Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (3) : 33303    https://doi.org/10.1007/s11467-022-1237-3
RESEARCH ARTICLE
Theoretical investigation on optical properties of Möbius carbon nanobelts in one- and two-photon absorption
Zhiqiang Yang1,2, Yichuan Chen1, Jing Li3, Chen Lu4, Junfang Zhao3, Mengtao Sun1()
1. School of Mathematics and Physics, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
2. Orient Scientific Software (Beijing) Technology Ltd, Beijing, China
3. Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technology Institution Physical and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
4. College of Science, Liaoning Petrochemical University, Fushun 113001, China
 Download: PDF(4644 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The first successful synthesis of fully fused and fully conjugated Möbius carbon nanobelts (CNBs) has attracted considerable attention. However, theoretical calculations based on such π-conjugated Möbius CNB are still insufficient. Herein, we theoretically investigated molecular spectroscopy of Möbius CNBs without and with n-butoxy groups via visualization methods. The results show that the presence of n-butoxy groups can significantly affect Möbius CNBs’ optical performance, changing electron-hole coherence and enhancing two-photon absorption cross-sections. Our work provides a deeper understanding of photophysical mechanisms of Möbius CNBs in one- and two-photon absorption and reveals possible applications on optoelectronic devices.

Keywords optical properties      Möbius carbon nanobelts      photon      spectroscopy     
Corresponding Author(s): Mengtao Sun   
Issue Date: 03 February 2023
 Cite this article:   
Zhiqiang Yang,Yichuan Chen,Jing Li, et al. Theoretical investigation on optical properties of Möbius carbon nanobelts in one- and two-photon absorption[J]. Front. Phys. , 2023, 18(3): 33303.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1237-3
https://academic.hep.com.cn/fop/EN/Y2023/V18/I3/33303
Fig.1  IR absorption of M?bius CNBs without n-butoxy groups.
Fig.2  One- and two-photon absorption spectra of M?bius CNBs with and without n-butoxy groups. (a, b) are one-photon absorption spectra, and (c, d) are two-photon absorption spectra. 1 and 2 stand for three-state term and two-state term, respectively.
Fig.3  CDD and TDM of M?bius CNBs without n-butoxy groups in OPA. (a, b) CDDs for S6 and S19, where the green and red stand for hole and electron, respectively; (c, d) TDMs for S6 and S19, respectively.
Fig.4  The atomic list of M?bius CNBs without and with n-butoxy groups, where H atoms are not shown. (a) M?bius CNBs without n-butoxy groups, (b) M?bius CNBs with n-butoxy groups.
Fig.5  CDD and TDM of M?bius CNBs with n-butoxy groups in OPA. (a, b) CDDs for S6 and S20, where the green and red stand for hole and electron, respectively; (c, d) TDMs for S6 and S20, respectively.
Fig.6  Electronic transitions of M?bius CNBs without and with n-butoxy groups in TPA. (a) Electronic transitions of M?bius CNBs without n-butoxy groups, and (b, c) with n-butoxy groups.
Fig.7  Raman spectra of M?bius CNB and its twist and non-twist moieties. (a) Raman spectra of M?bius CNB, and (b) Raman spectra of twist and non-twist moieties, respectively.
1 Segawa Y. , Watanabe T. , Yamanoue K. , Kuwayama M. , Watanabe K. , Pirillo J. , Hijikata Y. , Itami K. . Synthesis of a Möbius carbon nanobelt. Nat. Synth., 2022, 1(7): 535
https://doi.org/10.1038/s44160-022-00075-8
2 Yao B. , Liu X. , Guo T. , Sun H. , Wang W. . Molecular Möbius strips: Twist for a bright future. Org. Chem. Front., 2022, 9(15): 4171
https://doi.org/10.1039/D2QO00829G
3 Bedi A. , Gidron O. . The consequences of twisting nanocarbons: Lessons from tethered twisted acenes. Acc. Chem. Res., 2019, 52(9): 2482
https://doi.org/10.1021/acs.accounts.9b00271
4 Ajami D. , Oeckler O. , Simon A. , Herges R. . Synthesis of a Möbius aromatic hydrocarbon. Nature, 2003, 426(6968): 819
https://doi.org/10.1038/nature02224
5 Kumar R. , Aggarwal H. , Srivastava A. . Of twists and curves: Electronics, photophysics, and upcoming applications of non-planar conjugated organic molecules. Chemistry, 2020, 26(47): 10653
https://doi.org/10.1002/chem.201905071
6 Bauer T. , Banzer P. , Karimi E. , Orlov S. , Rubano A. , Marrucci L. , Santamato E. , W. Boyd R. , Leuchs G. . Observation of optical polarization of Möbius strips. Science, 2015, 347(6225): 964
https://doi.org/10.1126/science.1260635
7 Rickhaus M. , Mayor M. , Juríček M. . Chirality in curved polyaromatic systems. Chem. Soc. Rev., 2017, 46(6): 1643
https://doi.org/10.1039/C6CS00623J
8 Ouyang G. , Ji L. , Jiang Y. , Würthner F. , Liu M. . Self-assembled Möbius strips with controlled helicity. Nat. Commun., 2020, 11(1): 5910
https://doi.org/10.1038/s41467-020-19683-z
9 F. Ayme J. , E. Beves J. , J. Campbell C. , A. Leigh D. . Template synthesis of molecular knots. Chem. Soc. Rev., 2013, 42(4): 1700
https://doi.org/10.1039/C2CS35229J
10 P. Collier C.Mattersteig G.W. Wong E.Luo Y.Beverly K.Sampaio J.M. Raymo F.F. Stoddart J.R J.. Heath, A [2]catenane-based solid state electronically reconfigurable switch, Science 289(5482), 1172 (2000)
11 Stępień M. , Latos Grażyński L. , Sprutta N. , Chwalisz P. , Szterenberg L. . Expanded porphyrin with a split personality: A Hückel–Möbius aromaticity switch. Angew. Chem. Int. Ed., 2007, 46(41): 7869
https://doi.org/10.1002/anie.200700555
12 Sankar J. , Mori S. , Saito S. , Rath H. , Suzuki M. , Inokuma Y. , Shinokubo H. , Suk Kim K. , S. Yoon Z. , Y. Shin J. , M. Lim J. , Matsuzaki Y. , Matsushita O. , Muranaka A. , Kobayashi N. , Kim D. , Osuka A. . Unambiguous identification of Möbius aromaticity for meso-aryl-substituted [28]hexaphyrins(1.1. 1.1. 1.1). J. Am. Chem. Soc., 2008, 130(41): 13568
https://doi.org/10.1021/ja801983d
13 S. Yoon Z.Osuka A.Kim D., Möbius aromaticity and antiaromaticity in expanded porphyrins, Nat. Chem. 1(2), 113 (2009)
14 R. Schaller G. , Topić F. , Rissanen K. , Okamoto Y. , Shen J. , Herges R. . Design and synthesis of the first triply twisted Möbius annulene. Nat. Chem., 2014, 6(7): 608
https://doi.org/10.1038/nchem.1955
15 Jiang X. , D. Laffoon J. , Chen D. , Pérez Estrada S. , S. Danis A. , Rodríguez López J. , A. Garcia Garibay M. , Zhu J. , S. Moore J. . Kinetic control in the synthesis of a Möbius tris((ethynyl)[5]helicene) macrocycle using alkyne metathesis. J. Am. Chem. Soc., 2020, 142(14): 6493
https://doi.org/10.1021/jacs.0c01430
16 M. Walba D. , M. Richards R. , C. Haltiwanger R. . Total synthesis of the first molecular Möbius strip. J. Am. Chem. Soc., 1982, 104(11): 3219
https://doi.org/10.1021/ja00375a051
17 H. Guo Q. , F. Stoddart J. . The making of aromatic molecular Möbius belts. Chem, 2022, 8(8): 2076
https://doi.org/10.1016/j.chempr.2022.06.024
18 W. Price T. , Jasti R. . Carbon nanobelts do the twist. Nat. Synth., 2022, 1: 502
https://doi.org/10.1038/s44160-022-00083-8
19 Chen Y. , Cheng Y. , Sun M. . Physical mechanisms on plasmon-enhanced organic solar cells. J. Phys. Chem. C, 2021, 125(38): 21301
https://doi.org/10.1021/acs.jpcc.1c07020
20 Chen Y. , Cheng Y. , Sun M. . Nonlinear plexcitons: Excitons coupled with plasmons in two-photon absorption. Nanoscale, 2022, 14(19): 7269
https://doi.org/10.1039/D1NR08163B
21 Kohn W. , J. Sham L. . Self-consistent equations including exchange and correlation effects. Phys. Rev., 1965, 140(4A): A1133
https://doi.org/10.1103/PhysRev.140.A1133
22 Becke A. . Density-functional thermochemistry (iii): The role of exact exchange. J. Chem. Phys., 1993, 98(7): 5648
https://doi.org/10.1063/1.464913
23 Lee C. , Yang W. , G. Parr R. . Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 1988, 37(2): 785
https://doi.org/10.1103/PhysRevB.37.785
24 Frisch M.Trucks G.Schlegel H.Scuseria G.Robb M.Cheeseman J.Scalmani G.Barone V.Petersson G.Nakatsuji H., Gaussian 16, Revision C. 01, Gaussian, Inc. , Wallingford Ct. , 2020
25 Gross E. , Kohn W. . Local density-functional theory of frequency-dependent linear response. Phys. Rev. Lett., 1985, 55(26): 2850
https://doi.org/10.1103/PhysRevLett.55.2850
26 Yanai T.P. Tew D.C. Handy N., A new hybrid exchange–correlation functional using the Coulomb-attenuating method (Cam-B3lyp), Chem. Phys. Lett. 393(1–3), 51 (2004)
27 Lu T. , Chen F. . Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem., 2012, 33(5): 580
https://doi.org/10.1002/jcc.22885
28 Liu Z. , Lu T. , Chen Q. . An sp-hybridized all-carboatomic ring, cyclo[18]carbon: Electronic structure, electronic spectrum, and optical nonlinearity. Carbon, 2020, 165: 461
https://doi.org/10.1016/j.carbon.2020.05.023
29 Göppert‐Mayer M., Über elementarakte mit zwei quantensprüngen, Ann. Phys. 401(3), 273 (1931)
30 Kraner S. , Scholz R. , Plasser F. , Koerner C. , Leo K. . Exciton size and binding energy limitations in one-dimensional organic materials. J. Chem. Phys., 2015, 143(24): 244905
https://doi.org/10.1063/1.4938527
31 Mukamel S. , Tretiak S. , Wagersreiter T. , Chernyak V. . Electronic coherence and collective optical excitations of conjugated molecules. Science, 1997, 277(5327): 781
https://doi.org/10.1126/science.277.5327.781
32 Zhang N. , Wu J. , Yu T. , Lv J. , Liu H. , Xu X. . Theory, preparation, properties and catalysis application in 2D graphynes-based materials. Front. Phys., 2021, 16(2): 23201
https://doi.org/10.1007/s11467-020-0992-2
33 Kong Q.An X.Huang L.Wang X.Feng W.Qiu S.Wang Q.Sun C., A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure an hydrogen evolution performance, Front. Phys. 16(5), 53506 (2021)
34 Yang R. , Fan J. , Sun M. . Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties. Front. Phys., 2022, 17(4): 43202
https://doi.org/10.1007/s11467-022-1176-z
35 H. Li X. , X. Guo Y. , Ren Y. , J. Peng J. , S. Liu J. , Wang C. , Zhang H. . Narrow-bandgap materials for optoelectronics applications. Front. Phys., 2022, 17(1): 13304
https://doi.org/10.1007/s11467-021-1055-z
36 B. Dai Z. , Cen G. , Zhang Z. , Lv X. , Liu K. , Li Z. . Near-field infrared response of graphene on copper substrate. Front. Phys., 2022, 17(4): 43502
https://doi.org/10.1007/s11467-021-1140-3
37 Luo G. , Lv X. , Wen L. , Li Z. , Dai Z. . Strain induced topological transitions in twisted double bilayer graphene. Front. Phys., 2022, 17(2): 23502
https://doi.org/10.1007/s11467-021-1146-x
38 Y. Li S. , He L. . Recent progresses of quantum confinement in graphene quantum dots. Front. Phys., 2022, 17(3): 33201
https://doi.org/10.1007/s11467-021-1125-2
[1] Hao Zhang, Mohsin Ijaz, Richard J. Blaikie. Recent review of surface plasmons and plasmonic hot electron effects in metallic nanostructures[J]. Front. Phys. , 2023, 18(6): 63602-.
