Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (6) : 63500    https://doi.org/10.1007/s11467-021-1079-4
RESEARCH ARTICLE
Pseudo-copper Ni–Zn alloy catalysts for carbon dioxide reduction to C2 products
Xiao-Dong Zhang1, Kang Liu1, Jun-Wei Fu1, Hong-Mei Li1, Hao Pan2, Jun-Hua Hu3, Min Liu1()
1. School of Physics and Electronics, State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
2. Department of Periodontics & Oral Mucosal Section, Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
3. School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China
 Download: PDF(1891 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Electrocatalytic CO2 reduction reaction (CO2RR) to obtain C2 products has drawn widespread attentions. Copper-based materials are the most reported catalysts for CO2 reduction to C2 products. Design of high-efficiency pseudo-copper catalysts according to the key characteristics of copper (Cu) is an important strategy to understand the reaction mechanism of C2 products. In this work, density function theory (DFT) calculations are used to predict nickel–zinc (NiZn) alloy catalysts with the criteria similar structure and intermediate adsorption property to Cu catalyst. The calculated tops of 3d states of NiZn3(001) catalysts are the same as Cu(100), which is the key parameter affecting the adsorption of intermediate products. As a result, NiZn3(001) exhibits similar adsorption properties with Cu(100) on the crucial intermediates *CO2, *CO and *H. Moreover, we further studied CO formation, CO hydrogenation and C–C coupling process on Ni–Zn alloys. The free energy profile of C2 products formation shows that the energy barrier of C2 products formation on NiZn3(001) is even lower than Cu(100). These results indicate that NiZn3 alloy as pseudo-copper catalyst can exhibit a higher catalytic activity and selectivity of C2 products during CO2RR. This work proposes a feasible pseudo-copper catalyst and provides guidance to design high-efficiency catalysts for CO2RR to C2 or multi-carbon products.

Keywords pseudo-copper catalysts      surface and electronic structure      adsorption abilities      Ni–Zn alloys      CO2RR C2 products      DFT     
Corresponding Author(s): Min Liu   
Issue Date: 18 June 2021
 Cite this article:   
Xiao-Dong Zhang,Kang Liu,Jun-Wei Fu, et al. Pseudo-copper Ni–Zn alloy catalysts for carbon dioxide reduction to C2 products[J]. Front. Phys. , 2021, 16(6): 63500.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-021-1079-4
https://academic.hep.com.cn/fop/EN/Y2021/V16/I6/63500
1 Z. Cui, W. Du, C. Xiao, Q. Li, R. Sa, C. Sun, and Z. Ma, Enhancing hydrogen evolution of MoS2 Basal planes by combining single-boron catalyst and compressive strain, Front. Phys. 15(6), 63502 (2020)
https://doi.org/10.1007/s11467-020-0980-6
2 K. Chen, H. Li, Y. Xu, K. Liu, H. Li, X. Xu, X. Qiu, and M. Liu, Untying thioether bond structures enabled by “voltage-scissors” for stable room temperature sodiumsulfur batteries, Nanoscale 11(13), 5967 (2019)
https://doi.org/10.1039/C9NR01637F
3 X. Li, Y. B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z. H. Lu, and E. H. Sargent, Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination, Nat. Photon. 12(3), 159 (2018)
https://doi.org/10.1038/s41566-018-0105-8
4 Y. Wei, G. Xing, K. Liu, G. Li, P. Dang, S. Liang, M. Liu, Z. Cheng, D. Jin, and J. Lin, New strategy for designing orangish-red-emitting phosphor via oxygen-vacancyinduced electronic localization, Light Sci. Appl. 8(1), 15 (2019)
https://doi.org/10.1038/s41377-019-0126-1
5 K. Chen, W. Fan, C. Huang, and X. Qiu, Enhanced stability and catalytic activity of bismuth nanoparticles by modified with porous silica, J. Phys. Chem. Solids 110, 9 (2017)
https://doi.org/10.1016/j.jpcs.2017.05.025
6 Q. Li, S. Qiu, and B. Jia, Theoretical investigation of CoTa2O6/graphene heterojunctions for oxygen evolution reaction, Front. Phys. 16(1), 13503 (2021)
https://doi.org/10.1007/s11467-020-0999-8
7 Z. Q. Wang, T. Y. Lü, H. Q. Wang, Y. P. Feng, and J. C. Zheng, Review of borophene and its potential applications, Front. Phys. 14(3), 33403 (2019)
https://doi.org/10.1007/s11467-019-0884-5
8 Y. H. Lui, B. Zhang, and S. Hu, Rational design of photoelectrodes for photoelectrochemical water splitting and CO2 reduction, Front. Phys. 14(5), 53402 (2019)
https://doi.org/10.1007/s11467-019-0903-6
9 J. Fu, K. Jiang, X. Qiu, J. Yu, and M. Liu, Product selectivity of photocatalytic CO2 reduction reactions, Mater. Today 32, 222 (2020)
https://doi.org/10.1016/j.mattod.2019.06.009
10 J. Fu, K. Liu, K. Jiang, H. Li, P. An, W. Li, N. Zhang, H. Li, X. Xu, H. Zhou, D. Tang, X. Wang, X. Qiu, and M. Liu, Graphitic carbon nitride with dopant induced charge localization for enhanced photoreduction of CO2 to CH4, Adv. Sci. 6(18), 1900796 (2019)
https://doi.org/10.1002/advs.201900796
11 J. Fu, S. Wang, Z. Wang, K. Liu, H. Li, H. Liu, J. Hu, X. Xu, H. Li, and M. Liu, Graphitic carbon nitride based single-atom photocatalysts, Front. Phys. 15(3), 33201 (2020)
https://doi.org/10.1007/s11467-019-0950-z
12 R. Kas, R. Kortlever, H. Yilmaz, M. T. M. Koper, and G. Mul, Manipulating the hydrocarbon selectivity of copper nanoparticles in CO2 electroreduction by process conditions, ChemElectroChem 2(3), 354 (2015)
https://doi.org/10.1002/celc.201402373
13 M. Zhong, K. Tran, Y. Min, C. Wang, Z. Wang, C. T. Dinh, P. De Luna, Z. Yu, A. S. Rasouli, P. Brodersen, S. Sun, O. Voznyy, C. S. Tan, M. Askerka, F. Che, M. Liu, A. Seifitokaldani, Y. Pang, S. C. Lo, A. Ip, Z. Ulissi, and E. H. Sargent, Accelerated discovery of CO2 electrocatalysts using active machine learning, Nature 581(7807), 178 (2020)
https://doi.org/10.1038/s41586-020-2242-8
14 R. Reske, M. Duca, M. Oezaslan, K. J. P. Schouten, M. T. M. Koper, and P. Strassert, Controlling catalytic selectivities during CO2 electroreduction on thin Cu metal overlayers, J. Phys. Chem. Lett. 4(15), 2410 (2013)
https://doi.org/10.1021/jz401087q
15 F. Calle-Vallejo and M. T. Koper, Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes, Angew. Chem. Int. Ed. 52(28), 7282 (2013)
https://doi.org/10.1002/anie.201301470
16 X. Wang, Z. Wang, F. P. García de Arquer, C. T. Dinh, A. Ozden, Y. C. Li, D. H. Nam, J. Li, Y. S. Liu, J. Wicks, Z. Chen, M. Chi, B. Chen, Y. Wang, J. Tam, J. Y. Howe, A. Proppe, P. Todorović, F. Li, T. T. Zhuang, C. M. Gabardo, A. R. Kirmani, C. McCallum, S. F. Hung, Y. Lum, M. Luo, Y. Min, A. Xu, C. P. O’Brien, B. Stephen, B. Sun, A. H. Ip, L. J. Richter, S. O. Kelley, D. Sinton, and E. H. Sargent, Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation, Nat. Energy 5(6), 478 (2020)
https://doi.org/10.1038/s41560-020-0607-8
17 P. An, L. Wei, H. Li, B. Yang, K. Liu, J. Fu, H. Li, H. Liu, J. Hu, Y. R. Lu, H. Pan, T. S. Chan, N. Zhang, and M. Liu, Enhancing CO2 reduction by suppressing hydrogen evolution with polytetrafluoroethylene protected copper nanoneedles, J. Mater. Chem. A 8(31), 15936 (2020)
https://doi.org/10.1039/D0TA03645E
18 H. Zhou, K. Liu, H. Li, M. Cao, J. Fu, X. Gao, J. Hu, W. Li, H. Pan, J. Zhan, Q. Li, X. Qiu, and M. Liu, Recent advances in different-dimension electrocatalysts for carbon dioxide reduction, J. Colloid Interface Sci. 550, 17 (2019)
https://doi.org/10.1016/j.jcis.2019.04.077
19 Y. Zhou, F. Che, M. Liu, C. Zou, Z. Liang, P. De Luna, H. Yuan, J. Li, Z. Wang, H. Xie, H. Li, P. Chen, E. Bladt, R. Quintero-Bermudez, T. K. Sham, S. Bals, J. Hofkens, D. Sinton, G. Chen, and E. H. Sargent, Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons, Nat. Chem. 10(9), 974 (2018)
https://doi.org/10.1038/s41557-018-0092-x
20 S. Nitopi, E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld, S. Horch, B. Seger, I. E. L. Stephens, K. Chan, C. Hahn, J. K. Norskov, T. F. Jaramillo, and I. Chorkendorff, Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte, Chem. Rev. 119(12), 7610 (2019)
https://doi.org/10.1021/acs.chemrev.8b00705
21 Y. Y. Birdja, E. Pérez-Gallent, M. C. Figueiredo, A. J. Göttle, F. Calle-Vallejo, and M. T. M. Koper, Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels, Nat. Energy 4(9), 732 (2019)
https://doi.org/10.1038/s41560-019-0450-y
22 W. Luo, X. Nie, M. J. Janik, and A. Asthagiri, Facet dependence of CO2 reduction paths on Cu electrodes, ACS Catal. 6(1), 219 (2016)
https://doi.org/10.1021/acscatal.5b01967
23 H. Li, F. Calle-Vallejo, M. J. Kolb, Y. Kwon, Y. Li, and M. T. Koper, Why (1 0 0) terraces break and make bonds: Oxidation of dimethyl ether on platinum single-crystal electrodes, J. Am. Chem. Soc. 135(38), 14329 (2013)
https://doi.org/10.1021/ja406655q
24 M. T. Koper, Structure sensitivity and nanoscale effects in electrocatalysis, Nanoscale 3(5), 2054 (2011)
https://doi.org/10.1039/c0nr00857e
25 X. G. Zhang, S. Feng, C. Zhan, D. Y. Wu, Y. Zhao, and Z. Q. Tian, Electroreduction reaction mechanism of carbon dioxide to C2 products via Cu/Au bimetallic catalysis: A theoretical prediction, J. Phys. Chem. Lett. 11(16), 6593 (2020)
https://doi.org/10.1021/acs.jpclett.0c01970
26 Z. X. Chen, K. M. Neyman, A. B. Gordienko, and N. Rösch, Surface structure and stability of PdZn and PtZn alloys: Density-functional slab model studies, Phys. Rev. B 68(7), 075417 (2003)
https://doi.org/10.1103/PhysRevB.68.075417
27 D. Kim, J. Resasco, Y. Yu, A. M. Asiri, and P. Yang, Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles, Nat. Commun. 5(1), 4948 (2014)
https://doi.org/10.1038/ncomms5948
28 A. Nilsson, L. G. M. Pettersson, B. Hammer, T. Bligaard, C. H. Christensen, and J. K. Nørskov, The electronic structure effect in heterogeneous catalysis, Catal. Lett. 100(3–4), 111 (2005)
https://doi.org/10.1007/s10562-004-3434-9
29 J. K. Norskov, F. Abild-Pedersen, F. Studt, and T. Bligaard, Density functional theory in surface chemistry and catalysis, Proc. Natl. Acad. Sci. USA 108(3), 937 (2011)
https://doi.org/10.1073/pnas.1006652108
30 M. Luo, Z. Wang, Y. C. Li, J. Li, F. Li, Y. Lum, D. H. Nam, B. Chen, J. Wicks, A. Xu, T. Zhuang, W. R. Leow, X. Wang, C. T. Dinh, Y. Wang, Y. Wang, D. Sinton, and E. H. Sargent, Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen, Nat. Commun. 10(1), 5814 (2019)
https://doi.org/10.1038/s41467-019-13833-8
31 A. Bagger, W. Ju, A. S. Varela, P. Strasser, and J. Rossmeisl, Electrochemical CO2 reduction: A classification problem, ChemPhysChem 18(22), 3266 (2017)
https://doi.org/10.1002/cphc.201700736
32 Y. Zheng, A. Vasileff, X. Zhou, Y. Jiao, M. Jaroniec, and S. Z. Qiao, Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts, J. Am. Chem. Soc. 141(19), 7646 (2019)
https://doi.org/10.1021/jacs.9b02124
33 Z. Zhao and G. Lu, Computational screening of nearsurface alloys for CO2 electroreduction, ACS Catal. 8(5), 3885 (2018)
https://doi.org/10.1021/acscatal.7b03705
34 S. Lee, G. Park, and J. Lee, Importance of Ag–Cu biphasic boundaries for selective electrochemical reduction of CO2 to ethanol, ACS Catal. 7(12), 8594 (2017)
https://doi.org/10.1021/acscatal.7b02822
35 X. Lv, L. Shang, S. Zhou, S. Li, Y. Wang, Z. Wang, T. K. Sham, C. Peng, and G. Zheng, Electron-deficient Cu sites on Cu3Ag1 catalyst promoting CO2 electroreduction to alcohols, Adv. Energy Mater. 10(37), 2001987 (2020)
https://doi.org/10.1002/aenm.202001987
36 D. Ren, B. S. H. Ang, and B. S. Yeo, Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts, ACS Catal. 6(12), 8239 (2016)
https://doi.org/10.1021/acscatal.6b02162
37 H. S. Jeon, J. Timoshenko, F. Scholten, I. Sinev, A. Herzog, F. T. Haase, and B. R. Cuenya, Operando insight into the correlation between the structure and composition of CuZn nanoparticles and their selectivity for the electrochemical CO2 reduction, J. Am. Chem. Soc. 141(50), 19879 (2019)
https://doi.org/10.1021/jacs.9b10709
38 A. R. Paris and A. B. Bocarsly, Ni–Al films on glassy carbon electrodes generate an array of oxygenated organics from CO2, ACS Catal. 7(10), 6815 (2017)
https://doi.org/10.1021/acscatal.7b02146
39 A. R. Paris and A. B. Bocarsly, Mechanistic insights into C2 and C3 product generation using Ni3Al and Ni3Ga electrocatalysts for CO2 reduction, Faraday Discuss. 215, 192 (2019)
https://doi.org/10.1039/C8FD00177D
40 D. A. Torelli, S. A. Francis, J. C. Crompton, A. Javier, J. R. Thompson, B. S. Brunschwig, M. P. Soriaga, and N. S. Lewis, Nickel–gallium-catalyzed electrochemical reduction of CO2 to highly reduced products at low overpotentials, ACS Catal. 6(3), 2100 (2016)
https://doi.org/10.1021/acscatal.5b02888
41 R. Kortlever, I. Peters, C. Balemans, R. Kas, Y. Kwon, G. Mul, and M. T. Koper, Palladium-gold catalyst for the electrochemical reduction of CO2 to C1–C5 hydrocarbons, Chem. Commun. (Camb.) 52(67), 10229 (2016)
https://doi.org/10.1039/C6CC03717H
42 K. J. P. Schouten, E. Pérez Gallent, and M. T. M. Koper, Structure sensitivity of the electrochemical reduction of carbon monoxide on copper single crystals, ACS Catal. 3(6), 1292 (2013)
https://doi.org/10.1021/cs4002404
43 H. A. Hansen, C. Shi, A. C. Lausche, A. A. Peterson, and J. K. Norskov, Bifunctional alloys for the electroreduction of CO2 and CO, Phys. Chem. Chem. Phys. 18(13), 9194 (2016)
https://doi.org/10.1039/C5CP07717F
44 M. J. Cheng, E. L. Clark, H. H. Pham, A. T. Bell, and M. Head-Gordon, Quantum mechanical screening of singleatom bimetallic alloys for the selective reduction of CO2 to C1 hydrocarbons, ACS Catal. 6(11), 7769 (2016)
https://doi.org/10.1021/acscatal.6b01393
45 A. Vasileff, C. Xu, Y. Jiao, Y. Zheng, and S. Z. Qiao, Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction, Chem 4(8), 1809 (2018)
https://doi.org/10.1016/j.chempr.2018.05.001
46 M. Karamad, V. Tripkovic, and J. Rossmeisl, Intermetallic alloys as CO electroreduction catalysts — Role of isolated active sites, ACS Catal. 4(7), 2268 (2014)
https://doi.org/10.1021/cs500328c
47 Y. Cai and X. Luo, First-principles investigation of carbon dioxide adsorption on MN4 doped graphene, AIP Adv. 10(12), 125013 (2020)
https://doi.org/10.1063/5.0029724
48 A. C. Hegde, K. Venkatakrishna, and N. Eliaz, Electrodeposition of Zn–Ni, Zn–Fe and Zn–Ni–Fe alloys, Surf. Coat. Tech. 205(7), 2031 (2010)
https://doi.org/10.1016/j.surfcoat.2010.08.102
49 G. Kresse and J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, Phys. Rev. B 49(20), 14251 (1994)
https://doi.org/10.1103/PhysRevB.49.14251
50 G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
51 G. Kresses and J. Hafner, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
https://doi.org/10.1016/0927-0256(96)00008-0
52 J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46(11), 6671 (1992)
https://doi.org/10.1103/PhysRevB.46.6671
53 K. Liu, J. Fu, L. Zhu, X. Zhang, H. Li, H. Liu, J. Hu, and M. Liu, Single-atom transition metals supported on black phosphorene for electrochemical nitrogen reduction, Nanoscale 12(8), 4903 (2020)
https://doi.org/10.1039/C9NR09117C
54 J. K. Nörskov, T. Bligaard, J. Rossmeisl, and C. H. Christensen, Towards the computational design of solid catalysts, Nat. Chem. 1(1), 37 (2009)
https://doi.org/10.1038/nchem.121
55 J. Li, Z. Wang, C. McCallum, Y. Xu, F. Li, Y. Wang, C. M. Gabardo, C. T. Dinh, T. T. Zhuang, L. Wang, J. Y. Howe, Y. Ren, E. H. Sargent, and D. Sinton, Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction, Nat. Catal. 2(12), 1124 (2019)
https://doi.org/10.1038/s41929-019-0380-x
56 T. K. Todorova, M. W. Schreiber, and M. Fontecave, Mechanistic understanding of CO2 reduction reaction (CO2RR) toward multicarbon products by heterogeneous copper-based catalysts, ACS Catal. 10(3), 1754 (2020)
https://doi.org/10.1021/acscatal.9b04746
57 D. D. Zhu, J. L. Liu, and S. Z. Qiao, Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide, Adv. Mater. 28(18), 3423 (2016)
https://doi.org/10.1002/adma.201504766
58 S. Hanselman, M. T. M. Koper, and F. Calle-Vallejo, Computational comparison of late transition metal (100) surfaces for the electrocatalytic reduction of CO to C2 species, ACS Energy Lett. 3(5), 1062 (2018)
https://doi.org/10.1021/acsenergylett.8b00326
[1] Tianyi Wang, Ani Dong, Xiaoli Zhang, Rosalie K. Hocking, Chenghua Sun. Theoretical study of K3Sb/graphene heterostructure for electrochemical nitrogen reduction reaction[J]. Front. Phys. , 2022, 17(2): 23501-.
[2] Qingquan Kong, Xuguang An, Lin Huang, Xiaolian Wang, Wei Feng, Siyao Qiu, Qingyuan Wang, Chenghua Sun. A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure and hydrogen evolution performance[J]. Front. Phys. , 2021, 16(5): 53506-.
[3] Qinye Li, Siyao Qiu, Baohua Jia. Theoretical investigation of CoTa2O6/graphene heterojunctions for oxygen evolution reaction[J]. Front. Phys. , 2021, 16(1): 13503-.
[4] Jia Liu, Xian Liao, Jiayu Liang, Mingchao Wang, Qinghong Yuan. Tuning the electronic properties of hydrogen passivated C3N nanoribbons through van der Waals stacking[J]. Front. Phys. , 2020, 15(6): 63503-.
[5] Zhitao Cui, Wei Du, Chengwei Xiao, Qiaohong Li, Rongjian Sa, Chenghua Sun, Zuju Ma. Enhancing hydrogen evolution of MoS2 basal planes by combining single-boron catalyst and compressive strain[J]. Front. Phys. , 2020, 15(6): 63502-.
[6] Thomas Pope, Werner Hofer. Exact orbital-free kinetic energy functional for general many-electron systems[J]. Front. Phys. , 2020, 15(2): 23603-.
[7] Yu Guo, Nan Gao, Yizhen Bai, Jijun Zhao, Xiao Cheng Zeng. Monolayered semiconducting GeAsSe and SnSbTe with ultrahigh hole mobility[J]. Front. Phys. , 2018, 13(4): 138117-.
[8] Qiang Wang, Jian-Wei Li, Bin Wang, Yi-Hang Nie. First-principles investigation of quantum transport in GeP3 nanoribbon-based tunneling junctions[J]. Front. Phys. , 2018, 13(3): 138501-.
[9] Xue-Rong Hu, Ji-Ming Zheng, Zhao-Yu Ren. Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation[J]. Front. Phys. , 2018, 13(2): 137302-.
[10] Jian-Wei Li,Bin Wang,Yun-Jin Yu,Ya-Dong Wei,Zhi-Zhou Yu,Yin Wang. Spin-resolved quantum transport in graphene-based nanojunctions[J]. Front. Phys. , 2017, 12(4): 126501-.
[11] Jianing Zhuang,Yin Wang,Yan Zhou,Jian Wang,Hong Guo. Impurity-limited quantum transport variability in magnetic tunnel junctions[J]. Front. Phys. , 2017, 12(4): 127304-.
[12] Yang Li, Hong Zhang, Da-Wei Yan, Hai-Feng Yin, Xin-Lu Cheng. Secondary plasmon resonance in graphene nanostructures[J]. Front. Phys. , 2015, 10(1): 103101-.
[13] Yanho Kwok, Yu Zhang, GuanHua Chen. Time-dependent density functional theory for quantum transport[J]. Front. Phys. , 2014, 9(6): 698-710.
[14] Shun-li Yue, Hong Zhang. First principles study on magnetic and electronic properties with rare-earth atoms doped SWCNTs[J]. Front. Phys. , 2012, 7(3): 353-359.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed