 |
Zhang W. , Zhang Z. , Kwon S. , Zhang F. , Stephen B. , K. Kim K. , Jung R. , Kwon S. , B. Chung K. , Yang W. . Photocatalytic improvement of Mn-adsorbed g-C3N4. Appl. Catal. B, 2017, 206 : 271
https://doi.org/10.1016/j.apcatb.2017.01.034
|
43 |
Liu J. . Origin of high photocatalytic efficiency in monolayer g-C3N4/CdS heterostructure: A hybrid DFT study. J. Phys. Chem. C, 2015, 119( 51): 28417
https://doi.org/10.1021/acs.jpcc.5b09092
|
44 |
Chen S. , Hu Y. , Meng S. , Fu X. . Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3. Appl. Catal. B, 2014, 150– 151, 564
https://doi.org/10.1016/j.apcatb.2013.12.053
|
45 |
Zhou Z. , Yuan S. , Wang J. . Theoretical progress on direct Z-scheme photocatalysis of two-dimensional heterostructures. Front. Phys., 2021, 16( 4): 43203
https://doi.org/10.1007/s11467-021-1054-0
|
[1] |
fop-21199-OF-zhangweibin_suppl_1
|
Download
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|