[2] Xingjia Cheng, Wen Xu, Hua Wen, Jing Zhang, Heng Zhang, Haowen Li, Francois M. Peeters, Qingqing Chen. Electronic properties of 2H-stacking bilayer MoS2 measured by terahertz time-domain spectroscopy[J]. Front. Phys. , 2023, 18(5): 53303-.
[3] Fuqiang Niu, Hengfei Zhang, Jinpeng Yuan, Liantuan Xiao, Suotang Jia, Lirong Wang. Photonic graphene with reconfigurable geometric structures in coherent atomic ensembles[J]. Front. Phys. , 2023, 18(5): 52304-.
[4] Jian-Sheng Wang, Jiebin Peng, Zu-Quan Zhang, Yong-Mei Zhang, Tao Zhu. Transport in electron−photon systems[J]. Front. Phys. , 2023, 18(4): 43602-.
[5] Shuang-Shuang Kong, Wei-Kai Liu, Xiao-Xia Yu, Ya-Lin Li, Liu-Zhu Yang, Yun Ma, Xiao-Yong Fang. Interlayer interaction mechanism and its regulation on optical properties of bilayer SiCNSs[J]. Front. Phys. , 2023, 18(4): 43302-.
[6] Junchao Hu, Xinglin Wen, Dehui Li. Optical properties of two-dimensional perovskites[J]. Front. Phys. , 2023, 18(3): 33602-.
[7] Huili Zhu, Zifan Hong, Changjie Zhou, Qihui Wu, Tongchang Zheng, Lan Yang, Shuqiong Lan, Weifeng Yang. Energy band alignment of 2D/3D MoS2/4H-SiC heterostructure modulated by multiple interfacial interactions[J]. Front. Phys. , 2023, 18(1): 13301-.
[8] Lu Bo, Xiao-Fei Liu, Chuan Wang, Tie-Jun Wang. Spinning microresonator-induced chiral optical transmission[J]. Front. Phys. , 2023, 18(1): 12305-.
[9] Ling-Juan Feng, Li Yan, Shang-Qing Gong. Unconventional photon blockade induced by the self-Kerr and cross-Kerr nonlinearities[J]. Front. Phys. , 2023, 18(1): 12304-.
[10] Yafen Cai, Shuai Shi, Yijia Zhou, Jianhao Yu, Yali Tian, Yitong Li, Kuan Zhang, Chenhao Du, Weibin Li, Lin Li. A multi-band atomic candle with microwave-dressed Rydberg atoms[J]. Front. Phys. , 2023, 18(1): 12302-.
[11] Weibin Zhang, Woochul Yang, Yingkai Liu, Zhiyong Liu, Fuchun Zhang. Computational exploration and screening of novel Janus MA2Z4 (M = Sc−Zn, Y−Ag, Hf−Au; A=Si, Ge; Z=N, P) monolayers and potential application as a photocatalyst[J]. Front. Phys. , 2022, 17(6): 63509-.
[12] Zongyu Hou, Weilun Gu, Tianqi Li, Zhe Wang, Liang Li, Xiang Yu, Yecai Zhang, Zijun Liu. A calibration-free model for laser-induced breakdown spectroscopy using non-gated detectors[J]. Front. Phys. , 2022, 17(6): 62503-.
[13] Wenhao Bu, Yuhe Zhang, Qian Liang, Tao Chen, Bo Yan. Saturated absorption spectroscopy of buffer-gas-cooled Barium monofluoride molecules[J]. Front. Phys. , 2022, 17(6): 62502-.
[14] Yiqing Tian, Yiqi Zhang, Yongdong Li, R. Belić Milivoj. Vector valley Hall edge solitons in the photonic lattice with type-II Dirac cones[J]. Front. Phys. , 2022, 17(5): 53503-.
[15] Changjie Zhou, Huili Zhu, Weifeng Yang, Qiubao Lin, Tongchang Zheng, Lan Yang, Shuqiong Lan. Interfacial properties of 2D WS2 on SiO2 substrate from X-ray photoelectron spectroscopy and first-principles calculations[J]. Front. Phys. , 2022, 17(5): 53500-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed